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Abstract
Acute pancreatitis (AP) often leads to a high incidence of cardiac injury, posing 
significant challenges in the treatment of severe AP and contributing to increased 
mortality rates. Mesenchymal stem cells (MSCs) release bioactive molecules that 
participate in various inflammatory diseases. Similarly, extracellular vesicles 
(EVs) secreted by MSCs have garnered extensive attention due to their com-
parable anti-inflammatory effects to MSCs and their potential to avoid risks 
associated with cell transplantation. Recently, the therapeutic potential of MSCs-
EVs in various inflammatory diseases, including sepsis and AP, has gained 
increasing recognition. Although preclinical research on the utilization of MSCs-
EVs in AP-induced cardiac injury is limited, several studies have demonstrated 
the positive effects of MSCs-EVs in regulating inflammation and immunity in 
sepsis-induced cardiac injury and cardiovascular diseases. Furthermore, clinical 
studies have been conducted on the therapeutic application of MSCs-EVs for 
some other diseases, wherein the contents of these EVs could be deliberately 
modified through prior modulation of MSCs. Consequently, we hypothesize that 
MSCs-EVs hold promise as a potential therapy for AP-induced cardiac injury. 
This paper aims to discuss this topic. However, additional research is essential to 
comprehensively elucidate the underlying mechanisms of MSCs-EVs in treating 
AP-induced cardiac injury, as well as to ascertain their safety and efficacy.

Key Words: Acute pancreatitis; Cardiac injury; Mesenchymal stem cells; Extracellular 
vesicles; Inflammation; Therapeutic strategies
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Core Tip: Acute pancreatitis (AP) often causes cardiac injury, leading to poor prognosis. Mesenchymal stem cells (MSCs) 
and their extracellular vesicles (EVs) possess anti-inflammatory properties and have been studied as a potential therapy for 
inflammatory diseases. Although preclinical studies on the use of MSCs-EVs for AP-induced cardiac injury are lacking, 
research has demonstrated their positive effects in various inflammatory diseases such as sepsis-induced cardiac injury and 
cardiovascular diseases. Therefore, MSCs-EVs may represent a promising strategy for treating AP-induced cardiac injury.

Citation: Pan LF, Niu ZQ, Ren S, Pei HH, Gao YX, Feng H, Sun JL, Zhang ZL. Could extracellular vesicles derived from 
mesenchymal stem cells be a potential therapy for acute pancreatitis-induced cardiac injury? World J Stem Cells 2023; 15(7): 654-664
URL: https://www.wjgnet.com/1948-0210/full/v15/i7/654.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i7.654

INTRODUCTION
Acute pancreatitis (AP) often results in important extra-pancreatic organ damage, including the lungs, kidneys, heart, 
liver, and intestines[1-3]. Cardiac injury associated with AP frequently manifests with non-specific symptoms, or is 
overshadowed by symptoms caused by AP itself, making it easy to be overlooked and leading to the misconception that 
cardiac injury is uncommon in AP[4]. However, studies have reported a 100% incidence rate of cardiac injury in all cases 
of AP, with cardiac injury occurring earlier than damage to organs such as the lungs and kidneys[5,6]. The severity of 
cardiac injury is closely related to the severity of AP, with severe acute pancreatitis (SAP) having the highest occurrence 
rate of severe cardiac injury, which can reach up to 60.5%, and in some severe cases, SAP can even lead to cardiac 
dysfunction[7,8]. Retrospective analysis has also confirmed significantly elevated serum cardiac injury markers in SAP 
patients upon admission[6]. Among SAP patients who succumbed to multiple organ dysfunction syndrome, approx-
imately 86.4% experienced cardiovascular failure[9]. Cardiac injury is a significant contributing factor to the challenges in 
curing and increased mortality rates of SAP, with approximately 10%-30% of SAP fatalities attributed to SAP-induced 
cardiac injury[7]. Therefore, it is crucial to give adequate clinical attention to AP-induced cardiac injury. However, the 
exact mechanisms underlying AP-induced cardiac injury are complex, involving multiple factors, and the precise 
mechanism remains unclear, posing a significant challenge in the development of effective treatments.

Mesenchymal stem cells (MSCs) are among the most readily accessible types of stem cells, which can be extracted from 
sources such as bone marrow, adipose tissue, umbilical cord, and dental pulp. They possess unique characteristics of self-
renewal and multi-directional differentiation, allowing them to differentiate into various cell types. MSCs participate in 
various inflammatory diseases through the paracrine secretion of bioactive molecules and can also promote tissue repair
[10,11]. Moreover, MSCs can regulate the phenotype of immune cells and alleviate inflammatory responses[12]. However, 
the long preparation period required for MSCs transplantation makes it unsuitable for emergency situations. 
Additionally, MSCs carry the risks of immunogenicity and tumorigenicity, which to some extent limits their application
[13].

The various biological functions of MSCs are primarily carried out through the secretion of bioactive molecules, 
encompassing a diverse range of chemical factors, cytokines, immunomodulatory factors, extracellular matrix 
components, as well as several other proteins, nucleic acids, and lipids[14]. MSCs also release extracellular vesicles (EVs) 
that serve as the principal mediators for MSCs to exert their immune and inflammatory regulatory effects. MSCs-EVs act 
as carriers, transporting bioactive molecules such as growth factors, cytokines, chemokines, mRNA, miRNA, lncRNA, etc.
, which they transmit through paracrine or endocrine secretion[15]. EVs have been identified as effective therapeutic 
vehicles capable of delivering various proteins and regulatory genes to target organs. MSCs-EVs are believed to possess 
similar anti-inflammatory and other biological effects as MSCs, while offering advantages over MSCs such as smaller 
size, targeted transport, and low immunogenicity[16]. Therefore, MSCs-EVs hold the potential to replace MSCs in 
exerting therapeutic effects on certain diseases.

MSCS-EVS HAVE EMERGED AS A PROMISING TREATMENT OPTION FOR VARIOUS INFLAMMATORY 
DISEASES
With the increasing focus on the immunomodulatory effects of MSCs, extensive research has been conducted to 
investigate their mechanisms in inflammatory diseases. MSCs-EVs, which possess similar anti-inflammatory effects as 
MSCs and the ability to avoid potential risks associated with cell transplantation, have been widely studied in the context 
of inflammatory diseases. Multiple studies have demonstrated the efficacy of MSCs-EVs in improving inflammatory 
responses in animal models of various diseases, including brain ischemia-reperfusion injury, acute lung injury/acute 
respiratory distress syndrome (ARDS), inflammatory bowel disease, acute liver injury, acute kidney injury, sepsis, AP, 
myocardial ischemia-reperfusion injury, and acute myocardial infarction[17]. For instance, MSCs-EVs can regulate 
inflammatory and immune responses following brain ischemia by modulating the central nervous system, peripheral 
immune system, and immune regulatory molecules, thereby promoting neurological function recovery[18]. By 
transmitting miRNA, MSCs-EVs can reduce the secretion of pro-inflammatory cytokines, oxidative stress, and prevent 
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lung tissue infiltration by inflammatory cells, thereby alleviating ventilator-associated lung injury[19]. Moreover, MSCs-
EVs can regulate gene expression and inhibit the production of inflammatory cytokines by transmitting miRNA or other 
bioactive molecules, thereby reducing neutrophil infiltration, improving lung inflammation and oxidative damage, and 
promoting the survival, proliferation, and differentiation of alveolar epithelial cells and endothelial cells. This, in turn, 
facilitates lung tissue repair, regeneration, and improvement of lung function[19-22]. In acute liver failure, MSCs-EVs can 
inhibit inflammasomes, reduce levels of inflammatory factors, and alleviate inflammatory response, thus improving acute 
liver injury[23].

MSCs-EVs for the treatment of sepsis and sepsis-induced cardiac injury
MSCs-EVs have shown promise in treating sepsis by modulating the immune response and mitigating inflammatory 
damage through various mechanisms. These mechanisms include regulating cytokine production, reducing oxidative 
stress, and promoting immune cell proliferation and differentiation[24]. In septic mice, MSCs-EVs have demonstrated the 
ability to decrease pro-inflammatory cytokine levels while promoting the production of anti-inflammatory cytokines, 
thus improving survival rates[25]. Furthermore, MSCs-EVs have been discovered to alleviate sepsis-induced acute lung 
injury by suppressing the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) pathway. This regulation 
leads to the modulation of immune cell activity, reduction of oxidative stress levels, and promotion of cell survival and 
regeneration[26]. Additionally, MSCs-EVs can also improve the severity of sepsis-induced renal injury by directly 
delivering biologically active molecules, such as circRNA[27]. Moreover, through the delivery of miRNA and other 
biologically active molecules, MSCs-EVs can inhibit macrophage apoptosis, regulate macrophage polarization, and 
induce macrophage M2 polarization. These actions help to modulate immune responses and inflammation, promote 
tissue repair, and ultimately alleviate sepsis-induced acute lung and kidney injury[28-31].

Between 40% and 60% of sepsis patients experience cardiac injury[32]. Numerous studies have demonstrated the 
potential of MSCs-EVs in alleviating sepsis-induced cardiac injury. For example, MSCs-EVs carrying miR-223 can prevent 
myocardial cell apoptosis and suppress the inflammatory response by inhibiting the NF-κB signaling pathway, which in 
turn can help to prevent sepsis-induced cardiac injury[33]. MSCs-EVs enriched with miR-146a-5p can promote cell prolif-
eration and survival by regulating Myb-like protein 1 expression, thus protecting septic myocardial cells or tissue[34]. In 
addition, the delivery of miR-223-3p by MSCs-EVs can suppress sepsis-induced cardiac inflammation, pyroptosis, and 
dysfunction[35]. Moreover, MSCs-EVs containing miR-141 can activate β-catenin by targeting phosphatase and tensin 
homolog deleted on chromosome 10 (PTEN), thereby mitigating septic mouse myocardial injury[36]. Furthermore, MSCs-
EVs can also deliver circRTN4 to inhibit cardiac fibrosis and inflammation through the miR-497-5p/mitsugumin 53 
signaling axis, thus preventing sepsis-induced cardiac injury[37]. Finally, the presence of PTEN-induced putative kinase 1 
in MSCs-EVs can restore mitochondrial mCa2+ efflux, thereby preventing septic myocardial cell mitochondrial calcium 
overload[38].

MSCs-EVs can be used for the treatment of AP
Limited studies have been conducted on the role of MSCs-EVs in AP. Some studies have demonstrated the potential of 
human umbilical cord MSCs-EVs in reducing the severity of traumatic pancreatitis by colonizing injured pancreatic 
tissue, which in turn regulates inflammatory cytokine levels and inhibits acinar cell apoptosis[39]. Furthermore, human 
umbilical cord MSCs-EVs have shown promise in improving the inflammatory response in mild to moderate traumatic 
pancreatitis by suppressing inflammation, increasing cell proliferation, and inhibiting pancreatic acinar cell apoptosis. 
These effects promote the repair of pancreatic tissue, leading to effective relief of traumatic pancreatitis[40]. In addition, 
MSCs-EVs derived from hair follicles have also been found to promote pancreatic tissue repair and enhance pancreatic 
function by reducing inflammation in pancreatic cells and inhibiting cell pyroptosis-related signaling pathways[41]. 
These findings suggest that MSCs-EVs have therapeutic potential in treating AP and may offer a promising alternative to 
traditional treatments.

Table 1 presents a summary of the factors delivered by MSCs-EVs in inflammatory diseases, the signaling pathways 
that these factors mediate, and the ultimate effects of MSCs-EVs on inflammation or immunity.

RESEARCH PROGRESS OF USING MSCS-EVS FOR TREATING AP-INDUCED CARDIAC INJURY
In recent years, there has been growing recognition of the therapeutic potential of MSCs-EVs in the treatment of inflam-
matory diseases. Sepsis and AP, which are closely associated with inflammatory reactions, can result in cardiac and other 
organ injuries due to the amplification of the inflammatory response during their course. MSCs-EVs, on the other hand, 
have been shown to have potential therapeutic effects for both conditions.

Although research on the use of MSCs-EVs for AP-induced cardiac injury is limited, several studies have confirmed 
their potential in treating sepsis-induced cardiac injury, as well as their potential as a therapeutic strategy for various 
cardiovascular diseases. For instance, MSCs-EVs have been demonstrated their ability to improve myocardial inflam-
mation, reduce cell apoptosis, and promote cardiac remodeling and function following acute myocardial infarction. This 
is achieved by inhibiting the activation of the NF-κB signaling pathway through the transmission of miR-302d-3p[42]. 
Additionally, MSCs-EVs have been found to alleviate myocardial ischemia-reperfusion injury by suppressing M1 
polarization of macrophages through the inhibition of Toll-like receptor 4 (TLR4) via the transmission of miR-182[43]. 
Based on these findings, it is reasonable to speculate that MSCs-EVs may also exert therapeutic effects on AP-induced 
cardiac injury.
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Table 1 Therapeutic potential of MSCs-EVs in inflammation disease

Cell model/animal model Target cells in 
tissue

Source of 
MSCs

Cargo of MSCs-
EVs

Factors or 
pathways involved

Therapeutic effects and 
mechanisms Ref.

ALI

Mouse BMDMs stimulated 
with LPS/C57BL/6 mouse 
with LPS-induced ALI

Alveolar 
macrophages

Human AT-
MSCs

miR-27a-3p NF-κB1 In vitro: MSCs-EVs facilitated 
M2 polarization of BMDMs 
through the inhibition of NF-
κB1 expression; in vivo: Systemic 
or intratracheal administration 
of MSCs-EVs reduced NF-κB1 
expression in alveolar 
macrophages via miR-27a-3p 
delivery, promoting 
macrophage M2 polarization 
and alleviating LPS-induced 
ALI

[20]

Mouse MLE-12 cells (lung 
epithelial cells) barrier 
model/ICR mouse with 
sulfur mustard-induced ALI

Lung epithelial 
cells

Mouse BM-
MSCs

Not detected GPRC5A/YAP axis In vitro: MSCs-EVs dose-
dependently inhibited sulfur 
mustard-induced lung epithelial 
cell apoptosis and promoted the 
repair of adherens and tight 
junction integrity through the 
regulation of the GPRC5A/YAP 
axis, ultimately facilitating the 
recovery of epithelial barrier 
function; in vivo: Administration 
of MSCs-EVs protected lung 
epithelial cells from apoptosis 
and epithelial barrier damage by 
regulating the GPRC5A/YAP 
axis, promoting the restoration 
of barrier function and exerting 
a protective effect against 
pulmonary edema in ALI

[21]

HLMVECs injured by a 
mixture of IL-1β, TNF-α, and 
interferon-γ which were often 
used as a surrogate for ALI 
pulmonary edema fluid/-

- Human BM-
MSCs

Ang1 mRNA Not detected In vitro: MSCs-EVs partially 
increased Ang1 secretion in 
injured HLMVECs through the 
transfer of Ang1 mRNA, 
subsequently promoting the 
secretion of anti-permeability 
factors, restoring intercellular 
junctions, and preventing the 
formation of “actin stress fiber”, 
thereby dose-dependently 
restoring protein permeability 
across HLMVECs during ALI; in 
vivo: -

[22]

Sepsis

-/BALB/C mouse with LPS-
induced sepsis

Not detected Human UC-
MSCs

Not detected Not detected In vitro: -; in vivo: Adminis-
tration of MSCs-EVs effectively 
mitigated the destructive effects 
of inflammation caused by 
sepsis by reducing inflam-
matory factors, thereby 
alleviating tissue damage

[25]

-/C57BL/6 mouse with CLP-
induced sepsis-induced ALI

Not detected Human UC-
MSCs

Not detected MAPK/NF-κB 
pathway

In vitro: -; in vivo: MSCs-EVs can 
inhibit the phosphorylation and 
activation of the MAPK/NF-κB 
pathway, increase heme 
oxygenase 1 expression, 
enhance nuclear factor erythroid 
2-related factor 2 expression, 
and upregulate antioxidant 
enzyme levels, thereby 
suppressing the infiltration of 
polymorphonuclear neutrophils 
to alleviate lung inflammation, 
improving pulmonary 
microvascular permeability to 
mitigate pulmonary edema, 
ultimately enhancing the 
survival rate of mice with 
sepsis-induced ALI

[26]
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-/C57BL/6N mouse with 
CLP-induced sepsis-induced 
renal injury

Not detected Hypoxia 
pretreated 
mouse AT-
MSCs

mmu_circ_0001295 Not detected In vitro: -; in vivo: EVs secreted 
by hypoxia-pretreated MSCs can 
mitigate the elevated levels of 
plasma chemokines and 
cytokines induced by sepsis 
through the delivery of 
mmu_circ_0001295, thereby 
improving renal microvascular 
dysfunction, suppressing renal 
vascular leakage, and ultimately 
mitigating sepsis-induced renal 
dysfunction to enhance the 
survival rate of septic mice

[27]

Mouse RAW264.7 cells 
(monocytes/macrophages) 
stimulated with LPS/C57 
mouse with LPS-induced 
sepsis

BMDMs Mouse BM-
MSCs

miR-17 BRD4/EZH2/TRAIL 
axis

In vitro: MSCs-EVs suppressed 
the inflammation caused by 
RAW264.7 cells under LPS 
stimulation by delivering miR-
17 to regulate the 
BRD4/EZH2/TRAIL axis; in 
vivo: MSCs-EVs, through the 
delivery of miR-17 to regulate 
the BRD4/EZH2/TRAIL axis, 
decreased serum levels of pro-
inflammatory cytokines and 
suppressed their expression in 
BMDMs, ultimately improving 
LPS-induced sepsis in mice and 
enhancing survival rates

[28]

Mouse BMDMs stimulated 
with LPS/C57BL/6 mouse 
with CLP-induced sepsis

Liver 
macrophages

IL-1β 
pretreated 
mouse MSCs 
(source not 
mentioned)

miR-21 PDCD4 In vitro: MSCs-EVs induced M2-
like polarization of 
macrophages, and IL-1β-
pretreated MSCs-derived EVs 
exhibited an enhanced capacity 
to promote macrophage 
polarization towards an M2-like 
phenotype; in vivo: MSCs-EVs, 
by delivering miR-21, 
suppressed the effects of PDCD4 
and induced M2-like 
polarization of macrophages, 
resulting in reduced inflam-
mation, alleviated symptoms, 
prevented the progression of 
sepsis, and ultimately improved 
the survival rate

[29]

-/C57BL/6 mouse with CLP-
induced sepsis-induced ALI 
or LPS-induced ALI

Alveolar 
macrophages

Mouse BM-
MSCs

SAA1 LPS In vitro: -; in vivo: MSCs-EVs 
delivering SAA1 induced LPS 
internalization by mouse 
alveolar macrophages, leading 
to a decrease in inflammatory 
cytokine levels and ultimately 
alleviating sepsis-induced ALI

[30]

Mouse MH-S cells (alveolar 
macrophages) stimulated 
with LPS/C57BL/6 mouse 
with LPS-induced ARDS

Alveolar 
macrophages

Mouse BM-
MSCs

Not detected HIF-1α/glycolysis-
related protein

In vitro: MSCs-EVs suppressed 
M1 polarization and promoted 
M2 polarization of alveolar 
macrophages by inhibiting 
cellular glycolysis, thereby 
exerting anti-inflammatory 
effects; in vivo: Intratracheal 
administration of MSCs-EVs 
attenuated the LPS-induced 
inflammatory response by 
suppressing glycolysis in 
alveolar macrophages via 
regulation of HIF-1α, leading to 
improved lung pathology, 
reduced lung edema, increased 
PaO2/FiO2 ratio, and therefore 
enhancing survival rate

[31]

In vitro: MSCs-EVs suppressed 
the release of inflammatory 
cytokines in LPS-induced 
macrophages through the 
delivery of miR-223 and 
reduced LPS-induced 
cardiomyocyte apoptosis and 
cell death; in vivo: MSCs-EVs 

Mouse RAW264.7 cells 
(monocytes/macrophages) or 
primary cardiomyocytes 
stimulated with LPS 
respectively/C57BL/6 mouse 
with LPS-induced sepsis-
induced cardiac injury

Cardiomyocytes Mouse BM-
MSCs

miR-223, STAT3 
and Sema3A 
proteins

STAT3, Sema3A [33]
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carrying miR-223 suppressed 
the expression of STAT3 and 
Sema3A, resulting in reduced 
serum levels of TNF-α, IL-1β, 
and IL-6, which in turn 
decreased cardiomyocyte 
apoptosis, improved cardiac 
function, and conferred cardio-
protection in sepsis, ultimately 
reducing mortality. 
Additionally, by inhibiting miR-
223 to pre-treat MSCs, the 
protein cargo within the 
secreted EVs can be 
reprogrammed, leading to an 
increased delivery of Sema3A 
and STAT3 proteins that exert 
detrimental effects on recipient 
cells

Rat H9c2 cells 
(cardiomyocytes) stimulated 
with LPS/C57BL/6 mouse 
with LPS-induced sepsis-
induced cardiac injury

Myocardium Rat BM-
MSCs

miR-146a-5p MYBL1 In vitro: MSCs-EVs, by 
delivering miR-146a-5p, 
suppressed MYBL1 to inhibit 
the progression of LPS-induced 
cardiomyocyte inflammation, 
promoting cell proliferation, and 
inhibiting cell apoptosis; in vivo: 
MSCs-EVs administration can 
ameliorate cardiac injury and 
improve survival rates in septic 
mice

[34]

Human HL-1 cells 
(cardiomyocytes) model of 
cardiac dysfunction induced 
by LPS/C57BL/6 mouse with 
LPS-induced myocarditis

Cardiomyocytes Mouse BM-
MSCs

miR-223-3p FOXO3/NLRP3 axis In vitro: MSCs-EVs inhibited 
LPS-induced inflammation and 
pyroptosis in cardiomyocytes by 
delivering miR-223-3p, which 
targeted FOXO3 to suppress 
NLRP3 expression; in vivo: 
MSCs-EVs restricted myocardial 
tissue infiltration of inflam-
matory cells and inflammatory 
response, decreased 
cardiomyocyte pyroptosis, thus 
improving cardiac dysfunction 
by shuttling miR-223-3p, which 
targeted the FOXO3/NLRP3 
axis

[35]

-/KM mouse with CLP-
induced sepsis-induced 
cardiac injury

Cardiomyocytes Mouse BM-
MSCs

miR-141 PTEN/β-catenin axis In vitro: -; in vivo: MSCs-EVs 
ameliorated myocardial 
impairment and improved 
cardiac function by attenuating 
myocardial inflammatory infilt-
ration and cell apoptosis in 
septic mouse myocardial tissues 
through the delivery of miR-141 
and regulation of the PTEN/β-
catenin axis

[36]

RAT H9c2 cells or human 
AC16 cells (cardiomyocytes) 
stimulated with LPS 
respectively/wistar rat with 
CLP-induced sepsis-induced 
cardiac injury

Cardiomyocytes Human 
MSCs 
(source not 
mentioned)

circRTN4 miR-497-5p/MG53 
axis

In vitro: MSCs-derived exosomal 
circRTN4 improved cell survival 
and suppressed apoptosis in 
LPS-stimulated cardiomyocytes 
by targeting the miR-497-
5p/MG53 axis; in vivo: MSCs-
EVs, administered through 
injection into three different 
sites around renal tissue for 
three consecutive days after 
CLP, delivered circRTN4 to 
suppress oxidative stress, 
reduce inflammation factors, 
and alleviate apoptosis, 
resulting in the mitigation of 
cardiac injury

[37]

In vitro: MSCs-EVs mediated the 
delivery of PINK1 mRNA to 
regulate cardiomyocyte mCa2+ 
efflux through the PKA/NCLX 
axis; in vivo: MSCs-EVs 
mediated the transfer of PINK1 

Human AC16 cells 
(cardiomyocytes) stimulated 
with LPS/C57BL/6 mouse 
with CLP-induced sepsis-
induced cardiac injury

Cardiomyocytes Human UC-
MSCs

PINK1 mRNA PKA/NCLX axis [38]
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mRNA, leading to the 
maintenance of normal mCa2+ 
efflux, alleviation of 
mitochondrial calcium overload, 
and subsequent mitigation of 
cardiomyocyte injury caused by 
mitochondrial damage, 
resulting in improved cardiac 
function and increased survival 
rate

AP

-/SD rat with impactor-
induced traumatic AP

Pancreatic tissue Human UC-
MSCs

Not detected Not detected In vitro: -; in vivo: MSCs-EVs 
inhibited the apoptosis of 
pancreatic acinar cells, 
controlled the systemic inflam-
matory response, and thereby 
attenuated pancreatic tissue 
injury and facilitated the repair 
of pancreatic tissue

[39,
40]

Mouse MPC-83 cells 
(pancreatic acinar cells) 
stimulated with 
caerulein/C57BL/6J mouse 
with caerulein-induced AP

Pancreatic acinar 
cells

Mouse HF-
MSCs

Not detected Pyroptosis-related 
protein

In vitro: MSCs-EVs enhanced 
cell viability, mitigated inflam-
mation, and attenuated the 
expression of pyroptosis-related 
proteins in caerulein-stimulated 
pancreatic acinar cells; in vivo: 
Intraperitoneal or intravenous 
administration, especially 
intravenous injection, of MSCs-
EVs, can mitigate pancreatic 
acinar cell pyroptosis, alleviate 
the inflammatory response and 
oxidative stress in AP, thus 
reducing the severity of 
pancreatic injury

[41]

Cardiovascular diseases

Mouse HL-1 cells 
(cardiomyocytes) hypoxia 
model/C57BL/6J mouse with 
LAD ligation-induced AMI

Cardiomyocytes Mouse BM-
MSCs

miR-302d-3p BCL6/MD2/NF-κB 
axis

In vitro: MSCs-EVs carrying 
miR-302d-3p improved the 
viability of hypoxic 
cardiomyocytes, suppressed 
inflammation, and inhibited 
apoptosis by targeting the 
BCL6/MD2/NF-κB axis; in vivo: 
Intramyocardial injection of 
MSCs-EVs carrying miR-302d-
3p near the infarcted area 
attenuated cardiomyocyte 
apoptosis and cardiac inflam-
mation by targeting the 
BCL6/MD2/NF-κB axis, 
leading to reduced infarct size 
and myocardial fibrosis, thereby 
suppressing post-AMI cardiac 
remodeling and improving 
cardiac dysfunction

[42]

Mouse RAW264.7 cells 
(monocytes/macrophages) 
stimulated with 
LPS/C57BL/6J mouse with 
LAD ligation-induced 
ischemia-reperfusion injury

Cardiac 
macrophages

Mouse BM-
MSCs

miR-182 TLR4/NF-
κB/PI3K/Akt 
signalling cascades

In vitro: MSCs-EVs carrying 
miR-182 facilitated the 
polarization of macrophages 
from an M1 to M2 phenotype in 
an inflammatory environment 
by inhibiting the TLR4/NF-κB 
signaling pathway and 
activating the PI3K/Akt 
signaling pathway through 
cross-talk between them; in vivo: 
MSCs-EVs carrying miR-182 
regulated myocardial inflam-
mation and reduced infarct size, 
thereby attenuating myocardial 
ischemia-reperfusion injury and 
improving cardiac function in 
mice through the promotion of 
macrophage M2 polarization via 
targeting the TLR4/NF-
κB/PI3K/Akt signaling 
cascades

[43]
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MSCs: Mesenchymal stem cells; EVs: Extracellular vesicles; BM-MSCs: Bone marrow-derived MSCs; AT-MSCs: Adipose tissue-derived MSCs; UC-MSCs: 
Umbilical cord-derived MSCs; HF-MSCs: Hair follicle-derived MSCs; Akt: Protein kinase B; ALI: Acute lung injury; AMI: Acute myocardial infarction; 
Ang1: Angiopoietin-1; AP: Acute pancreatitis; BCL6: B-cell leukemia/lymphoma 6; BMDMs: Bone marrow-derived macrophages; BRD4: Bromodomain-
containing protein 4; CLP: Cecal ligation and puncture; EZH2: Enhancer of zeste homolog 2; FOXO3: Forkhead box protein O3; GPRC5A: G protein-
coupled receptor family C group 5 member A; HIF-1α: Hypoxia-inducible factor-1α; HLMVECs: Human lung microvascular endothelial cells; IL-1β: 
Interleukin-1β; LAD: Left anterior descending coronary artery; LPS: Lipopolysaccharide; MAPK: Mitogen-activated protein kinase; MD2: Myeloid 
differentiation protein 2; MG53: Mitsugumin 53; MYBL1: Myb-like protein 1; NCLX: Mitochondrial Na+/Ca2+ exchanger; NF-κB: Nuclear factor-κB; NF-
κB1: Nuclear factor-κB subunit 1; NLRP3: NOD-like receptor thermal protein domain associated protein 3; PDCD4: Programmed cell death 4; PI3K: 
Phosphatidylinositol 3-kinases; PINK1: PTEN-induced putative kinase 1; PKA: Protein kinase A; PTEN: Phosphatase and tensin homolog deleted on 
chromosome 10; SAA1: Serum amyloid A1; Sema3A: Semaphorin 3A; STAT3: Signal transducers and activators of transcription 3; TLR4: Toll-like receptor 
4; TNF-α: Tumor necrosis factor-α; TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand; YAP: Yes-associated protein.

In a study conducted by Chen et al[44], MSCs-EVs were found to be effective in reducing oxidative stress and inflam-
matory damage in cardiac tissue, decreasing cell apoptosis, improving cardiac function, and ultimately increasing the 
survival rate of rats with SAP. These beneficial effects were attributed to the activation of the protein kinase B (Akt)/
nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling pathway. In our own research[45], 
we delved into the potential protective effects and mechanisms of MSCs-EVs in SAP-induced cardiac injury. Our findings 
suggest that MSCs-EVs can downregulate the high mobility group box-1/TLR4 signaling axis and activate the Akt 
signaling pathway by delivering miR-29a-3p. This, in turn, helps improve myocardial inflammation, enhance myocardial 
cell vitality, reduce cell apoptosis, and ultimately alleviate myocardial damage while preserving cardiac function. 
Therefore, we hypothesize that MSCs-EVs may play a crucial role in the onset and progression of SAP-induced cardiac 
injury.

IS THERE POTENTIAL FOR USING MSCS-EVS IN THE TREATMENT OF AP-INDUCED CARDIAC 
INJURY?
Studies have demonstrated that injecting EVs derived from MSCs overexpressing macrophage migration inhibitory factor 
into the infarcted area of the heart can enhance myocardial angiogenesis, reduce cell apoptosis, decrease cardiac 
remodeling, and thereby improve cardiac function[46]. Pre-treatment of bone marrow-derived MSCs with fibronectin 
type III domain-containing protein 5 can promote the secretion of more EVs, which can inhibit the secretion of pro-
inflammatory cytokines, increase anti-inflammatory cytokine levels, and promote M2 polarization of macrophages via 
NF-κB signaling pathway and Nrf2/HO-1 axis[47]. Furthermore, when bone marrow-derived MSCs are pre-treated with 
lipopolysaccharide, the EVs secreted by these MSCs can inhibit M1 polarization of macrophages, promote M2 
polarization, alleviate inflammation and cell apoptosis, and thereby facilitate tissue repair in various inflammatory 
diseases[48]. These studies highlight the potential of MSCs-EVs for targeted interventions, as the cargo and level of 
bioactive molecules loaded in EVs can be modulated according to the specific therapeutic goals. The In vitro plasticity of 
MSCs-EVs suggests a promising avenue for their utilization in the treatment of specific diseases.

The potential of using MSCs-EVs for clinical therapy is being explored in the initial stages. A Phase I clinical trial has 
been conducted on MSCs-EVs containing KrasG12D siRNA for the treatment of metastatic pancreatic cancer, and Phase I 
and II clinical trials on MSCs-EVs transfected with miR-124 for the treatment of stroke have been initiated[49]. 
Encouraging results have been reported in some clinical studies. A Phase I clinical trial confirmed the safety and efficacy 
of intravenous injection of placenta-derived MSCs-EVs for treating complex anal fistula in non-Crohn’s disease patients
[50]. In another Pilot Randomized Clinical Trial, placenta-derived MSCs-EVs were injected intraparenchymally to 
patients who underwent decompressive craniectomy after malignant middle cerebral artery infarction, and no significant 
adverse events were observed[51].

Due to the membrane of MSCs-EVs can be modified with specific ligands or peptides, they can be engineered to 
effectively target specific tissues or cells[52]. Additionally, MSCs-EVs can be stored for extended periods of time. 
Therefore, when compared to cell-based therapies, MSCs-EVs offer several advantages, including lower risks of immune 
rejection and tumorigenesis, lower costs, and on-demand availability. As a result, MSCs-EVs may present a promising 
potential as a viable strategy for treating AP-induced cardiac injury. However, there are still challenges to overcome in 
optimizing the separation and characterization of EVs, ensuring their purity and potency, and determining appropriate 
doses and delivery routes for MSCs-EVs in the treatment of AP-induced cardiac injury. Furthermore, potential safety 
concerns associated with the use of MSCs-EVs, such as the risk of thrombosis formation, immunogenicity, and potential 
tumorigenicity due to targeted delivery failure, must be carefully evaluated in clinical trials.

CONCLUSION
In conclusion, AP poses a significant global health threat, particularly when accompanied by cardiac injury, as it can 
complicate the treatment of SAP and worsen prognosis. Although there is currently limited preclinical research on the 
effectiveness of MSCs-EVs in treating AP-induced cardiac injury, multiple studies have demonstrated their ability to 
mitigate inflammation in various inflammatory diseases, including AP, regulate the immune response, promote tissue 
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regeneration, and improve sepsis-induced cardiac injury and various cardiovascular diseases. Therefore, we postulate 
that MSCs-EVs may hold promise as a potential treatment for AP-induced cardiac injury. However, further experimental 
research is necessary to explore their mechanisms, clarify treatment targets, and identify intervention pathways.
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