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Abstract
BACKGROUND 
Thalidomide is an effective treatment for refractory Crohn’s disease (CD). Ho-
wever, thalidomide-induced peripheral neuropathy (TiPN), which has a large 
individual variation, is a major cause of treatment failure. TiPN is rarely pre-
dictable and recognized, especially in CD. It is necessary to develop a risk model 
to predict TiPN occurrence.

AIM 
To develop and compare a predictive model of TiPN using machine learning 
based on comprehensive clinical and genetic variables.

METHODS 
A retrospective cohort of 164 CD patients from January 2016 to June 2022 was 
used to establish the model. The National Cancer Institute Common Toxicity 
Criteria Sensory Scale (version 4.0) was used to assess TiPN. With 18 clinical 
features and 150 genetic variables, five predictive models were established and 
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evaluated by the confusion matrix receiver operating characteristic curve (AUROC), area under 
the precision-recall curve (AUPRC), specificity, sensitivity (recall rate), precision, accuracy, and F1 
score.

RESULTS 
The top-ranking five risk variables associated with TiPN were interleukin-12 rs1353248 [P = 0.0004, 
odds ratio (OR): 8.983, 95% confidence interval (CI): 2.497-30.90], dose (mg/d, P = 0.002), brain-
derived neurotrophic factor (BDNF) rs2030324 (P = 0.001, OR: 3.164, 95%CI: 1.561-6.434), BDNF 
rs6265 (P = 0.001, OR: 3.150, 95%CI: 1.546-6.073) and BDNF rs11030104 (P = 0.001, OR: 3.091, 
95%CI: 1.525-5.960). In the training set, gradient boosting decision tree (GBDT), extremely random 
trees (ET), random forest, logistic regression and extreme gradient boosting (XGBoost) obtained 
AUROC values > 0.90 and AUPRC > 0.87. Among these models, XGBoost and GBDT obtained the 
first two highest AUROC (0.90 and 1), AUPRC (0.98 and 1), accuracy (0.96 and 0.98), precision 
(0.90 and 0.95), F1 score (0.95 and 0.98), specificity (0.94 and 0.97), and sensitivity (1). In the 
validation set, XGBoost algorithm exhibited the best predictive performance with the highest 
specificity (0.857), accuracy (0.818), AUPRC (0.86) and AUROC (0.89). ET and GBDT obtained the 
highest sensitivity (1) and F1 score (0.8). Overall, compared with other state-of-the-art classifiers 
such as ET, GBDT and RF, XGBoost algorithm not only showed a more stable performance, but 
also yielded higher ROC-AUC and PRC-AUC scores, demonstrating its high accuracy in 
prediction of TiPN occurrence.

CONCLUSION 
The powerful XGBoost algorithm accurately predicts TiPN using 18 clinical features and 14 genetic 
variables. With the ability to identify high-risk patients using single nucleotide polymorphisms, it 
offers a feasible option for improving thalidomide efficacy in CD patients.

Key Words: Thalidomide-induced peripheral neuropathy; Refractory Crohn’s disease; Neurotoxicity 
prediction models; Machine learning; Gene polymorphisms

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Thalidomide-induced peripheral neuropathy (TiPN) is a life-threatening condition in Crohn's 
disease and has a high incidence in Asia. However, there are no effective medical interventions for TiPN. 
Here, we established a predictive model using machine learning and identified genes closely related to 
TiPN occurrence. We have found that extreme gradient boosting algorithm can sensitively identify 
patients who are prone to TiPN, which is useful for doctors to adjust the thalidomide therapy.

Citation: Mao J, Chao K, Jiang FL, Ye XP, Yang T, Li P, Zhu X, Hu PJ, Zhou BJ, Huang M, Gao X, Wang XD. 
Comparison and development of machine learning for thalidomide-induced peripheral neuropathy prediction of 
refractory Crohn’s disease in Chinese population. World J Gastroenterol 2023; 29(24): 3855-3870
URL: https://www.wjgnet.com/1007-9327/full/v29/i24/3855.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i24.3855

INTRODUCTION
Thalidomide is widely used in refractory Crohn’s disease (CD) patients, with a remission rate of 40%-
70%[1,2]. However, the clinical application of thalidomide is limited by its side effects, especially 
peripheral neuropathy. A large individual difference (20%-75%) was found in the incidence of 
peripheral nerve lesions[3]. If neurotoxicity occurs during the treatment, reduction or cessation is 
needed to avoid further neurotoxicity. This may lead to treatment failure[4]. The nerve lesions after 
withdrawal may worsen for several months, recovery can be slow and incomplete, and the resulting 
neurotoxicity profoundly affects quality of life[5]. Hence, developing a predictive model for 
thalidomide-induced peripheral neuropathy (TiPN) and identifying related factors that can accurately 
predict peripheral neuropathy are important.

Thalidomide is a small molecule with immunomodulatory activity[4]. Numerous clinical studies have 
confirmed that thalidomide is effective for treatment of CD, especially in patients with hormone 
intolerance, lack of efficacy of azathioprine/6-mercaptopurine, and biological treatment failure[6,7], It 
brings hope to patients with refractory CD, which can reduce economic and healthcare costs because of 
its low price from the perspective of pharmacoeconomics. A retrospective multicenter observational 

https://www.wjgnet.com/1007-9327/full/v29/i24/3855.htm
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study showed that the proportion of adults with refractory CD from whom thalidomide was withdrawn 
because of toxicity alone was up to 46% at 2 years[7], which affected maintenance of remission in nearly 
half of patients treated with thalidomide. TiPN may appear primarily as sensory peripheral nerve 
lesions and may differ in symptoms, including paralysis, sensory disturbance, sensory abnormalities, 
hyperalgesia and severe pain[8]. The empiric identification of agents and interventions to mitigate TiPN 
has been disappointing, and presently there is no intervention available for prevention except dose 
management. Although electrophysiological monitoring has been used in patients prescribed 
thalidomide, it provides no clear benefit for the occurrence of neuropathy compared to clinical 
assessment[3,9].

Few researchers have studied risk factors related to TiPN[10,11], and most studies have been 
conducted in chemotherapy patients. Szudy-Szczyrek et al[12] used serum brain-derived neurotrophic 
factor (BDNF) concentration as an indicator of polyneuropathy, which did not accurately reflect nerve 
damage and the results could not be generalized due to small number of patients. Only a limited 
number of molecular genetic studies in TiPN have been conducted, but none has discussed the 
association between genetic factors and TiPN in patients with CD. TiPN is thought to be a dose-limiting 
toxicity[13], and the therapeutic dose of thalidomide between chemotherapy and CD patients can differ 
by up to 10 times[14]. Thus, the existing findings are probably not fully representative of patients with 
CD.

The neurotoxic mechanism of thalidomide is still unclear[15]. Some hypotheses and treatment 
directions for TiPN have appeared. Thalidomide exhibits an antiangiogenic effect, which is considered 
to cause secondary ischemia and hypoxia of nerve fibers, which may lead to ischemia-related 
neuropathy. Vascular endothelial growth factor gene therapy in animals with TiPN led to obvious 
improvement in vascular recovery[16,17]. In addition, neuronal susceptibility can be increased by the 
dysregulation of neurotrophic factors through immunomodulatory mechanisms[18]. Tonello et al[19] 
analyzed dorsal root ganglion tissues from their animal experiments. Matrix metalloproteinase (MMP)9 
monoclonal antibody significantly decreased oxidative stress and affected the expression of neuroin-
flammatory mediators, suggesting that MMP9 acts on peripheral nerve lesions. Thalidomide 
metabolites are considered to cause neuronal damage through reactive oxidative species causing 
damage to DNA[20]. BDNF is the only neurotrophic factor expressed during most peripheral damaged 
sensory neurons. It has been proven to be an effective regulator of regeneration-related gene expression 
in the peripheral and central nervous systems[21,22]. Additionally, Navia-Pelaez et al[23] observed the 
induction of mouse neuralgia by ATP binding cassette transporter (ABC)A1/ATP binding cassette 
transporter (ABC)G1 knockdown, which prevented apolipoprotein A-I binding protein from reversing 
peripheral neuropathy allodynia[23]. Johnson et al[9] reported that gene polymorphisms of ABCA1 had 
a significant association with thalidomide-related neuropathy[9]. Interleukin (IL)-12 was upregulated in 
MPTP-intoxicated mice[24]. In the patients who received CTL019, IL-2 level in those with neurotoxicity 
was higher than in those without neurotoxicity[25]. Zhang et al[26] supported IL-12 cytokine profiles as 
indicators of neurotoxicity[26]. Few studies have demonstrated a relationship between cumulative dose 
and TiPN[27,28]. The gene polymorphisms of transcriptional regulators, inflammatory cytokines and 
transporters may have an important impact on individual differences in TiPN. These genetic factors 
may adequately explain the neurotoxicity with clinical variables.

Therefore, an accurate model for identifying TiPN with comprehensive clinical and genetic variables 
is required in patients with CD. In recent years, powerful data mining and computing have encouraged 
a growing use of machine learning in the medical field, including diagnosis, treatment, prognostic data 
classification, and regression[29-31]. Tao et al[32] generated a predictive model for clinical response in 
patients with rheumatoid arthritis using a multiomics approach and machine learning, with a predictive 
accuracy > 85%[32]. Mo et al[33] developed a Tacrolimus nephrotoxicity predictive model in nephrotic 
syndrome using machine learning algorithms with clinical and genetic variables, and 78% were 
accurately identified[33]. To date, there is no predictive model for CD patients generated by machine 
learning.

The aim of this study was to develop a sensitive and accurate TiPN predictive model based on clinical 
and genetic variables, which is beneficial for the treatment of thalidomide.

MATERIALS AND METHODS
Study population
A total of 164 CD patients diagnosed according to the criteria of Lennard-Jones were randomly recruited 
from the Sixth Affiliated Hospital of Sun Yat-sen University from January 2016 to June 2022. The 
patients treated with thalidomide at any course of their disease were considered eligible for the study. 
The inclusion criteria were: (1) Diagnosis of CD; (2) CD activity index > 150 points, with endoscopically 
active lesions; and (3) refractory or intolerant to immunosuppressive drugs or biological agents which 
are used in current treatment. The exclusion criteria were: (1) fiber stenosis caused by gastrointestinal 
obstruction symptoms; (2) fistula, excluding anal fistula; (3) pregnancy or lactation; (4) fertility program 
during the study; (5) less than eight weeks of biologic treatment after last IFX; (6) central or peripheral 
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nervous disease; (7) abnormal liver and renal function; (8) heart dysfunction; (9) malignant tumor; and 
(10) active tuberculosis.

Ethical approval was obtained by the Ethics Committee of the Sixth Affiliated Hospital of Sun Yat-
Sen University, Guangzhou, China. This study was registered at the Clinical Trial Registry (Registration 
Number: NCT02956538). Written informed consent was obtained from all participants. Blood samples 
were collected from all recruited patients.

Assessment of neurotoxicity
For the neurophysiological assessment, the same methods were used throughout the whole process of 
observation to minimize any potential bias. For the clinical assessment, the National Cancer Institute 
Common Toxicity Criteria Sensory Scale (version 4.0, 2009) was used. Details of thalidomide 
administered to each patient were acquired directly from the medical records of the patients. 
Meanwhile, patients without blood samples or intact clinical data were excluded.

Clinical variables
In order to adjust the influence of clinical variables on TiPN, 18 types of baseline clinical variables were 
collected, including demographic data (weight, age, etc.), inflammatory indexes (C-reactive protein, 
erythrocyte sedimentation rate, etc.), hepatic function (alanine aminotransferase, aspartate aminotrans-
ferase, etc.), and routine blood examination. Supplementary Table 1 shows the full names and local 
abbreviations of clinical characteristics.

Single nucleotide polymorphism selection and genotyping
We performed comprehensive detection of genetic variables (single nucleotide polymorphisms; SNPs), 
including genes related to thalidomide pharmacokinetic/pharmacodynamic pathways, metabolic 
enzymes, transcriptional regulators, nerve growth factors, inflammatory cytokines, etc. Details of the 
selection steps of these genes (SNPs) were as follows. (1) The physical position of these genes was 
obtained through the human Ensembl GRCh37 database (http://asia.ensembl.org/Homo_sapiens/
Info/Index). In the VCF to PED Converter window (http://grch37.ensembl.org/Homo_sapiens/Tools/
VcftoPed), positions of genes were entered, the Chinese Han population in Beijing was selected, and 
then, PED and info file for the SNPs of these genes were download; and (2) Haploview software for 
entry criterion was set (minor allele frequency > 5%, r2 < 0.8, min genotype > 75%, and Hardy–Weinberg 
equilibrium > 0.05) to obtain the tag-SNP. Ultimately, 150 genetic variables met the above standards. 
DNA analysis was performed by collecting 5-mL peripheral blood samples. DNA extraction from whole 
blood was performed using Genomic Blood DNA Extraction Kit (DP304, Tiangen, Beijing, China). 
Nanodrop 2000C (Thermo Scientific, Fitchburg, WI, United States) was used for the detection of DNA 
concentration.

The published polymerase chain reaction-restriction fragment length polymorphism method was 
used for the detection of all SNPs[34,35], and 150 SNPs were detected by Agena Bioscience MassARRAY 
(Agena Bioscience, San Diego, CA, United States).

Machine learning
Single-sample Kolmogorov-Smirnov tests were carried out to test the distribution of continuous 
variables. Data were shown as median (range) or mean ± SD, according to the data type.

Based on clinical and genetic variables, a predictive model for TiPN in CD patients was developed 
using a series of machine learning methods. We implement machine learning as a three-step process, 
data preprocessing, feature selection, and model generation and verification. To evaluate the 
performance of the model generation, a fivefold cross-verification was performed. The evaluation 
indicators used included confusion matrix, receiver operating characteristic (ROC) curve, precision 
recall (PR) curve, specificity, sensitivity, precision, accuracy and F1 core. Figure 1 shows the workflow 
for machine learning.

The t-test and nonparametric Mann–Whitney U test were used to analyze continuous variables while 
categorical variables were analyzed by χ2 test. Machine learning techniques were performed in Python 
3.7.13. GraphPad Prism version 8 (GraphPad, San Diego, CA, United States) was used for graphic 
analysis. P < 0.05 was considered to be a statistically significant difference.

Data preprocessing
Features with missing rates > 30% were removed after the collection of variables was finished. The 
missing value of a continuous variable was filled with an average value, and the classification variable 
was processed by removing the missing value. The continuous variables were uniform quantized by 
minimum-maximum normalization, and the categorical variables were represented using dummy 
variables. The range of each clinical data set is shown in Supplementary Table 1.

Feature selection
Univariate analysis was used to evaluate the relationship between each variable and TiPN. SNPs with 
weak effects (P > 0.1) were eliminated. In order to reduce the model complexity, clinical variables were 

https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
http://asia.ensembl.org/Homo_sapiens/Info/Index
http://asia.ensembl.org/Homo_sapiens/Info/Index
http://grch37.ensembl.org/Homo_sapiens/Tools/VcftoPed
http://grch37.ensembl.org/Homo_sapiens/Tools/VcftoPed
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
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Figure 1 Flow chart display. Flow chart showing the process of model generation validation of the model. RF: Random forest; GBDT: Gradient boosting decision 
tree; ET: Extremely randomized trees; LR: Logistic regression; XGBoost: Extreme gradient boosting.

uniformly quantified into 11 categorical variables [0, 0.1, 0.2, ..., 1], since the dataset included both 
categorical variables (e.g. gender, polymorphisms and outcomes) and continuous variables (e.g. drug 
dose, age and clinical tests). To improve robustness and accuracy of the prediction of our approach, the 
dataset was reiterated 1000 times, resulting in different test sets, which were used to select model 
hyperparameters. Five models were established to predict TiPN development, named extreme gradient 
boosting (XGBoost), gradient boosting decision tree (GBDT), extremely random tree (ET), random forest 
(RF) and logistic regression (LR) model. The paramount variables of all these models are ranked by 
information gain[36].

Model development and validation
One hundred and sixty-four patients were randomly divided into training (80%) and testing (20%) data 
sets[37,38]. The Synthetic Minority Oversampling Technique (SMOTE) algorithm was combined in the 
training set and the test set to deal with the data imbalance. The five predictive models were trained 
using k folder cross-validation (k = 5). Through implementation and comparison, we avoided merging 
plans and improved the generalization performance of these models.

XGBoost, ET, GBDT, RF and LR algorithms were used to analyze the feature set and to generate 
neurotoxicity prediction models. To guarantee the robust stability of these computational models, the 
dataset was randomly divided 1000 times to obtain different training sets to test the hyperparameter for 
each group. Taking XGBoost as an example, the main hyperparameter included learning rate, maximum 
depth, estimators, and eta. The performance of the tested classification algorithm was evaluated and 
compared based on the area under the ROC curve, area under the PR curve, specificity, sensitivity 
(recall), precision, accuracy, and F1 score.

Bioinformatics analysis
The effects of expression quantitative trait loci (eQTLs) on the top-four gene expressions were examined 
with the Genotype-Tissue Expression (GTEx) database. https://www.gtexportal.org/home/.

https://www.gtexportal.org/home/
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RESULTS
Patient characteristics
A total of 164 patients with CD were collected in this study, including 119 men and 45 women. The 
average age of the patients was 34.3 ± 12.7 years. Median dose of thalidomide was 1.5 mg/kg/d (range 
0.3-2.9). TiPN was observed in 59 patients (36%) during follow-up. Median duration of thalidomide 
treatment was 17.2 mo (range 1-60). We collected 18 baseline variables and 150 genetic variables 
(Supplementary Table 2) of the patients. Table 1 shows the baseline characteristics of the patients. The 
genotype coincided with Hardy Weinberg equilibrium.

Feature selection
In the univariate analysis, variables that had a significant impact on TiPN included IL-12 rs1353248 (P = 
0.0004), BDNF rs2030324 (P = 0.001), BDNF rs6265 (P = 0.001), and dose (P = 0.002), ABCA1 rs10991419 (
P = 0.002). After removing genetic variables with low correlation (P > 0.1), 14 SNPs and 18 clinical 
variables were included in the following analysis (Table 2 and Supplementary Table 1).

Identification of appropriate biomarkers that distinguished the neurotoxic symptom group from the 
well-tolerated group was deemed important, which helped in exploring disease biomarkers and 
understanding pathogenesis. After the data transformation, models were generated using ET, GBDT, 
RF, XGBoost and LR, and the feature importance scores were used to rank all the features. The higher 
the information gain value, the more significant the variable became (Figure 2). By ranking each feature, 
the top five ranked features were IL-12 rs1353248, dose (mg/d), BDNF rs6265, BDNF rs2030324 and 
BDNF rs11030104. IL-12 rs1353248 was found to have the highest predictive variable importance for 
TiPN, followed by thalidomide daily dose, rs6265, rs2030324 and rs11030104. Figure 3 shows the four 
genetic variables and the occurrence of TiPN. Patients with BDNF rs2030324_AG, BDNF rs6265_CT, 
BDNF rs11030104_AG, and IL-12 rs1353248_TT genotypes were more likely to have TiPN; patients with 
BDNF rs2030324_AG genotype had more neurotoxicity than patients with AA+GG; CT genotype 
carriers of BDNF rs6265 had higher neurotoxicity than CC+TT carriers; neurotoxicity in carriers of 
BDNF rs11030104_AG was more than in patients with AA+GG genotype; and patients with IL-12 
rs1353248_TT genotype had more neurotoxicity than those who carried CT+CC. Additionally, we 
noticed that there were three SNPs derived from the same gene, which suggested that BDNF played a 
significant role in neurotoxicity.

Functional consequences of the top four SNPs
The GTEx eQTL database was used to examine the functional consequences of the top four SNPs. The 
results suggested that four variants, rs1353248 (chr3_159905770, P = 8.52 × 10-4), rs6265 (chr11_27658369, 
P = 1.07 × 10-4), rs2030324 (chr11_27705368, P = 9.2 × 10-11), rs11030104 (chr11_27662970, P = 2.76 × 10-5) 
could affect IL-12 and BDNF gene expression on human nerve tibial tissue (Figure 4). The expression 
levels of the BDNF gene were reduced in rs6265CT and rs11030104AG, with a significant reduction in 
the rs6265CT genotype. Additionally, the expression levels of the IL-12 gene were significantly 
decreased in the rs1353248TT. The results showed a similar trend, indicating that these four loci may 
play an important biological role in peripheral neurotoxicity and have potential for the prediction of 
TiPN (Figure 3). Further investigation into their biological functions is warranted.

Comparison of five algorithms in the training set
Using k-fold cross-validation (k = 5) in the training set, we identified all possible parameter combin-
ations identified by random grid search. The evaluation indicators used included confusion matrix, 
ROC curve, PR curve, specificity, sensitivity, precision, accuracy and F1 core. The average ROC curve, 
PR curve and 95% confidence interval (CI) are shown in Figure 5. Here, the ROC curves of four models 
were > 0.90, the PR curve of the LR model was 0.874, and the remainder were > 0.97. In addition, these 
models exhibited different performances (Table 3). The ET model obtained the highest ROC curve 
(0.999) but had the lowest specificity rate of 0.471. The RF model obtained a high ROC curve (0.996) and 
a common precision (0.769) compared with XGBoost and GBDT. The results indicated that XGBoost and 
GBDT had superior performance, and the precision, specificity, accuracy and F1 scores were above 0.90, 
0.82, 0.88 and 0.87, respectively.

To evaluate the importance of genetic variables or clinical features in five models, we used 14 SNPs, 
18 clinical features, and three top five ranked features included in five models of the other three round 
workouts with similar analytic approach. The results indicated that by including 18 clinical features, 
ROC curves were 0.759–0.999, and PRC curves were 0.602–0.998 (Supplementary Figure 1). The ET 
model showed the best sensitivity (1.0) but had the lowest precision (0.431) and specificity rate (0.262). 
The precision, specificity, accuracy, and F1 were low for LR and RF models (Supplementary Table 3). 
Additionally, with only input of the 14 SNPs, the models achieved better performance than the clinical 
features. The ROC curve and PR curve of XGBoost, ET, GBDT, and RF models were > 0.90 
(Supplementary Figure 2); the precision, sensitivity, specificity, accuracy and F1 score of XGBoost and 
GBDT were > 0.90 (Supplementary Table 4). These results indicated that genetic variables were more 
important in predicting TiPN than clinical features.

https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
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Table 1 Patients characteristics

Characteristics Values (n = 164)

Male/Female 119/45

Age (yr) 34.3 ± 12.7

Thalidomide dosage mg/kg/d 1.5 (0.3-2.9)

White blood cell ( 109/L) 6.2 ± 2.7

Peripheral neuropathy 59 (36%)

Duration of thalidomide treatment (m) 17.2 (1-60)

Data are presented as median with range, mean ± SD or amount.

Table 2 Univariate analyses of factors associated with thalidomide-induced peripheral neuropathy

SNP Gene Minor allele Main allele OR 95%CI P value

rs1353248 IL-12 T C 8.983 2.497-30.90 0.0004

rs6265 BDNF T C 3.150 1.546-6.073 0.001

rs2030324 BDNF G A 3.164 1.561-6.434 0.001

rs11030104 BDNF G A 3.091 1.525-5.960 0.001

rs10991419 ABCA1 T C 3.833 1.521-8.926 0.002

rs7795841 ABCB1 G T 4.333 1.371-13.39 0.014

rs2575876 ABCA1 A G 2.559 1.306-5.209 0.007

rs3918249 MMP9 T C 3.800 1.208-10.50 0.016

rs7795846 ABCB1 A G 3.690 1.155-10.25 0.020

rs62447181 IKZF1 A G 2.933 0.763-9.514 0.096

rs11030100 BDNF G T 2.205 1.074-4.430 0.030

rs2777795 ABCA1 A G 1.830 0.793-4.114 0.09

rs12718731 IKZF1 G A 2.471 0.686-8.328 0.1

rs34165419 ABCA1 T C 2.564 0.664-10.41 0.1

CI: Confidence interval; OR: Odds ratio; TiPN: Thalidomide-induced peripheral neuropathy; BDNF: Brain-derived neurotrophic factor; IL: Interleukin; 
SNP: Single nucleotide polymorphisms.

Table 3 Performance of the models for training set (all features)

Model Precision Sensitivity Specificity Accuracy AUROC F1 score

XGBoost 0.904 1 0.94 0.962 0.988 0.949

ET 0.526 1 0.471 0.667 0.999 0.69

GBDT 0.952 1 0.971 0.981 1 0.976

LR 0.613 0.95 0.647 0.759 0.907 0.745

RF 0.769 1 0.824 0.889 0.996 0.87

AUROC: Area under the receiver operating characteristic; XGBoost: Extreme gradient boosting; ET: Extremely random trees; GBDT: Gradient boosting 
decision tree; LR: Logistic regression; RF: Random forest.

When including the top five ranked features, the ROC curve for the four models was > 0.82, The LR 
model only achieved a low value (0.72). The PRC curve of the LR model was 0.578, and the remainders 
were > 0.72. The XGBoost showed the highest PR curve (0.803, 95%CI: 0.697–0.871) and accuracy (0.718). 
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Figure 2 Information gain values of the features. The higher the information gain value, the more important the variable. Therefore, these five variables 
(rs1353248, dose, rs6265, rs2030324, rs11030104) are the optimal feature set.

The GBDT obtained the highest ROC curve (0.88, 95%CI: 0.804-0.956). However, F1 score was < 0.70 for 
all models (Supplementary Figure 3 and Supplementary Table 5). The findings indicated that 
integration with genetic features and clinical data may be refining the performance of prediction 
models.

Validation of the five algorithms in the test set
Five algorithms in the test set were verified based on training results. The performance of five 
prediction models based on the 18 clinical features and 14 SNPs were: Precision 0.625-0.8, sensitivity 
0.667-1.0, specificity 0.667-0.889, accuracy 0.733-0.818, and F1 score 0.714-0.8 (Table 4). The average area 
of the ROC and PR curves was 0.741-0.907 and 0.718-0.864, respectively (Figure 6). The models 
generated by the XGBoost algorithm had the best overall predictive power and the highest specificity 
(0.857), accuracy (0.818) and PR curve (0.864, 95%CI: 0.828-1.011); the ROC curve was (0.889, 95%CI: 
0.757-1.021), and the remaining values for precision, sensitivity and F1 score were > 0.75. The RF 
acquired the highest ROC curve (0.907, 95%CI: 0.731-1.084), and the ET and GBDT achieved the best F1 
score, but all three had the lowest specificity (0.667).

We validated only 14 genetic variables, 18 clinical variables and the top five ranked features in five 
models. All these models behaved poorly with the 18 clinical features (Supplementary Table 6), while 
the sensitivity score was > 0.83 for four models (XGBoost, ET, GBDT and RF). The performance of the 
overall value of the ROC curve (0.528-0.718) was higher than the PR curve (0.359-0.556) (Supple-
mentary Figure 4).

When only 14 SNPs were considered, the ROC curve of XGBoost and RF were up to 0.802 and 0.907; 
the PRC curve was > 0.70 for the four models (XGBoost, ET, GBDT and RF) (Supplementary Figure 5), 
with accuracy, precision, sensitivity, specificity and F1 score above 0.73, 0.66, 0.66, 0.77 and 0.66, 
respectively (Supplementary Table 7). The LR had the lowest ROC curve (0.722) and PR curve (0.601).

Considering only the top five ranked features, the ROC and PR curves were > 0.79 and > 0.73 for all 
these models, respectively (Supplementary Figure 6). XGBoost had the best overall predictive power 
and highest specificity (0.857), sensitivity (0.833), accuracy (0.848) and F1 score (0.8). The LR had the 
lowest accuracy (0.552), specificity (0.316) and precision (0.435) (Supplementary Table 8).

https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
http://
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ae614d47-a17e-412a-8f53-3a2604e045fc/WJG-29-3855-supplementary-material.pdf
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Table 4 Performance of the models for testing set (all features)

Model Precision Sensitivity Specificity Accuracy AUROC F1 score

XGBoost 0.75 0.75 0.857 0.818 0.889 0.75

ET 0.667 1 0.667 0.8 0.833 0.8

GBDT 0.667 1 0.667 0.8 0.87 0.8

LR 0.8 0.667 0.889 0.8 0.741 0.727

RF 0.625 0.833 0.667 0.733 0.907 0.714

AUROC: Area under the receiver operating characteristic; XGBoost: Extreme gradient boosting; ET: Extremely random trees; GBDT: Gradient boosting 
decision tree; LR: Logistic regression; RF: Random forest.

Figure 3 The correlation between the optimal variables and thalidomide-induced peripheral neuropathy. Illustrate patients with interleukin-12 
rs1353248_TT, brain-derived neurotrophic factor (BDNF) rs2030324_AG, BDNF rs6265_CT, and BDNF rs11030104_AG, genotypes are more likely to have 
thalidomide-induced peripheral neuropathy than non-carriers. A: IL-12; B-D: BDNF. aP < 0.01, bP < 0.001. BDNF: Brain-derived neurotrophic factor; IL: Interleukin.

DISCUSSION
Thalidomide leads to well-documented adverse effects in some patients, and drug discontinuation 
derived from neurotoxicity alone was up to 46%[2,36]. However, it is still unclear to predict TiPN risk in 
Chinese people by combining genetic polymorphism and clinical factors.

So far, there have been few studies on the risk factors of TiPN in patients with CD. As far as we know, 
only Bramuzzo et al[28] developed a model to identify genetic variables using LR to predict the 
occurrence of TiPN in children. They found that polymorphisms in ICAM1 and SERPINB2 were 
protective factors. However, genetic tests were used only in a few patients and the survey variables 
were not sufficient. The LR method also reduced the predictive performance of the model[28].

In comparison with traditional statistical methods, based on the previous studies, machine learning 
can generate models of higher predicted performance by handling more complex data, which may 
achieve higher accuracy and improved generalization[37,38]. With the rapid increase in artificial 
intelligence, machine learning methods are widely applied in the field of disease diagnosis and 
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Figure 4 Examination of consequences between the top four single nucleotide polymorphisms and gene expression in nerve tibial 
tissue. Patients with interleukin (IL)-12 rs1353248_TT (chr3_159905770, P = 8.52 × 10-4), brain-derived neurotrophic factor (BDNF) rs6265_CT (chr11_27658369, P 
= 1.07 × 10-4) BDNF rs2030324_AG (chr11_27705368, P = 9.2 × 10-11), and BDNF rs11030104_AG (chr11_27662970, P = 2.76 × 10-5). A: IL-12; B-D: BDNF. The 
expression levels of the BDNF gene were reduced in rs6265CT and rs11030104AG. Additionally, the expression levels of the IL-12 gene were significantly decreased 
in the rs1353248TT. BDNF: Brain-derived neurotrophic factor; IL: Interleukin.

prediction[39-41]. Not only this, the method based on machine learning no longer requires strong 
assumptions about basic mechanisms such as image classification[40] and speech recognition[42], which 
have achieved cutting-edge predictive capabilities.

We developed a model for predicting TiPN in Chinese people using machine learning (XGBoost, ET, 
GBDT, RF and LR) based on genetic and clinical variables for the first time. As a result of the compre-
hensive evaluation, the model generated by the XGBoost algorithm reached the optimum prediction 
ability, which could accurately distinguish 88.9% of patients (Table 4), this was consistent with the 
results of other relevant studies[43,44]. By ranking each feature, rs1353248, rs6265, rs2030324 and 
rs11030104, and drug dose had the top five effects on TiPN. We showed that machine learning methods 
were superior to traditional statistical methods, and compared with two recently published studies on 
other diseases[45,46], our XGBoost model yielded higher ROC-AUC and PRC-AUC scores. Furthermore, 
the significant aspect of the XGBoost model is that TiPN can be identified at a high probability early in 
the disease course and may significantly improve the treatment outcome.

We applied an additional analysis by inputting SNPs, clinical variables, and the top five ranked 
features investigate whether there was any impact on model performance. As a result, all the models 
performed well when including SNPs and the top five features, near the level of all features combining 
18 clinical variables and 14 SNPs in the models. Taken together with the ROC and PR curves, these 
results showed that genetic variables had a more important role than clinical variables in predicting 
TiPN occurrence, while in combination with clinical data, they markedly improved the model, 
suggesting that integration with genetic features and clinical data refined the predictive models.

Among the four SNPs, we focused mainly on BDNF and IL-12 according to the ranked results. So far, 
the relationship between SNPs of the IL-12 gene and the risk of TiPN has not been studied. To our 
knowledge, only one genome-wide association study has reported that IL-12 rs1353248 had strong 
relevance to celiac disease[47]. In our study, IL-12 rs1353248 had distinct relevance to TiPN, indicating a 
new and genetically relevant connection between genetic determinants of IL-12 and TiPN risk.
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Figure 5 Evaluation of the predictive models. Average area under the receiver operating characteristic curve and precision recall curve of the five models in 
the training set. A: Receiver operating characteristic curve (training set); B: Precision-recall curve (training set). Average area and 95% confidence intervals of 
different predictive models are displayed in the box. XGBoost: Extreme gradient boosting; ET: Extremely random trees; GBDT: Gradient boosting decision tree; LR: 
Logistic regression; RF, random forest; CI: Confidence interval.

Figure 6 Validation of the training set. The picture shows average area under the receiver operating characteristic curve and precision recall curve of the five 
models in the test set. A: Receiver operating characteristic curve (testing set); B: Precision-recall curve (testing set). AUC: Area under the curve; CI: Confidence 
interval; XGBoost: Extreme gradient boosting; ET: Extremely random trees; GBDT: Gradient boosting decision tree; LR: Logistic regression; RF: Random forest; CI: 
Confidence interval.

BDNF plays a significant role in neuronal differentiation, survival, and synaptic plasticity. BDNF 
protein levels in fibromyalgia patients are significantly elevated. Similar to our research, Park et al[48] 
found that BDNF rs11030104_GG had a protective effect against fibromyalgia compared with BDNF 
rs11030104_AG in a multicenter prospective study of the Korean population[46]. In addition, BDNF 
rs6265 SNP has been widely studied for its role in the regulation of neuronal survival, differentiation, 
and plasticity[49-52]. Xie et al[53] revealed that rs2030324_CT and rs6265_AG were associated with 
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amnestic mild cognitive impairment[53]. The effects of BDNF rs6265 polymorphism have been widely 
studied in animal models. In adult male mice, the BDNF Val66Met polymorphism impaired sports 
training-induced synaptic plasticity and beneficial behavior[54]. We reported similar findings, with 
BDNF rs6265_CT and BDNF rs2030324_AG being risk factors for TiPN. We suggest that heterozygotes 
for this gene impair neuronal activity, which is potentially involved in the perception of neuropathy 
symptoms. It can be speculated that mutation of the T allele of rs6265, G allele of rs2030324 and 
rs11030104 has a major impact on the expression levels of this gene according to the GTEx databases, 
and the mechanism of action merits further, in-depth investigation. In the Israeli population with 
lymphoma and myeloma, the severity and persistence of chemotherapy-induced peripheral neuropathy 
were markedly higher in the carriers of the Val/Val genotype than in patients with the Val/Met and 
Met/Met genotypes[50], which is different from our results. This difference may be due to the fact that 
the two research results are inherently different and difficult to compare directly. However, it suggests 
that the risk of neurotoxicity differs in different human populations according to the National Center for 
Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/) and China Metabolic Analytics 
Project (http://www.mbiobank.com/). It is noteworthy that the mutation rate of rs6265 and rs11030104 
in Asian populations is as high as 49%, while in European and American populations, the mutation rate 
of these loci does not exceed 22%. This indicates that a higher number of individuals in Asian 
populations may be susceptible to TiPN, and these two loci are of predictive significance in Asian 
populations.

In addition to SNP-based correlation analysis, we considered 18 clinical features that may be related 
to the development of TiPN. In the training set, five models (LR, RF, ET, GBDT and XGBoost) were 
constructed to predict the TiPN risk including 14 SNPs and 18 clinical features. Considered collectively, 
the XGBoost model obtained the optimum performance in all functional training and test sets. As a 
result of predicting the characteristic importance using the XGBoost model, the dose was found to be 
the second most important factor. This finding was in line with previous reports[13,55]. In addition, the 
prospective study on 135 patients with skin disease showed that the incidence rate of TiPN was 11% (4/
35) with a dose of 25-50 mg/d, 29% (11/38) with 50-75 mg/d, and 48% (19/40) with 75-100 mg/d. The 
incidence of neurotoxicity was three times higher in patients taking higher doses than in those taking 
lower doses. Similar trends were found in this study, the incidence rate of TiPN was 18% (9/49) with 25-
50 mg/d, 33% (14/43) with 50-75 mg/d, and 49% with > 75 mg/d.

There were some limitations to our study. First, the sample size was small because it was a single-
center trial. To improve the generalization and robustness of our predictive model, we reiterated this 
random procedure 1000 times. Second, clinical measures like peripheral nerve injury severity, presence 
of current therapy, duration and cumulative dose were not specified by the initial protocol design. 
Third, a limited number of SNPs and genes were selected for examination because of cost constraints, 
and more SNPs remain to be found.

Interventions may be a key adjunct to reducing the incidence of TiPN in future treatment. This is the 
first study to use cutting-edge machine learning to establish and validate a TiPN predictive model using 
comprehensive genetic and clinical variables. Genes encoding inflammatory cytokines, growth of nerve 
fibers, and enzymes involved in ubiquitination were also screened out. These SNPs are closely related to 
the occurrence and development of TiPN. The results suggest that SNPs are important to fully predict 
TiPN. Through the prediction of this model, physicians can assess the possibility of TiPN in CD 
patients, which contributes to the rational use, timely intervention after administration, and avoidance 
of peripheral nerve damage. These findings are important for the management of CD patients with 
thalidomide.

CONCLUSION
In this study, the XGBoost algorithm exhibited a high degree of accuracy in predicting TiPN by utilizing 
18 clinical features and 14 genetic variables. Furthermore, it can identify high-risk patients through 
SNPs. This suggests that XGBoost may offer a feasible option for improving thalidomide efficacy in CD 
patients.

ARTICLE HIGHLIGHTS
Research background
Thalidomide-induced peripheral neuropathy (TiPN), a life-threatening condition in Crohn's disease 
(CD), has a high incidence in Asia. However, there are no effective medical interventions for TiPN.

Research motivation
Can we develop a predictive model of TiPN combining genetic and clinical variables? Which variable 
affects TiPN more?

https://www.ncbi.nlm.nih.gov/
http://www.mbiobank.com/
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Research objectives
To establish an optimal model using clinical variables and genotypes to predict TiPN and improve the 
safety for the thalidomide treatment.

Research methods
A total of 164 patients diagnosed with CD at the Sixth Affiliated Hospital of the Sun Yat-Sen University 
were included in this study. Peripheral blood was collected from the patients to detect the genotypes at 
School of Pharmaceutical Sciences, Sun Yat-Sen University. The X2 method or Single-sample 
Kolmogorov–Smirnov test was used to determine the association of TiPN with 18 clinical features and 
150 genetic variables. Five predictive models were established and evaluated by the confusion matrix 
receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), 
specificity, sensitivity (recall rate), precision, accuracy, and F1 score.

Research results
TiPN was observed in 59 individuals. Among the five models, extreme gradient boosting (XGBoost) 
algorithm exhibited the best predictive performance with the highest specificity (0.857), accuracy (0.818), 
AUPRC (0.86) and AUROC (0.89) after evaluation. The top-ranking five risk variables associated with 
TiPN were interleukin-12 rs1353248 [P = 0.0004, odds ratio (OR): 8.983, 95% confidence interval (CI): 
2.497-30.90), dose (mg/d, P = 0.002), brain-derived neurotrophic factor (BDNF) rs2030324 (P = 0.001, 
OR: 3.164, 95%CI: 1.561-6.434), BDNF rs6265 (P = 0.001, OR: 3.150, 95%CI: 1.546-6.073) and BDNF 
rs11030104 (P = 0.001, OR: 3.091, 95%CI: 1.525-5.960).

Research conclusions
The XGBoost algorithm accurately predicts TiPN using 18 clinical features and 14 genetic variables. It is 
able to identify high-risk patients using single nucleotide polymorphisms.

Research perspectives
Applying the machine learning to adjust thalidomide therapies based on these specific genotypes is 
recommended before the thalidomide treatment.
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