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Abstract
Adenosine triphosphate (ATP) induced cell death (AICD) is a critical cellular 
process that has garnered substantial scientific interest for its profound relevance 
to cancer biology and to therapeutic interventions. This comprehensive review 
unveils the intricate web of AICD mechanisms and their intricate connections 
with cancer biology. This review offers a comprehensive framework for compre-
hending the multifaceted role of AICD in the context of cancer. This is achieved 
by elucidating the dynamic interplay between systemic and cellular ATP 
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homeostasis, deciphering the intricate mechanisms governing AICD, elucidating its intricate involvement in cancer 
signaling pathways, and scrutinizing validated key genes. Moreover, the exploration of AICD as a potential avenue 
for cancer treatment underscores its essential role in shaping the future landscape of cancer therapeutics.

Key Words: Adenosine triphosphate induced cell death; Adenosine triphosphate homeostasis; Mechanism; Cancer signaling 
pathways; Prognosis and clinical values; Cancer treatment

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The research delves deeply into the pivotal realm of adenosine triphosphate (ATP)-induced cell death (AICD), a 
fundamental cellular phenomenon that has captured significant scholarly interest owing to its pertinence in cancer biology 
and therapeutic strategies. Our review is dedicated to delivering an all-encompassing grasp of the intricate mechanisms 
underpinning AICD and its far-reaching ramifications within the cancer context. By meticulously dissecting the dynamic 
interplay between systemic and cellular ATP homeostasis, unraveling the governing mechanisms steering AICD, and 
probing its intricate entanglement with cancer signaling pathways, we present an exhaustive framework that illuminates the 
multifaceted role of AICD in the realm of cancer.
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INTRODUCTION
In recent years, adenosine triphosphate (ATP) induced cell death (AICD) has emerged as a discernible mode of cell death 
triggered by elevated extracellular ATP (eATP) levels, exhibiting intimate association with the progression of various 
cancer types[1-3]. ATP, or adenosine triphosphate, a nucleotide crucial for cellular energy metabolism, assumes a pivotal 
role in multiple tumor-related signaling pathways and biological processes[4,5]. Nonetheless, the precise mechanisms 
and modalities underlying AICD have long remained elusive. Subsequent investigations have unveiled the distinctive 
features and regulatory mechanisms of AICD, setting it apart from other forms of cell demise such as apoptosis and 
necrosis. This review provides a concise summary of key discoveries in the field of AICD that have propelled ad-
vancements (Figure 1)[5-12].

The identification of AICD represents a significant milestone in the realm of cell biology. Initially, researchers noted 
that the addition of exogenous ATP to cells resulted in cell death, thereby generating considerable interest and instigating 
extensive investigations[1]. AICD, being an inevitable facet of the cell's life cycle, assumes a pivotal role in maintaining 
tissue homeostasis and functionality, holding profound significance for tissue development, as well as the etiology and 
progression of various diseases. The mechanisms and specific manifestations of AICD remain unknown.

In the realm of oncology, aberrant regulation of AICD is a crucial determinant in tumor initiation and progression. It 
exerts direct influence on the fate of tumor cells, impeding their proliferation, invasion, and metastasis, while also 
indirectly suppressing tumor development through immune system activation[13-15]. Furthermore, AICD elicits 
transformative changes in the tumor microenvironment, having an impact on the proliferative, invasive, and migratory 
capabilities of tumor cells. Consequently, an extensive exploration of the interconnections and correlations between AICD 
and cancer provides novel targets and strategies for cancer therapy, facilitating a profound comprehension of the 
mechanisms underlying cancer onset and progression.

This paper presents a comprehensive review of the mechanisms underlying AICD and its association with cancer. The 
primary objective is to outline potential avenues for future research, investigating various aspects related to AICD and its 
relevance to cancer. Through an in-depth exploration of these mechanisms and their functions , this paper aspires to 
unveil novel breakthroughs in cancer treatment development and to enhance our comprehension of the occurrence and 
progression of cancer.

SYSTEMIC AND CELLULAR ATP HOMEOSTASIS
ATP homeostasis in biological systems and cells is a dynamic state of balance that involves the precise regulation of ATP 
concentration within a specific range. This is achieved through intricate processes including ATP synthesis, degradation, 
transport, and exchange both within and outside the cell, as well as regulation by the intracellular environment. 
Maintaining ATP homeostasis is crucial for sustaining cellular energy metabolism and overall physiological function. 
Various external factors can impact ATP production and stability, thereby perturbing ATP homeostasis.

https://www.wjgnet.com/2218-4333/full/v14/i12/549.htm
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Figure 1 Chronological depiction of key milestones in the exploration of adenosine triphosphate induced cell death. ATP: Adenosine 
triphosphate.

These factors encompass fluctuations in oxygen levels, alterations in nutrient availability, exposure to toxins and 
pharmacological agents, variations in temperature and thermal stress, changes in potential of hydrogen (pH), activation 
of inflammatory and immune responses, oxidative stress resulting from the accumulation of reactive oxygen species, 
infections and pathogen invasions, exposure to environmental toxins, as well as prolonged or intense physical and 
psychological stressors. Internally, several factors participate in the regulation of ATP homeostasis. This includes the 
coordinated regulation of ATP synthesis pathways, ATP consumption pathways, ATP transport pathways, and ATP 
hydrolase activity. Additionally, ATP homeostasis can be affected by disruptions in intracellular ATP leakage, alterations 
in eATP transport pathways, and dysregulation of eATP metabolic pathways (Figure 2).

EXTERNAL FACTORS THAT AFFECT ATP HOMEOSTASIS IN SYSTEMS AND CELLS
Hypoxia induces an elevation in eATP levels, which can be attenuated by the administration of L-type Ca2+ channel 
blockers and reduced by the activity of a nucleoside hydrolase such as apyrase. Furthermore, the application of 
iberiotoxin (100 nM), a specific blocker of O2-sensitive Ca2+-dependent K+ channels, has been shown to enhance the release 
of ATP[16]. Nutrient deficiency also affects ATP synthesis and metabolism[17].

Chemotherapeutic agents trigger the release of ATP through two main mechanisms: Caspase-gated pannexin-1 (Panx1) 
channels and caspase/Panx1-independent pathways. Various pro-apoptotic drugs, such as topoisomerase II inhibitors, 
kinase inhibitors, and proteomic inhibitors, induce the functional activation of Panx1 channels by inhibiting the C-
terminal cleavage of Panx1 mediated by caspase-3. The activation of caspase-activated Panx1 channels facilitates the 
efflux of ATP, as well as adenosine diphosphate (ADP) and adenosine monophosphate (AMP), which collectively 
constitute over 90% of the adenine nucleotide pool released during the transition from early to late apoptosis[18].

Blood flow undergoes a substantial increase in response to elevated temperatures, most likely attributed to 
physiological mechanisms governed by temperature-sensitive regulatory processes. ATP exhibits sensitivity to 
physiological temperature elevations observed both in vitro and in vivo, potentially as a result of the activation of cystic 
fibrosis transmembrane conductance regulator (CFTR)-like channels that disrupt ATP synthesis and stability[19]. 
Brainstem astrocytes possess the capacity to directly perceive alterations in blood and brain carbon dioxide and pH levels, 
and potentially govern the function of respiratory neuronal networks to modulate respiration. The reduction in 
extracellular pH triggers the release of ATP, which results in the depolarization of neighboring astrocytes and neurons. 
Perturbations in acid-base equilibrium can impede the regular progression of intracellular energy metabolism and impact 
ATP synthesis and stability[20]. Clodronate, as a highly effective and specific inhibitor of vesicular ATP release, 
represents a distinctive therapeutic approach to the management of chronic pain. Its inhibitory action on vesicular ATP 
release implicates its potential efficacy in the treatment of various purinergic-mediated disorders, such as inflammatory 
conditions, diabetes, and neurological ailments.

These discoveries underscore the contribution of chronic inflammation and immune responses to the dysregulation of 
cellular ATP homeostasis[21]. These findings imply that hydrogen peroxide triggers the release of ATP from intracellular 
compartments into the extracellular milieu via lysosomal exocytosis. The generation of reactive oxygen species during 
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Figure 2 The process of adenosine triphosphate production necessitates the sequential progression through a series of reactions 
encompassing glycolysis, pyruvate decarboxylation, the krebs cycle, and the respiratory chain. Cellular entities harness carbon sources to 
generate adenosine triphosphate (ATP) via glycolysis and the respiratory chain. Engineered cellular systems, when designed along specific pathways to facilitate 
targeted product synthesis, incur heightened ATP consumption for processes such as sugar uptake, cellular proliferation, biosynthesis, product efflux, and the 
acquisition of tolerance to cytotoxic agents. Furthermore, the equilibrium of ATP is influenced by a range of factors, including pH levels and oxygen availability. 
Perturbations in these dynamics can result in the overproduction of intracellular ATP, leading to its efflux through membrane-associated signaling channels or 
extracellular vesicles. Subsequent activation of cell membrane-associated P2 receptors by extracellular ATP triggers the influx of intracellular calcium ions, 
culminating in apoptotic cell demise. ATP: Adenosine triphosphate.

oxidative stress disrupts the delicate balance of ATP homeostasis[22]. Accumulating evidence suggests that the ATP/
P2X7 signaling pathway confers extensive protection against viral infections in the host. The eATP exerts inhibitory 
effects on the replication of various viruses, including vesicular stomatitis virus, Newcastle disease virus, mouse 
leukemia virus, and herpes simplex virus, both in vivo and in vitro, by activating P2X7 receptors [P2X7R/purinergic 
receptor P2X7 (P2X7Rs)]. Concurrently, ATP administration leads to a significant upregulation of interferon-beta (IFN-β) 
expression in a concentration- and time-dependent manner. Mechanistically, ATP stimulates the secretion of IFN-β 
through the activation of the (p38 mitogen-activated protein kinase/c-jun n-terminal kinase/activating transcription 
factor 2) P38/JNK signaling pathway, which plays a crucial role in facilitating antiviral immune responses[23]. 
Furthermore, cellular energy homeostasis, particularly ATP production and stability, can be disrupted by environmental 
toxins (e.g., heavy metals, organic pollutants) and prolonged or heightened stress. These external factors can disrupt the 
delicate balance of energy metabolism within cells, leading to alterations in ATP synthesis and stability[24,25].
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INTERNAL FACTORS AFFECTING ATP HOMEOSTASIS IN SYSTEMS AND CELLS
The ATP synthesis pathway exerts a considerable influence on the cellular release of ATP. Oxidative phosphorylation and 
photophosphorylation, catalyzed by F1F0-ATP synthetase, represent the fundamental mechanisms by which cells 
generate energy through ATP synthesis[26]. Enhanced enzymatic activity of F1F0-ATP synthetase results in increased 
ATP production. Mitochondrial exposure to shear stress induces mitochondrial ATP production via the involvement of a 
specific protein called fossa or fossa protein-1, thereby converting the mechanical shear stress into a novel modulator of 
ATP production. This process leads to the release of ATP from vesicles and initiates purinergic Ca2+ signaling[25]. These 
findings indicate that under conditions of metabolic activity or stress, the ATP synthesis pathway can be activated in 
response to mitochondrial dysfunction, resulting in an upregulation of ATP production. Additionally, aberrant ion 
channels[27], transporters, and membrane vesicles can also contribute to augmented ATP synthesis in cells, thereby 
increasing the pool of available ATP for subsequent release.

Furthermore, the ATP-consuming pathway plays a crucial role in the release of ATP by cells. Cell proliferation, for 
instance, is associated with heightened ATP consumption[28]. In muscle protein synthesis, citrulline has been shown to 
induce ATP redistribution, resulting in increased ATP consumption during the process[29]. As a consequence, cells 
release more ATP to fulfill their heightened energy demands. Similarly, during the shortening of rabbit psoas muscle skin 
fibers, ATP consumption is elevated[30]. Studies have also demonstrated that certain abused drugs, such as degeneration 
of optic atrophy, exhibit increased ATP consumption during their transport across filter-grown CACO-2-monolayers[31]. 
ATPase and ATP-dependent enzyme reactions are implicated in this increased ATP consumption, which subsequently 
affects the quantity of ATP released by cells. These findings underscore the significance of the ATP-consuming pathway 
in modulating ATP release dynamics in cellular processes.

ATP transport channels play a vital role in cellular ATP release. Notably, the opening of the Panx1 half-channel is 
modulated by the activity of P2X7Rs. Evidence suggests that P2X7Rs are activated under pathological conditions like 
ischemia, leading to the opening of the PANX1 half-channel. This allows substantial Ca2+ influx from the extracellular 
space and the release of ATP from the cytoplasm, ultimately triggering cell death[32]. These findings indicate that 
activated Pannexin channels facilitate ATP release from the intracellular space through the cell membrane to the 
extracellular environment.

CFTR also promote ATP release by stimulating independent ATP release channels, thus governing cellular autocrine 
signaling[27]. Studies have demonstrated that CFTR forms pores in the cell membrane, enhancing the efflux of ATP from 
the cytoplasm to the extracellular milieu. Furthermore, eATP plays a regulatory role in various signaling systems, 
including the propagation of intercellular Ca2+ signaling (ICS). Nexin semi-channels, P2X7Rs, pannexin channels, anion 
channels, vesicles, and transporters are recognized as potential ATP-released channels; however, their precise contri-
butions to ICS remain subject to debate. In the inner ear, these connexins play a dual and crucial role in Ca2+ signaling: 
serving as semi-channels, they promote ATP release and sustain long-range ICS propagation; acting as gap junction 
channels, as well as facilitating the diffusion of Ca2+-mobilized second messengers among coupled cells[33]. Additionally, 
the binding of ATP facilitates the release of substrates by multidrug resistant protein [34]. Simultaneously, multidrug-
resistant protein participates in intracellular substance transport and excretion, contributing to the transport of ATP from 
the cytoplasm to the extracellular space, thus promoting ATP release.

Cells can regulate the balance of ATP concentration inside and outside the cell by modulating the activity of ATP 
hydrolase. Among the ATP hydrolases, exonucleoside triphosphate diphosphate hydrolases form a significant enzyme 
family, with members including ectonucleoside triphosphate diphosphohydrolase 1 (CD39) and ENTPD3. These enzymes 
are capable of catalyzing the hydrolysis of ATP to ADP, leading to the degradation and subsequent release of ATP[35]. 
Moreover, the ectonucleotide pyrophosphatase/phosphodiesterase family includes members such as ectonucleotide 
pyrophosphatase/phosphodiesterase 1 and ectonucleotide pyrophosphatase/phosphodiesterase 2, which are also 
involved in ATP hydrolysis. These enzymes catalyze the hydrolysis of ATP to AMP and two inorganic phosphate ions. 
The impact of eATP on the release of ATP from cells is a multifaceted and intricately regulated process that entails the 
interplay of various cell surface receptors, channels, and enzymes.

AICD MECHANISMS
The complexity of AICD can vary depending on the specific cell type and the surrounding microenvironment. 
Nevertheless, several general mechanisms have been elucidated. One of these mechanisms involves the activation of 
purinergic receptors, particularly the P2X7R, which can initiate a cascade of events leading to cell death. Another 
mechanism is associated with the elevation of intracellular calcium ion concentration. Moreover, ATP-triggered cell death 
may also contribute to the activation of inflammatory responses. Lastly, AICD is linked to the perturbation of 
mitochondrial function, with the release of cytochrome c being strongly associated with the activation of apoptosis 
signaling pathways (Figure 3).

EATP stimulates the activation of the P2X7R, leading to inflammasome activation and the release of pro-inflammatory 
cytokines in monocytes. Native-like T cells effectively respond to innate stimuli by secreting a multitude of pro-inflam-
matory cytokines, and human T cell compartments exhibit the highest expression of the P2X7R. Within the innate 
lymphoid population, Tγδ cells demonstrate heightened sensitivity to P2X7R activation compared to conventional T cells, 
influencing fundamental cellular mechanisms such as calcium signaling and AICD[36]. Neuroinflammation is positively 
linked to P2X7R activation through risk-associated molecular patterns, with eATP being the most prominent among 
them. The P2X7R is expressed in various retinal cells, including retinal endothelial cells, and ATP serves as the sole 
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Figure 3 Illustration of the mechanism of adenosine triphosphate induced cell death, which involves several interconnected pathways. 
Upon binding to the purinergic receptor P2X7 (P2X7R), extracellular adenosine triphosphate (ATP) induces a surge in intracellular calcium levels, leading to caspase 
activation and subsequent cell death. Additionally, ATP activates the NOD-like receptor family pyrin domain containing 3 inflammasome by releasing High Mobility 
Group Box 1/Toll-Like Receptor 4, triggering caspase-1 activation and promoting cell apoptosis. The interaction between ATP and P2X7Rs also activates the Nuclear 
Factor-kappa B and Phosphatidylinositol 3-kinase-protein kinase B/hypoxia-inducible factor pathways, resulting in DNA damage and cell death. Simultaneously, the 
continuous accumulation of intracellular Ca2+ stimulates the opening of the mitochondrial permeability transition pore, leading to DNA damage and ultimately cell 
necrosis. Ca2+ induces mitochondria to release cytochrome c, further contributing to the apoptotic process. Moreover, ATP-triggered cellular demise instigates a 
transformative shift within the extracellular microenvironment, concurrently unleashing a plethora of cytokines. Lastly, apart from elucidating the fundamental 
underpinnings of ATP induced cell death, this Figure also encapsulates a synthesized appraisal of the plausible mechanisms governing microenvironmental 
equilibrium, as extrapolated from relevant literature. ATP: Adenosine triphosphate; NF-κB: Nuclear Factor-kappa B; NLRP3: NOD-like receptor family pyrin domain 
containing 3; PI3K-AKT: Phosphatidylinositol 3-kinase-protein kinase B; ROS: Reactive oxygen species; TNF-α: Tumor necrosis factor-alpha; IL: Interleukin; ASC: 
Apoptosis-related speckle-like protein; STAT: Signal transducer and activator of transcription.

physiological agonist for P2X7. High glucose induces periretinal cell death by activating P2X7R, and the ATP released by 
the deceased cells functions as a "danger signal," further amplifying the inflammatory response caused by glucose-
induced injury[37]. Research has demonstrated that brief (1-4 min) stimulation of mouse macrophages with high eATP 
leads to delayed (hourly) cell death, as evidenced by DEVDase (caspase-3 and caspase-7) activity. “Transient” P2X7R 
activation and Ca2+ overload have been identified as triggers for death in native mouse macrophages, independent of 
Panx1 and pro-inflammatory caspase-1 and toll-like receptor (TLR) signaling[38]. Furthermore, knockdown of chloride 
intracellular channel protein 4 enhances ATP-induced apoptosis of HN4 cells through mitochondrial and endoplasmic 
reticulum pathways[39].
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AICD AND CANCER SIGNALING PATHWAYS
AICD is directly associated with multiple signaling pathways in tumor cells, achieved through the binding and activation 
of key molecules in these pathways. Among them, a correlation exists between the mitochondrial pathway and AICD. 
Upon eATP activation of the P2X7R, intracellular mitochondrial Ca2+ levels increase, leading to the formation of Bcl-2-
associated X /Bcl-2 homologous antagonist/killer oligomer complexes that insert into the outer membrane pores of 
mitochondria. This causes changes in mitochondrial osmotic pressure and transmembrane potential loss, subsequently 
facilitating the release of cytochrome c from mitochondria into the cytoplasm and activating the caspase-9 precursor.

Consequently, caspase-3 and caspase-7 are activated, triggering a Caspase cascade reaction, and ultimately inducing 
cell apoptosis[40-47]. ATP promotes apoptosis by activating extracellular P2X7Rs. The apoptosis of tumor cells can induce 
apoptosis in surrounding cells, resulting in proliferative necrosis, providing an environment favorable for cancer spread. 
P2X7R activation leads to tumor necrosis factor (TNF) activation, stimulating Caspase activation, and initiating the 
execution phase of apoptosis[48,49]. Simultaneously, P2X7R activation alters membrane permeability, leading to an 
outflow of intracellular ions, cell swelling, and rupture, ultimately causing cell necrosis[50,51]. Necrosis is an internal 
tumor death that creates an ideal environment for cancer dissemination. ATP activates immune cell membrane P2X7Rs, 
triggering the release of necrosis factors, and activating serine-threonine kinases such as receptor-interacting protein 
kinase 1 and receptor-interacting protein kinase 3 after TNF receptor 1 or TLR stimulation, ultimately inducing necrosis
[50-54].

The autophagy pathway plays a crucial role in recycling metabolic waste in tumor cells, ensuring their energy 
requirements are met, or facilitating evasion of apoptosis, ultimately leading to tumor cell proliferation. ATP can promote 
autophagy initiation by activating the AMP-activated protein kinase (AMPK) signaling pathway[55,56]. When 
intracellular ATP levels decrease, AMPK becomes phosphorylated and activated, subsequently activating the unc-51-like 
autophagy activating kinase 1 complex and initiating the autophagy process.

Nuclear factor kappaB (NF-κB) assumes a critical role in numerous biological processes of tumor cells, encompassing 
inflammation, proliferation, survival, apoptosis, angiogenesis, epithelial-mesenchymal transition (EMT), metastasis, stem-
cell characteristics, metabolism, and therapeutic resistance. Prior investigations have established that NF-κB activation 
leads to DNA damage and initiates the signaling pathway of NF-κB[57]. The Wnt signaling pathway holds paramount 
significance in embryonic development by preserving stem cell properties and dictating cell fate. When ATP binds to the 
P2 purinergic receptor, it activates protein kinase C and phosphoinositide 3-kinase (PI3K) signaling pathways, thereby 
inhibiting the activity of glycogen synthesis kinase-3β (GSK-3β)[57-60].

Consequently, β-catenin is no longer phosphorylated and degraded by GSK-3β, which regulates cell growth and differ-
entiation. Several studies have indicated that ATP can promote the activation of the PI3K/protein kinase B (Akt) pathway 
through P2 purinergic receptor activation. This process results in PI3K catalyzing the transformation of phosphatidylin-
ositol diphosphate into phosphatidylinositol triphosphate (PIP3). Subsequently, PIP3 attracts Akt kinase to the cell 
membrane, resulting in its phosphorylation and activation. Activated Akt kinase modulates cancer development by 
phosphorylating a diverse array of downstream effector proteins.

MAPK comprises a cluster of evolutionarily conserved serine-threonine kinases, encompassing extracellular signal-
regulated kinase (ERK), p38, JNK, and big mitogen-activated protein kinase 1, with each representing distinct classical 
MAPK pathways. ATP phosphorylates and activates MAPK protein kinases (such as ERK, JNK, and p38) by engaging P2 
purinergic receptors[61].

Research has revealed that AICD may incite DNA damage, consequently activating tumor protein 53 (p53) expression 
and function. Activated p53 effectively regulates multiple target genes, including cyclin-dependent kinase inhibitor 1 
(p21), Bax, p53 upregulated modulator of apoptosis, etc., which are closely associated with cancer development[62,63]. 
The induction of AICD exerts a direct or indirect impact on cancer signaling pathways and cancer characteristics, thus 
further underscoring its vital role in cancer.

VALIDATED KEY GENES IN AICD KEY GENES: FUNCTIONS, PROGNOSIS, AND CLINICAL VALUES
The underlying mechanism of AICD remains incompletely understood. However, several overarching mechanisms have 
been revealed. Among them, a pivotal pathway involves the activation of the P2 receptor family, specifically the P2X7R, 
by eATP. Perturbation or activation of these genes may modify susceptibility to AICD. Furthermore, investigations into 
ATP homeostasis have highlighted the regulatory role of PANX1 protein in intracellular ATP concentration, thus 
influencing AICD. Also, activation of P2X7R triggers an elevation in intracellular calcium levels, which is balanced by the 
calcium release-activated calcium channel protein 1 (ORAI1) and stromal interaction molecule (STIM) 1 proteins to 
maintain intracellular calcium homeostasis. Besides these mechanisms, apoptotic and mitochondrial pathways also 
participate in AICD. Consequently, 37 genes have been identified as crucial players in the AICD mechanism. As the 
concept of AICD gains prominence, researchers are increasingly focusing on its role in diverse tumor types, implying that 
the expression levels and clinical significance of AICD may hold significant relevance across different tumors.

Therefore, this paper will discuss prevalent cancer types globally. Table 1 below enumerates the functions and 
subcellular localizations of these genes during AICD. Due to the limited availability of cancer prognosis-related 
information regarding AICD genes, an extensive analysis was conducted using clinical data from the database provided 
by the American Cancer Letters and Biology Institute (https://www.aclbi.com/static/index.html/). Table 1, establishes a 
comprehensive gene prognosis model centered on AICD, aiming to assess the prognostic significance of individual genes 
across several types of cancer.

https://www.aclbi.com/static/index.html/
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Table 1 List of adenosine triphosphate induced cell death core genes and their relationship with tumors

Gene Full name Risk factor Protective factor
Clinical 
prognostic 
value

Role in ATP induced 
cell death Ref.

P2RX7 Purinergic receptor 
P2X7

NA NA HNSC, KIRC, 
LAML, SARC

Activates inflammatory 
mediators and increases 
calcium ions

Tamajusuku et al
[89]

CASP3 Caspase-3 DPG, HNSC, MESO OV, THYM ACC, COAD, 
LGG, LIHC, 
LUSC, PAAD

Caspase-3 cleavage by 
caspase-1/4/5/11 forms 
pores, releasing pro-
inflammatory cytokines

Souza et al[90]

PANX1 Pannexin-1 NSCLC, BRCA, RCA, 
SARC, MESO

LUAD, MESO, 
PAAD, STAD

P2X7 activation opens 
PANX1 channels, 
releasing ATP and 
triggering cell death 
pathways

Shoji et al[91]

NLRP3 NOD-like receptor 
family pyrin 
domain-containing 
protein 3

SARC, TGCT PAAD LAML, SKCM NLRP3 activated by 
stimuli forms inflam-
masome, triggers 
caspase-1 activation, 
releases cytokines, 
induces apoptosis

Sadatomi et et al
[92]

CASP1 Caspase-1 DPG, HNSC, PAAD, 
LAML, THYM

BRCA, MESO BRCA, LAML, 
LGG, MESO, 
SARC, THYM

Caspase-1 induces 
cytokine processing, 
pyrosis, and inflam-
mation

Sadatomi et al[92]

P2RY1 P2Y purinoceptor 1 DPG, PAAD NA BLCA, KIRC P2RY1 can increase 
calcium ions in the 
Golgi apparatus

Ohishi et al[93]

P2RY11 P2Y purinoceptor 11 NA HNSC,PAAD,UCEC, Rb, 
TGCT

ACC, BLCA, 
LGG, UCEC, 
UVM

Involved in immune 
inflammatory 
mechanisms

Yoon et al[94]

ORAI1 Calcium release-
activated calcium 
channel protein 1

RCA, SARC, MESO HNSC ACC, BLCA, 
KIRP, LGG, 
MESO,

Increased intracellular 
calcium ions

Peng et al[95]

STIM1 Stromal interaction 
molecule 1

HNSC, PCPG SARC KIRP, PAAD, 
UVM

STIM1 responds to ATP-
induced calcium influx, 
activating ORAI1 and 
promoting cell death

Peng et al[95]

CASP8 Caspase-8 CESC, RCA DPG, BRCA, OV, SKCM, 
SARC

LGG, PAAD, 
SKCM

CASP8 causes apoptosis Zeng et al[96]

CASP9 Caspase-9 DPG, NSCLC, ACC, 
THYM

PAAD,BRCA, Rb, MESO ACC, BLCA, 
BRCA, LAML, 
LGG, MESO

CASP9 causes apoptosis Zeng et al[96]

CASP7 Caspase-7 HCC, THYM BRCA, MESO ACC, KIRC, LGG, 
LIHC, STAD

CASP7 causes apoptosis Zeng et al[96]

P2RX3 Purinergic receptor 
P2X3

DPG PAAD,NSCLC, CESC, Rb KIRC, KIRP, 
LUAD

NA Ohishi et al[93]

NLRP1 NLR family pyrin 
domain-containing 
protein 1

RCA, MESO, THYM HNSC, NSCLC, SARC LGG, LUAD, 
SKCM

NLRP1 activates 
caspase-1, induces 
pyrodeath, and releases 
IL-1β and IL-18

Zhao et al[97]

P2RX4 P2X purinoceptor 4 HNSC, HCC, RCA, 
Rb, MESO

DPG, UCEC LGG, LIHC, 
MESO, UCEC, 
UVM

P2RX4 contributes to 
AICD (pyroptosis) by 
activating the NLRP3 
inflammasome, leading 
to IL-1β and IL-18 
production

Ohishi et al[93]

P2RX5 P2X purinoceptor 5 RCA, ACC HNSC ACC, KIRC, LGG, 
SKCM

NA Ohishi et al[93]

ATP induces cell death 
via SAPK pathways, 
regulating apoptosis, 
necrosis, and stress 

SAPK Stress-Activated 
Protein Kinase

NA NA NA Humphreys et al
[98]
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signaling

p38 MAPK p38 mitogen-
activated protein 
kinases (p38 MAPK)

NA NA NA ATP activates p38 
MAPK, which leads to 
cell death through 
apoptosis and necrosis

Noguchi et al[99]

ASK1 Apoptosis Signal-
Regulating Kinase 1

OV, THYM DPG, HNSC, RCA KIRC, LAML, 
LGG, MESO, 
PAAD, READ, 
SKCM

Excessive ATP induces 
cellular stress, activating 
ASK1 and downstream 
pathways for cell death

Noguchi et al[99]

NOX2 NADPH oxidase 2 NA NA CESC, KIRC, 
LIHC, LUAD, 
SKCM

ATP activates NOX2, 
generating ROS causing 
oxidative stress and 
potential cell death

Noguchi et al[99]

bax BCL2 Associated X NA PAAD, BRCA, CESC, 
RCA

LGG, LIHC, 
MESO, SKCM, 
UVM

Excessive ATP triggers 
BAX activation, 
mitochondrial 
dysfunction, and 
apoptotic cell deat

Wen et al[100]

MLC Myosin Light Chain UCEC, MESO HNSC, PAAD, BRCA, 
CESC, RCA, PCPG

CESC, KIRC ATP depletion hampers 
muscle contraction, 
affecting myosin 
function and cellular 
viability

Hwang et al[101]

ROCK I Rho-associated, 
coiled-coil 
containing protein 
kinase 1

THYM BRCA, RCA KIRC, LGG, 
PAAD

ATP activates P2X7 
receptors, inducing 
apoptosis via the 
Rho/ROCK pathway, 
potentially involving 
ROCK I

Hwang et al[101]

ERK1/2 Extracellular Signal-
Regulated Kinase 1 
and 2

NA NA NA ERK1/2 promotes cell 
survival or antagonizes 
apoptosis, but 
prolonged activation 
may lead to cell death. 
Activates the ERK1/2 
pathway, affecting cell 
fate

Tsukimoto et al
[102]

P2X6 P2X purinoceptor 6 DPG, HNSC, BRCA, 
OV, UCEC, RCA, 
MESO

SARC, ACC ACC, HNSC, 
KIRC, LGG, OV, 
UVM

Activation may raise 
calcium levels, 
potentially triggering 
cell death

Banfi et al[103]

CYTC Cytochrome c HNSC, NSCLC, Rb, 
MESO, THYM

DPG, RCA ACC, BRCA, 
COAD, HNSC, 
KIRP, LAML, 
LGG, LUAD, 
MESO, UCEC

Cytochrome c released 
by mitochondria during 
cell stress triggers cell 
apoptosis

Sadatomi et al[92]

TNF-α Tumor necrosis 
factor alpha

CESC, Rb, MESO HNSC, PAAD, RCA, 
SARC

SKCM, THYM ATP induces cell death, 
activating TNF-α and 
triggering apoptosis or 
necroptosis pathways. 
Immune cells produce 
TNF-α in response to 
ATP, amplifying the 
cellular response

Hide et al[5]

P2RY5 P2R purinoceptor 5 NA NA NA NA Yoon et al[94]

P2RY14 P2R purinoceptor14 RCA HNSC, HCC, OV, UCEC 
MESO

HNSC, KIRP, 
LUAD, SKCM, 
UCEC

NA Ohishi et al[93]

P2RY13 P2R purinoceptor 13 NA PAAD, NSCLC, CESC, 
SKCM, RCA, SARC

ACC, CESC, 
KIRC, LUAD, 
SARC, SKCM, 
UCEC

P2Y13 may play a role 
in ADP receptors, 
mainly involved in ATP 
homeostasis

Ohishi et al[93]

P2RY12 P2R purinoceptor 12 DPG,PAAD,OV, 
SARC, MESO, 
THYM,

NSCLC LAML, LUAD, 
SKCM

P2Y12 may play a role 
in ADP receptors, 
mainly involved in ATP 
homeostasis

Ohishi et al[93]

P2Y6 may be involved 
in calcium signaling 

P2RY6 P2R purinoceptor 6 DPG, HNSC, PAAD, 
HCC, BRCA, RCA

SARC, KIRC, LGG, 
SKCM, UVM

Ohishi et al[93]
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leading to cell death

P2RY4 P2R purinoceptor 4 HCC, SARC HNSC, PAAD, RCA PRAD P2Y6 may be involved 
in calcium signaling 
leading to cell death

Ohishi et al[93]

P2RY2 P2R purinoceptor 2 DPG, UCEC, BRCA, 
OV

RCA, SARC BLCA, GBM, 
LAML, LGG, 
MESO, OV, 
PAAD, UCEC, 
UVM

ATP binding triggers 
intracellular signaling 
pathways that may lead 
to cell death

Ohishi et al[93]

ANO6 Anoctamin-6 HNSC, PAAD, OV, 
NSCLC, BRCA, 
CESC

BRCA, CESC, 
KIRC, LGG, 
MESO, OV, 
PAAD

As a calcium-activating 
channel and 
superburning enzyme, it 
may influence cell death 
pathways

Ousingsawat et al
[104]

cyclinE2 cyclinE2 DPG, HCC, UCEC, 
RCA, SARC, Rb, 
ACC, MESO

HNSC ACC, BRCA, 
KICH, KIRP, 
LGG, LIHC, 
LUAD, MESO, 
THYM

NA Wang et al[105]

cyclinD2 Cyclin D2 HNSC PAAD, NSCLC, BRCA, 
LAML, MESO, PCPG

LAML, LGG, 
LUSC, MESO, 
PAAD, SKCM, 
THCA, UCEC

NA Wang et al[105]

ACC: Adrenocortical carcinoma; BLCA: Bladder urothelial carcinoma; BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and 
endocervical adenocarcinoma; CHOL: Cholangiocarcinoma; COAD: Colon adenocarcinoma; COADREAD: Colon adenocarcinoma/rectum 
adenocarcinoma esophageal carcinoma; DLBC: Lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: Esophageal carcinoma; GBM: Glioblastoma 
multiforme; GBMLGG: Glioma; HNSC: Head and neck squamous cell carcinoma; KICH: Kidney chromophobe; KIPAN: Pan-kidney cohort (KICH + KIRC 
+ KIRP); KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; LAML: Acute myeloid leukemia; LGG: Brain lower grade 
glioma; LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; MESO: Mesothelioma; OV: Ovarian 
serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; PCPG: Pheochromocytoma and paraganglioma; PRAD: Prostate adenocarcinoma; READ: 
Rectum adenocarcinoma; SARC: Sarcomav; SKCM: Skin cutaneous melanoma; STAD: Stomach adenocarcinoma; STES: Stomach and esophageal 
carcinoma; GCT: Testicular germ cell tumors; THCA: Thyroid carcinoma; THYM: Thymoma; UCEC: Uterine corpus endometrial carcinoma; UCS: Uterine 
carcinosarcoma; UVM: Uveal melanoma.

AICD IN GLOBALLY-PREVALENT CANCER TYPES
Breast cancer
Breast cancer is the predominant malignancy among women globally, holding the foremost position in cancer-related 
mortalities. Emerging investigations have revealed a significant elevation of P2X7Rs in breast cancer, implicating their 
involvement in mediating crucial cellular processes. Specifically, P2X7Rs have been associated with the activation of the 
Akt signaling pathway, the calcium-activated small conductance calcium-activated potassium channel 3 potassium 
channel, and the induction of EMT. Additionally, they play a regulatory role in the secretion of extracellular vesicles, 
thereby fostering breast cancer invasion and migration. These mechanisms are influenced by factors such as hypoxia and 
ATP exposure[64]. In T47D cells, the silencing of the P2X7R remarkably hindered the invasion and migration induced by 
ATP stimulation. Moreover, the activation of P2X7Rs by ATP led to a down-regulation of E-cadherin protein levels and 
an up-regulation of matrix metalloproteinase-13 (MMP-13) production[65]. This suggests that ATP-induced activation of 
P2X7Rs may facilitate breast cancer cell invasion and migration through the activation of the Akt pathway and the 
regulation of E-cadherin and MMP-13 expression. Furthermore, the glycoprotein PANX1 has emerged as a key player in 
breast cancer metastases, bearing similarities in structure and function to connexins and contributing to cell-environment 
communication. Elevated PANX1 expression has been associated with a shift towards an EMT phenotype and has been 
implicated in the tumor-promoting role of breast cancer, correlating with unfavorable clinical outcomes in breast cancer 
patients[66].

The expression levels of ORAI1 were also found to be upregulated in breast cancer cell lines. Employing ORAI1 small 
interfering RNA (siRNA) interference in breast cancer cells resulted in reduced calcium ion entry related to storage 
operations and altered calcium inflow linked to invasive stimulation. Microarray data analysis of 295 breast cancer cases 
indicated that the transcriptional breast cancer subtype with the worst prognosis (basal type) exhibited alterations in the 
relationship between ORAI1 regulatory factors, namely STIM1 and STIM2. Notably, breast cancer patients with tumors 
expressing high levels of STIM1 and low levels of STIM2 had significantly worse prognoses[67]. In vitro investigations 
have further validated the pivotal role of STIM1 in the proliferation and metastasis of breast cancer. STIM1 was found to 
be expressed in 66.1% of breast cancer cases, a significantly higher proportion than in adjacent non-tumor tissues. 
Moreover, STIM1 overexpression demonstrated positive associations with larger tumors, lymph node metastasis, and 
negative estrogen receptor status. Additionally, in breast cancer patients, increased STIM1 expression was significantly 
linked to poorer disease-free survival but did not exhibit a significant correlation with overall survival[68].
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The P2Y2 receptor plays a pivotal role in the progression of various tumor types. It exhibits high expression levels in 
MCF7 and Hs578T breast cancer cells. Targeting the P2Y2 receptor with siRNA leads to a significant attenuation of ATP- 
or uridine 5’-triphosphate-driven migration and invasion of breast cancer cells, along with down-regulation of the EMT-
related genes snail family transcriptional repressor 1 and E-cadherin. Consistent with in vitro findings, the expression of 
the P2Y2 receptor was markedly higher at the tumor infiltrating margin, invasive tumor cells within breast adipose tissue, 
and/or cancer embolus of lymphatic sinus compared to the tumor core[69]. Abnormal expression and mutations of the 
P2Y6 receptor have been observed in most tumor types and strongly correlated with poor prognosis in breast cancer 
patients. Additionally, uridine diphosphate significantly enhances the migration and invasion of breast cancer cells, and 
this effect can be blocked by P2Y6 receptor-specific inhibitors MRS2578 and P2Y6 short hairpin RNA (shRNA)[70]. 
Furthermore, the expression of P2Y12 is significantly up-regulated in cisplatin-treated 4T1 breast cancer cell lines. The 
combined use of P2Y12 inhibitors and cisplatin significantly enhances the cytotoxic response of 4T1 cancer cells[71]. 
Notably, a certain relationship exists between AICD and breast cancer. Being an intracellular energy molecule, ATP plays 
critical biological functions within the cell. Therefore, further investigations are warranted to elucidate the mechanism of 
action and potential therapeutic value of ATP in breast cancer.

Lung cancer
Lung cancer, one of the most prevalent cancer types globally, is directly associated with smoking, but it can also affect 
non-smokers. It involves the uncontrolled proliferation of lung cells, leading to the formation of malignant tumors. 
Recent research has demonstrated a significant relationship between the dysregulated expression of the P2X7R and the 
occurrence and progression of lung cancer. Particularly, the P2X7R is prominently expressed in tumor-associated 
macrophages (TAMs), and its deficiency impairs the “M2-like” polarization of TAM by reducing the phosphorylation of 
signal transducer and activator of transcription 6 and interferon regulatory factor 4. Consequently, P2X7 deficiency 
curtails lung cancer and Lewis lung cancer progression by inhibiting tumor cell proliferation and angiogenesis, 
promoting T cell mobilization, and reverting M2-like TAM polarization[72]. Furthermore, relevant data has verified the 
functional presence of P2X1, P2X4, and P2X7Rs in laboratory of allergic disease 2 cells and HLMC[73].

Overexpression of ORAI1/calcium release activated calcium modulator 1 (CRACM1) has a suppressive effect on 
extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt phosphorylation. This overexpression induces the expression 
of the cell cycle regulator p21 while reducing the expression of cyclin D3. As a result, cell cycle arrest occurs in the G0/G1 
phase. Of particular significance is that the heightened expression of ORAI1/CRACM1 significantly diminishes 
epidermal growth factor-triggered calcium influx[74]. In non-small cell lung cancer (NSCLC), the expression of STIM1 is 
substantially elevated compared to benign lesions and is positively correlated with advanced T stages of NSCLC. STIM1 
knockdown in NSCLC cell lines A549 and lung cancer (SK-MES-1) Leads to significant inhibition of cell proliferation and 
arrests A549 and SK-MES-1 cells in the G2/M and S phases of the cell cycle. Moreover, STIM1 knockdown markedly 
reduces the growth of xenografted tumors in nude mice[74,75].

While some studies have indicated the potential involvement of ATP in the regulation of lung cancer occurrence and 
development, further research is needed to confirm and clarify whether ATP acts as an independent risk factor for lung 
cancer. Additionally, exploring how ATP-related mechanisms can be applied for clinical intervention remains an essential 
area of investigation.

Colorectal cancer (CRC)
CRC stands as a prominent contributor to cancer-related mortality on a global scale. In CRC patients, distinct phenotypes 
characterized by high and low P2X7R expressions have been identified. Those exhibiting high P2X7R expression 
displayed shorter survival, elevated serum carcinoembryonic antigen levels, and more advanced tumor stages. Moreover, 
P2X7R expression showed significant upregulation in metastatic CRC and metastatic CRC cell lines, indicating a positive 
correlation between P2X7R expression and metastasis[75,76]. P2X7R, through inducing glucose transporter protein 1 
(GLUT-1) expression, aids in tumor cells’ resistance to unfavorable conditions. GLUT1, a principal glucose transporter in 
CRC cells, serves as a prognostic marker for adverse outcomes in CRC patients. Recent investigations have identified 
P2X7R and GLUT-1 as potential prognostic biomarkers for the development of novel treatment strategies. Higher P2X7R 
expression was found in patients with poorly differentiated tumors, and those with GLUT-1 overexpression experienced 
reduced overall survival and disease-free survival. Therefore, P2X7R and GLUT-1 may independently serve as prognostic 
markers, offering a novel avenue for targeted therapy in CRC patients[77].

Purinergic receptors, particularly P2Y2 receptors, have been identified to exert an anti-apoptotic effect in ursolic acid-
induced CRC HT-29 and prostate cancer DU145 cells. P2Y2 receptor activation leads to Src activation, subsequently 
phosphorylating p38, resulting in cyclooxygenase-2 (COX-2) overexpression and thereby inducing resistance to apoptosis 
in HT-29 and DU145 cells[78]. Current investigations indicate that sustained activation of P2Y6R may contribute to the 
development of intestinal tumors by inhibiting the apoptotic process and promoting chemotherapy resistance, which 
poses a critical challenge in the management of CRC patients[79].

STIM1 overexpression is prevalent in CRC patients. Notably, elevated STIM1 expression is significantly associated 
with tumor size, depth of invasion, lymph node metastasis, and serum carcinoembryonic antigen levels in CRC. 
Furthermore, ectopic STIM1 expression enhances the motility of CRC cells, while STIM1 depletion through shRNA 
inhibits CRC cell migration[80]. Additionally, ORAI1 is upregulated in human CRC tissues, and its high expression is 
closely linked to tumor invasion depth, lymph node metastasis, and peri-nerve invasion. Patients with high ORAI1 
expression experience shortened overall survival. CRC cell lines also exhibit upregulated ORAI1 expression. Although 
ORAI1 downregulation suppresses cell proliferation, this growth inhibition is not attributed to augmented apoptosis, and 
STIM1 does not participate in the regulation of CRC cell proliferation[81].
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Prostate cancer
Prostate cancer, one of the most prevalent malignancies in men, is characterized by the aberrant proliferation and 
propagation of malignant cells within prostate tissue. In the context of prostate cancer, the expression profile of P2X7R 
exhibits a distinctive stage-specific pattern, initially appearing in the nucleus, progressing to the cytoplasm, and 
ultimately localizing to the apical membrane of epithelial cells. Early biopsy findings revealed that all 114 prostate tissues 
examined exhibited positive P2X7 staining, indicating the presence of P2X7 at the early stage of prostate cancer[82]. 
Subsequent investigations demonstrated that the downregulation of P2X7 by siRNA substantially attenuated the in vitro 
migration and invasion of prostate cancer cells driven by ATP or 2’,3’-O-(Benzoyl-4-benzoyl)-adenosine 5’-triphosphate, 
while also suppressing tumor invasion and metastasis in nude mice. Additionally, the silencing of P2X7 significantly 
reduced the expression of EMT/invasion-related genes, namely Snail, e-cadherin, claudin-1, interleukin (IL)-8, and matrix 
metalloproteinase-3, along with dampening the phosphorylation of PI3K/AKT and ERK1/2[83].

Moreover, P2X4 protein exhibits expression in prostate epithelial cells, a specific subset of CD66+ neutrophils, and the 
majority of CD68+ macrophages. Elevated P2X4 expression in prostate cancer has been associated with post-radical 
prostatectomy metastasis. Depletion of the P2X4 gene leads to a reduction in the growth, migration, and invasion of 
prostate cancer cells. Furthermore, knockout of P2X4 in Myc-CaP cells results in a significant decrease in the subcu-
taneous growth of allografts in FVB/NJ mice[84]. Additionally, other investigations have demonstrated that indoline 
derivatives can activate the P2Y1R receptor and induce mitochondrial apoptosis signaling[85]. In prostate cancer cells, the 
P2Y2 receptor shows a notable expression. Suppression of the P2Y2 receptor inhibits cell invasion and metastasis. 
Moreover, ATP presence promotes the expression of IL-8 and Snail genes while inhibiting the expression of E-cadherin 
and Claudin-1. Consequently, knockdown of the P2Y2 receptor affects the expression of these EMT/invasion-related 
genes both in vitro and in vivo[86].

The functional interplay between STIM1 and ORAI1, as well as the calcium channel selectivity of ORAI1, are crucial for 
its pro-apoptotic effect. Furthermore, it was observed that resistance to apoptosis in androgen-independent prostate 
cancer cells was associated with the down-regulation of ORAI1 expression and store-operated calcium entry. Upon 
ORAI1 restoration, steroid-deprived cells transfected with ORAI1 exhibited reestablished channel currents for calcium 
storage operations, leading to the restoration of normal apoptosis rates. Therefore, irrespective of the stimulus inducing 
apoptosis, ORAI1 plays a vital role in initiating apoptosis and establishing an anti-apoptotic phenotype in prostate cancer 
cells[87].

Concurrently, STIM1 and ORAI1 have been demonstrated to hinder cell growth by arresting human prostate cancer 
cells in the G0/G1 phase and promoting cell senescence. Additionally, STIM1 and ORAI1 inhibit the NF-κB signaling 
pathway and remodel the tumor microenvironment by reducing the formation of M2-type macrophages, potentially 
creating an unfavorable milieu for tumor growth inhibition. However, STIM1 can also promote cell migration and EMT 
through the activation of transforming growth factor-beta, Snail, and Wnt/β-Catenin pathways[88]. These findings 
collectively indicate that STIM1 and ORAI1 play a multifaceted and vital regulatory role in prostate cancer development, 
encompassing crucial biological processes such as cancer cell growth, apoptosis, and metastasis.

Therefore, this paper discussed prevalent cancer types globally. Table 1 below enumerates the functions and 
subcellular localizations of these genes during AICD[89-105]. Due to the limited availability of cancer prognosis-related 
information regarding AICD genes, an extensive analysis was conducted using clinical data from the database provided 
by the American Cancer Letters and Biology Institute (https://www.aclbi.com/static/index.html/). Table 1, establishes a 
comprehensive gene prognosis model centered on AICD, aiming to assess the prognostic significance of individual genes 
across several types of cancer.

AICD AS POTENTIAL CANCER TREATMENT
The elucidation of the AICD mechanism has offered valuable insights into prospective drug investigations, underscoring 
its promising potential in cancer treatment. In recent years, there has been a notable surge of interest within the scientific 
community towards harnessing the AICD mechanisms for cancer therapy. This intricate mechanism involves the 
engagement of eATP with the P2X7R located on the cell membrane’s surface, culminating in heightened intracellular 
calcium ion levels and concurrent activation of the PI3K/Akt signaling cascade, which impacts molecules including NF-
KB, toll-like receptor 4, and tumor necrosis factor-alpha (TNF-α), ultimately triggering cell death. This comprehensive 
exploration into the molecular intricacies furnishes a robust scientific foundation for the future development of novel 
therapeutics targeting this pathway.

Caffeine exerts its impact by facilitating the degradation of intracellular adenylate (AMP), thereby intensifying the 
cellular consumption of ATP. In the context of the rat brain, a notable interplay emerged between chronic high-intensity 
interval training (HIIT) and caffeine consumption, revealing a linkage to the activity of Na+-K+-ATPase and antioxidant 
enzymes within the brain, alongside the manifestation of anti-anxiety behaviors. Notably, caffeine administration was 
observed to amplify anxiety-related behaviors, while concurrently mitigating alterations induced by HIIT in the 
antioxidant system and Na+-K+-ATPase activity[106]. This implies that caffeine could potentially heighten AMP 
degradation through the modulation of ATPase activity. Notably, a mitochondrial reverse transport inhibitor, 
atractyloside, perturbs adenylate transport within mitochondria, thus precipitating intracellular ATP degradation.

Furthermore, recent investigations have revealed a spectrum of novel P2X7R inhibitors, including emodin, which have 
demonstrated substantial efficacy in suppressing P2X7R-mediated breast cancer invasion, signifying their promising 
potential for prospective clinical applications[64]. A notable example is brilliant blue G (BBG), a P2X7R inhibitor, crucial 
in addressing bone cancer pain. Noteworthy findings have indicated that BBG-mediated inhibition of P2X7R or 

https://www.aclbi.com/static/index.html/
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utilization of small interfering RNA directed against P2X7 in RVM distinctly diminishes spinal cord 5-HT levels and Fos 
expression[107]. Additionally, it is noteworthy that P2Y12 receptor selective antagonists play a vital role in diverse 
malignancies. Clopidogrel, for instance, has been identified as an efficacious selective P2Y12 receptor antagonist, pivotal 
in orchestrating platelet function regulation and eliciting positive effects in the context of cancer[108].

Furthermore, the dose-dependent attenuation of ATP-induced intracellular calcium concentration signaling [(Ca2+)i] 
through the phospholipase C inhibitor U73122 underscores its important role. These pharmacological attributes compel-
lingly underscore the functional expression of G-protein-coupled P2Y2 receptors in esophageal squamous cell cells[109]. 
To encapsulate, P2 receptor-associated inhibitors confer potent suppression of tumor cell proliferation, invasion, immune 
modulation, angiogenesis, and tumor microenvironment regulation, as well as influencing drug targets and enhancing 
chemotherapy sensitization. Moreover, these inhibitors may fortify immune cell-mediated tumor assaults, thus 
augmenting therapeutic outcomes.

Suppression of PANX1 protein levels through shRNA-mediated downregulation or application of channel-blocking 
agents such as carbenoxolone and probenecid has robustly attenuated cell proliferation and migration, concurrently 
stimulating melanin synthesis. Intriguingly, cell surface biotin labeling analysis revealed an intracellular reservoir of 
PANX1 within melanoma cells. Notably, PANX1’s potential modulation of signal transduction via the Wnt/β-catenin 
pathway is underscored by the significant reduction in β-catenin levels following PANX1 silencing[110]. Concurrently, 
berberine (BBR) exhibited notable effects on MDA-MB-231 cell viability, fostering dose-dependent lactate dehydrogenase 
release, while effectively curtailing colony formation and migratory potential. BBR further exhibited marked suppression 
of pro-inflammatory cytokine secretion, including IL-1α, IL-1β, IL-6, and TNF-α[111]. Subsequent investigations revealed 
downregulated expressions of P2X P2X7, NOD-like receptor family pyrin domain containing 3 (NLRP3), pre-Caspase-1, 
apoptosis-related speckle-like protein (ASC) encompassing caspase activation and recruitment domains, Caspase-1 p20, 
IL-18, and IL-1β in the NLRP3 inflammatory body pathway. Moreover, decreased mRNA levels of NLRP3, caspase-1, and 
ASC further corroborated these findings[111].

The concept of AICD mechanism has garnered significant interest within the realm of cancer therapy, emerging as a 
focal point for exploration within innovative anti-cancer therapeutic avenues. Serving as a fundamental underpinning of 
cell demise, the AICD mechanism is intrinsically intertwined, either directly or indirectly, with diverse modes of cell 
death. This interplay holds the potential to reveal intricate associations among distinct cell death modalities. Recent 
investigations underscore the promise of harnessing AICD as a catalyst for novel therapeutic approaches, potentially 
encompassing novel drug development and synergistic utilization with established treatments to enhance therapeutic 
efficacy. Nevertheless, while the appeal of the AICD mechanism is compelling, its practical application necessitates 
further comprehensive scrutiny, aimed at elucidating intricate molecular underpinnings, refining its applicability 
spectrum, and addressing safety parameters. Furthermore, this study made use of the ClinicalTrials.gov website (https://
clinicaltrials.gov/), a comprehensive repository of clinical trial information, to compile a list of AICD-associated genes 
that have undergone completed clinical trials (Table 2).

REFLECTIONS ON ATP AND AICD
The intricate interplay between ATP and AICD within the tumor microenvironment, its intersection with anti-tumor 
immunity, and the nuanced impact of individual variances on cancer progression and therapeutic responsiveness pose an 
interesting challenge for scientific research. Firstly, while the pivotal role of ATP in instigating apoptotic cascades within 
neoplastic cells is acknowledged, the precise orchestration of its regulatory mechanisms remains unknown.

Immunological integrity serves as a robust “fortification” to the human body. However, the link between extrinsic 
factors and unhealthy lifestyles may affect the strength of immune cells over time, leading to gradual weakness and an 
eventual breach in the body’s protective barrier. Consequently, the body becomes susceptible to infections and ailments. 
AICD has demonstrated its potential to galvanize the immune system. However, the specific recognition and response 
mechanisms of immune cells against antigens liberated by AICD remain shrouded in mystery. The elevated metabolic 
activity of tumor cells and their heightened demise in the TME lead to an augmented ATP concentration. Remarkably, 
ATP undergoes gradual enzymatic transformation into adenosine through the sequential CD39→Ecto-5’-Nucleotidase 
→androgen receptor pathway. Consequently, the dynamic distribution and concentration of ATP in the tumor microen-
vironment represents an unsolved conundrum that warrants closer investigation.

The notion of a specific immune response pertains to the targeted immune reaction directed against a particular 
pathogenic entity. Molecules intricately linked with immunological responses possess the capacity to instigate cell death, 
often paralleled by the demise of infected cellular hosts. However, the induction of cell death through ATP activation 
may yield diverse outcomes in distinct immune cell types. Heterogeneous immune cell populations exhibit varying 
sensitivities to ATP-triggered cell death, thereby influencing the vigor and efficiency of immune functionalities. 
Interventions targeting the adenosine pathway not only counteract immunosuppression but also amplify ATP accumu-
lation within the tumor microenvironment through the CD39 blockade. Abundant ATP receptors in immune cells, 
including dendritic cells, macrophages, and neutrophils, foster heightened immune activity upon exposure to eATP.

Furthermore, the intricate role of ATP in modulating immunosuppressive dynamics within the tumor microenvir-
onment remains partially veiled. Often characterized by immunosuppressive traits, the tumor microenvironment’s 
potential for immune subversion, and whether ATP release can serve as a countermeasure to revert this suppressive state, 
warrant further exploration. Remarkably, individual responsiveness to ATP stimulation may exhibit substantial variation, 
potentially rendering certain individuals more predisposed to heightened susceptibility to AICD, while others may 
manifest attenuated responses. Genetic idiosyncrasies among individuals underpin a broad spectrum of cancer treatment 

https://clinicaltrials.gov/
https://clinicaltrials.gov/


Zhang HL et al. AICD and cancer biology

WJCO https://www.wjgnet.com 562 December 24, 2023 Volume 14 Issue 12

Table 2 Clinical trials for adenosine triphosphate induced cell death

NCT 
number Conditions Drugs Brief summary

NCT02587819 Carcinoma, basal cell Treatment with BSCT This phase 1 clinical trial assesses the safety of BSCT (anti-nf-P2X7) 10% 
Ointment in basal cell Carcinoma  patients

NCT03088644 Healthy Drug: JNJ-54175446; Drug: 18F-
JNJ-64413739

Open-label trial investigates P2X7R occupancy using PET tracer 18F-JNJ-
64413739 for P2X7R with JNJ-54175446

NCT03437590 Healthy Drug: JNJ-55308942; Drug: 
[18F]-JNJ-64413739

The primary objective of this investigation is to quantify the inhibition of [18F]-
JNJ-64413739 uptake in the brain upon achieving peak plasma concentration 
(Tmax) and at 24 hours after administering a single dose of JNJ-55308942. 
Additionally, this study aims to establish a comprehensive model for 
understanding the interplay between JNJ-55308942 exposure and its receptor 
interactions

NCT01664000 Solid tumors Drug: Thioureidobutyronitrile A phase 1 open-label trial with dose escalation is being conducted to explore 
the safety, pharmacokinetics, and pharmacodynamics of intravenous kevetrin 
(thioureidobutyronitrile) in advanced solid tumor patients

NCT00899158 Pancreatic cancer Other: Immunologic techniques; 
Other: Laboratory biomarker 
analysis; procedure: Biopsy

The study seeks to clarify how caspase-3, phosphatidylinositol-3 kinase, and 3-
methylhistidine  contribute to skeletal muscle wasting in weight loss among 
pancreatic cancer patients

NCT04972188 Healthy ZYIL1 capsule This phase I study investigates the safety, tolerability, pharmacokinetics, and 
pharmacodynamics of orally administered ZYIL1 in healthy adult subjects 
through a prospective, open-label, multiple-dose approach

NCT04015076 Healthy Drug: Inzomelid; Drug: Placebo This phase 1 study aims to assess the safety, tolerability, pharmacokinetics, 
pharmacodynamics, and food effects of Inzomelid in healthy adults through a 
randomized, double-blind, placebo-controlled design. An open-label cohort 
will also verify the safety, pharmacokinetics, and pharmacodynamics of 
Inzomelid in adult patients with cryopyrin-associated periodic syndromes

NCT04938414 Subarachnoid 
hemorrhage, 
aneurysmal

Diagnostic test: Lumbar 
puncture

Caspase-1 inhibition mitigates pyroptotic neuroinflammation and alleviates 
cerebrospinal fluid circulation impairment post subarachnoid hemorrhage

NCT02872818 Apoptotic signal 
pathways in 
endometrial 
hyperplasia

Drug: 17β estradiol 
hemihydrate; Drug: Metformin; 
Drug: Medroxyprogesterone 
acetate

This study aims to clarify apoptotic signaling pathways involving Survivin, 
Bcl-2, Bax, c-Myc, and caspase-9 in a rat model of iatrogenic endometrial 
hyperplasia treated with metformin and medroxyprogesterone acetate

NCT02466516 Non-alcoholic steato-
hepatitis

Drug: SEL; Biological: SIM This phase 2 randomized, open-label trial evaluates the safety, tolerability, and 
efficacy of GS-4997 alone or combined with simtuzumab (SIM) in non-alcoholic 
steatohepatitis subjects with F2-F3 fibrosis stages

NCT00169130 Lymphoma, large-cell, 
diffuse

Drug: Doxorubicin; Drug: 
Cyclophosphamide; Procedure: 
Autologous stem cell 
transplantation

This prospective study investigates the ACVBP regimen followed by 
autologous stem cell transplantation in treatment-naive patients aged 60 or 
below with low-intermediate risk diffuse large B-cell lymphoma and BCL-2 
overexpression

NCT02582879 Chronic Lymphocytic 
Leukemia (CLL)

NA This multicenter, prospective, observational registry examines CLL/SLL 
patients initiating approved oral kinase inhibitors, BCL-2 inhibitors, or other 
anti-CLL therapies. The study aims to comprehensively analyze treatment 
patterns, including patient characteristics, resource use, clinical outcomes, and 
patient-reported outcomes

NCT02226965 Lymphoma, diffuse 
large B-Cell

Drug: PNT2258 A phase II trial investigates PNT2258 in patients with relapsed or refractory 
diffuse large B-cell lymphoma

NCT00005032 Lung cancer Biological: Oblimersen sodium; 
Drug: Paclitaxel

A Phase I/II trial explores the combination of G3139, a BCL-2 antisense 
oligonucleotide, with paclitaxel for treating recurrent small cell lung cancer

NCT02419560 Lymphoma, mantle-
cell recurrent 
lymphoma, mantle-
cell

Drug: ABT-199 and ibrutinib 
combination

This study aims to determine the optimal dosing regimen for combining 
ibrutinib with ABT-199 to treat relapsed or refractory mantle cell lymphoma

NCT00085228 Prostate cancer Biological: Oblimersen sodium; 
Drug: docetaxel

Docetaxel and similar agents block tumor cell division through diverse 
mechanisms, while oblimersen may boost docetaxel's impact by sensitizing 
tumor cells to enhance its efficacy

NCT03255096 Diffuse large B-cell 
lymphoma 
high-grade B-cell 
lymphoma

Drug: RO6870810; Drug: 
Venetoclax; Drug: Rituximab

An open-label Phase Ib study assessing the safety, pharmacokinetics, and 
clinical effects of RO6870810 and Venetoclax in patients with 
relapsed/refractory DLBCL and/or high-grade B-cell lymphoma carrying gene 
rearrangements (MYC and/or BCL2 and/or BCL6), with or without Rituximab

B Cell lymphoma 
follicular lymphoma 

To evaluate new vaccine formulations for viability and adverse effects, as well 
as analyze immune responses targeting the patient's lymphoma-specific 

NCT00001572 Drug: Id-KLH Vaccine; Drug: 
QS-21 (Stimulation-QS-21) Drug
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neoplasm idiotype

NCT00062010 Lung cancer Biological: Interferon alpha; 
Drug: 13-cis-retinoic acid; Drug: 
Paclitaxel

In patients with recurrent small cell lung cancer undergoing interferon alfa, 
isotretinoin, and paclitaxel treatment, the investigation aims to determine 
treatment response frequency and duration, evaluate regimen toxicity, assess 
overall survival duration, and explore potential links between bcl-2 levels in 
peripheral blood monocytes and treatment outcomes

NCT00039481 Cardiac toxicity; 
unspecified childhood 
solid tumor, protocol 
specific

Biological: Oblimersen sodium; 
Drug: dexrazoxane 
hydrochloride; Drug: 
Doxorubicin hydrochloride

In this phase I trial, oblimersen's effectiveness, combined with chemotherapy 
and dexrazoxane, is assessed for treating relapsed or refractory solid tumors in 
youth. Chemotherapeutic agents inhibit tumor cell division through diverse 
mechanisms, impeding growth or triggering cell death. Oblimersen is 
anticipated to heighten the potency of doxorubicin and cyclophosphamide by 
increasing tumor cell sensitivity. Dexrazoxane, a chemoprotective agent, may 
also shield normal cells from chemotherapy's adverse effects

NCT00666666 Adenocarcinoma of 
the prostate 
stage iv prostate 
cancer

Drug: AT-101; Drug: 
Bicalutamide; Other: LHRH 
agent

In this phase II trial, gossypol's potential to hinder tumor cell growth by 
blocking blood flow is studied when combined with androgen ablation therapy 
for newly diagnosed metastatic prostate cancer. Androgens stimulate prostate 
tumor cell proliferation, which can be reduced by luteinizing hormone-
releasing hormone agonists and drugs such as bicalutamide. The simultaneous 
use of gossypol and androgen ablation therapy appears to hold potential as a 
viable treatment approach for prostate cancer

NCT00003103 Bladder cancer 
breast cancer 
colorectal cancer

Biological: Oblimersen sodium; 
Drug: Docetaxel

This phase I/II trial evaluates oblimersen's effectiveness in treating solid 
tumors that have not responded to previous therapies, utilizing various 
mechanisms to halt tumor cell division, leading to growth arrest or cell death

NCT03080311 Small cell lung cancer; 
solid tumor

Drug: APG-1252 In this Phase I trial, the safety, pharmacokinetic, and pharmacodynamic 
profiles of intravenously administered APG-1252 are examined in patients with 
small cell lung cancer or other solid tumors

NCT00016263 Melanoma (skin) Biological: Oblimersen sodium; 
Drug: Dacarbazine

This randomized study compares Dacarbazine alone to Dacarbazine combined 
with G3139 (Bcl-2 Antisense Oligonucleotide) in patients with advanced 
malignant melanoma

NCT00169000 Metastatic breast 
cancer

Drug: Capecitabine; Drug: 
Docetaxel

Phase I study using accelerated titration design to determine MTD of 
capecitabine (days 1-14) combined with fixed dose docetaxel (75 mg/m2 IV, 
day 8). Nine patients will be treated at MTD, evaluating pharmacokinetics, Bax: 
Bcl-2 ratios, and antitumor response

NCT02997423 Glioblastoma This multi-institutional, consortium-based, non-interventional study aims to 
assess if high cytochrome c oxidase activity in newly diagnosed primary GBM 
tumor specimens is linked to reduced overall survival (primary outcome) and 
progression-free survival (secondary outcome) times

NCT01205503 Breast cancer 
non-hodgkin's 
lymphoma

Drug: Mesna; Drug: Saline; 
Drug: Doxorubicin

This study aims to investigate if mesna can inhibit specific chemical alterations 
in the blood of doxorubicin-treated patients. Researchers hypothesize that these 
changes may be associated with "chemobrain," a cognitive impairment 
reported by some chemotherapy recipients

NCT01037790 Adult solid tumor 
adenocarcinoma of the 
colon 
adenocarcinoma of the 
rectum

Drug: PD-0332991 PD 0332991 has the potential to hinder tumor cell growth by blocking key 
enzymes vital for cell proliferation. This phase II trial evaluates PD 0332991's 
effectiveness and side effects in treating patients with resistant solid tumors

NCT02154490 Recurrent squamous 
cell lung carcinoma 
stage iv squamous cell 
lung carcinoma AJCC 
v7

Drug: Docetaxel; biological: 
Durvalumab; Drug: Erlotinib 
hydrochloride

Create a National Clinical Trials Network for screening sizable yet 
homogeneous cancer populations, assigning them to a multi-sub-study "Master 
Protocol." Assess the screen success rate, defined as the percentage of screened 
patients enrolling in a therapeutic sub-study

outcomes and their efficacy. The profound impact of individual variations in ATP responsiveness on cancer progression 
and therapeutic response underscores a pressing inquiry, necessitating thorough investigation into the underpinning 
mechanisms and conceivable implications.

Additionally, the intricate interplay between the complex and diversified tumor microenvironment and individualized 
patterns of ATP responsiveness can engender pronounced dissimilarities in cell death incidence and severity. Such 
variances may closely interlink with the tempo of tumor evolution, aggressiveness, and treatment susceptibility. 
Nonetheless, a comprehensive resolution to this enigma remains elusive, with further research needed to unravel the 
intricate relationships between ATP responsiveness, individual differences, and the multifaceted intricacies of the tumor 
microenvironment.

LIMITATIONS AND FUTURE
ATP, an essential extracellular signaling molecule, has been recognized as a cause of cell death induced by high eATP 
concentrations. It can trigger cell death through diverse mechanisms and directly impact tumor cells to inhibit their 
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proliferation, invasion, and metastasis. Additionally, ATP can hinder tumor development by activating the immune 
system. However, the precise mechanisms and occurrence of AICD have been the subject of debate and remain unclear 
until now, despite preliminary insights into the relationship between AICD and cancer having been gained. Further 
investigation is warranted to elucidate the intricate mechanisms underlying AICD, particularly at the cellular and 
molecular levels There also needs to be a comprehensive characterization of the distinctive changes associated with this 
process. Additionally, a comprehensive understanding of the interplay and relative significance of AICD in relation to 
other cell death pathways in diverse disease contexts is crucial. Moreover, investigating the varied responses of different 
cell types to AICD and exploring potential cell-specific mechanisms are important avenues for future research. These 
endeavors will enhance our understanding of the molecular mechanisms governing AICD, facilitate the identification of 
novel regulators, and offer new targets and strategies for the development of cancer therapies and other related diseases.

The introduction of the concept of AICD has sparked increasing interest among researchers regarding its association 
with tumors. Investigations into this relationship have encompassed numerous prevalent cancer types, examining the 
correlation between AICD and various tumor characteristics. However, due to insufficient biological evidence and experi-
mental verification, these studies have offered indirect evidence of the connection between AICD and cancer. The precise 
role of genes in the direct or indirect interplay between AICD and tumors remains unclear. Consequently, these studies 
have been unable to identify the genes and features that may exert a more significant influence on the relationship 
between AICD and cancer. Consequently, further research is imperative to comprehensively explore and validate the 
intricate association between AICD and cancer, ultimately identifying the pivotal factors involved in this interplay.

Moving forward, it is crucial to validate the potential of AICD in clinical applications and advance the development of 
therapeutic strategies that induce AICD with high efficiency and selectivity. Additionally, synergistic combinations with 
immunotherapy should be further explored. In summary, AICD represents an autonomous and innovative cell death 
paradigm. However, comprehensive investigations are needed to elucidate the precise mechanisms underlying AICD and 
establish the intricate connections between AICD and cancer.

CONCLUSION
ATP serves as a vital extracellular signaling molecule for cell survival, yet excessive ATP can induce cell death. With the 
introduction of the concept of AICD, extensive literature has emerged focusing on its investigation and elucidation. 
Researchers have made discoveries regarding ATP-activated proteins and provided comprehensive reviews on the topic. 
However, a comprehensive synthesis of the  literature remains lacking, especially an overview of the mechanisms 
underlying AICD. Further investigation is needed to explore the intricate details of AICD, particularly in terms of its 
cross-regulation and mutual influence with other cell death pathways, as well as its relative importance in various disease 
conditions. Moreover, the distinctive changes occurring at the cellular and molecular levels during AICD have yet to be 
fully described.

This paper provides an in-depth exploration of the multifaceted mechanisms through which AICD. It delineates how 
ATP serves as a mediator of apoptosis via diverse pathways, encompassing the activation of caspases within the cysteine 
protease family, the regulation of mitochondrial membrane potential, and the modulation of apoptosis-related protein 
expression. Additionally, ATP exerts a profound impact on cancer cells by instigating various forms of cell necrosis, 
including necrotic apoptosis and necrotic tumor cell death. The involvement of ATP in orchestrating the delicate balance 
between cell survival and death is underscored through its regulation of the autophagy process.

In the realm of cancer biology, ATP emerges as a pivotal regulator influencing tumor cell proliferation, invasion, and 
metastasis. The article underscores ATP's role in impeding tumor growth by activating apoptosis pathways and 
enhancing immune-mediated tumor clearance through the induction of tumor cell necrosis. Furthermore, ATP's contri-
bution extends to the modulation of the tumor microenvironment, influencing factors such as inflammation and immune 
responses, thereby exerting a significant impact on tumor development.

On the therapeutic front, the study accentuates the potential of ATP as a therapeutic agent for inducing cell death. By 
precisely adjusting ATP levels and subsequently activating core pathways involved in cell death, targeted induction of 
tumor cell death becomes achievable, offering promising prospects for therapeutic intervention. This comprehensive 
exploration establishes a crucial theoretical foundation for future research endeavors and clinical applications.
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