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Abstract
BACKGROUND 
Missing occult cancer lesions accounts for the most diagnostic errors in retro-
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spective radiology reviews as early cancer can be small or subtle, making the lesions difficult to detect. Second-
observer is the most effective technique for reducing these events and can be economically implemented with the 
advent of artificial intelligence (AI).

AIM 
To achieve appropriate AI model training, a large annotated dataset is necessary to train the AI models. Our goal in 
this research is to compare two methods for decreasing the annotation time to establish ground truth: Skip-slice 
annotation and AI-initiated annotation.

METHODS 
We developed a 2D U-Net as an AI second observer for detecting colorectal cancer (CRC) and an ensemble of 5 
differently initiated 2D U-Net for ensemble technique. Each model was trained with 51 cases of annotated CRC 
computed tomography of the abdomen and pelvis, tested with 7 cases, and validated with 20 cases from The 
Cancer Imaging Archive cases. The sensitivity, false positives per case, and estimated Dice coefficient were 
obtained for each method of training. We compared the two methods of annotations and the time reduction 
associated with the technique. The time differences were tested using Friedman’s two-way analysis of variance.

RESULTS 
Sparse annotation significantly reduces the time for annotation particularly skipping 2 slices at a time (P < 0.001). 
Reduction of up to 2/3 of the annotation does not reduce AI model sensitivity or false positives per case. Although 
initializing human annotation with AI reduces the annotation time, the reduction is minimal, even when using an 
ensemble AI to decrease false positives.

CONCLUSION 
Our data support the sparse annotation technique as an efficient technique for reducing the time needed to 
establish the ground truth.

Key Words: Artificial intelligence; Colorectal cancer; Detection

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Minimizing diagnostic errors for colorectal cancer may be most effectively performed with artificial intelligence 
(AI) second observer. Supervised training of AI-observer will require high volume of annotated training cases. Comparing 
skip-slice annotation and AI-initiated annotation shows that skipping slices does not affect the training outcome while AI-
initiated annotation does not significantly improve annotation time.

Citation: Grudza M, Salinel B, Zeien S, Murphy M, Adkins J, Jensen CT, Bay C, Kodibagkar V, Koo P, Dragovich T, Choti MA, 
Kundranda M, Syeda-Mahmood T, Wang HZ, Chang J. Methods for improving colorectal cancer annotation efficiency for artificial 
intelligence-observer training. World J Radiol 2023; 15(12): 359-369
URL: https://www.wjgnet.com/1949-8470/full/v15/i12/359.htm
DOI: https://dx.doi.org/10.4329/wjr.v15.i12.359

INTRODUCTION
Colorectal cancer (CRC) is the third most common cancer in the United States, developing in about 4.3% of men and 4.0% 
of women. It is the second highest cause of cancer-related deaths in the United States, responsible for about 53200 deaths 
per year[1]. Likewise, CRC has also become the third most common cancer in China and is increasing in incidence in 
major countries such as Brazil and Russia[2]. Although early detection of CRC through established screening can greatly 
increase survival probability, resistance to the various invasive and noninvasive forms of screening persists[3-5]. This is 
reflected in the fact that up to 40% of CRC is diagnosed in the emergency department[6]. The rise in CRC incidence in 
adults younger than 55 also indicates a need for improved detection through non-screening methods[7-9]. Therefore, 
cross-sectional imaging remains important in early incidental diagnosis of CRC. However, up to 40% of the features of 
early CRC can be missed by radiologists when analyzing these scans[10-13]. This indicates a need for a “second-observer” 
to assist the busy radiologist in order to minimize false negatives which can result in reduced survival due to a delay in 
diagnosis[10].

Artificial intelligence (AI) has the potential to improve early disease detection, as shown by the recently approved 
algorithm for detecting intracranial hemorrhage on computed tomography (CT) and has been proposed for similar 
application in gastric cancer[14,15]. This model can be trained with the relatively low 39000 cases because of the low 
variation in brain anatomy and the simpler disease pattern on CT. CRC varies significantly in location and appearance 
because of the heterogeneity in anatomy and disease. The model training could be accomplished by using supervised 

https://www.wjgnet.com/1949-8470/full/v15/i12/359.htm
https://dx.doi.org/10.4329/wjr.v15.i12.359
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training (requires ground truth with potentially fewer training cases) rather than unsupervised training (uses more 
training cases without ground truth).

In supervised training, inputs with established ground-truth is important for training model. Although supervised 
training requires lower volume of data, the necessary volume of training data is quite large and would require significant 
amount of time to label the ground-truth by trained personnel[16-18]. Several potential methods for decreasing the time 
to establish the ground truth for supervised training have been evaluated. These methods include image level labeling, 
bounding boxes to localize the site of cancer, sparse labeling, and deploying an incompletely trained AI-model for first 
pass segmentation followed by human adjustment (AI-Init)[19,20]. Image level labeling and bounding box techniques 
consider different level of image information for localizing cancer and are expected to require significantly less human 
intervention. However, these may require more cases for training. For true supervised training, the level of annotation 
contains significantly more detail, which requires human interaction. This human interaction can be minimized with 
sparse annotation that skips slices during segmentation or having the rudimentarily trained AI algorithm perform the 
initial segmentation, which is subsequently modified by humans. In this report, we compared the improvement in 
amount of time spent on annotating the CRC between the last two techniques (sparse annotation by skip-slicing and AI-
Init).

MATERIALS AND METHODS
CRC cases
The CRC cases were obtained from our respective cancer centers, which are tertiary and quaternary referral centers, 
between the years of 2012 through 2018 as well as cases from The Cancer Imaging Archive (TCGA-COAD) public domain 
images which were used to compare the outcomes of the techniques[21]. Our training and validating cases included 58 
CRC cancer cases (27 males and 31 females) and 59 normal cases and consisted of CT scans of the abdomen and pelvis 
cases with a mixture of intravenous (IV) contrast enhanced and unenhanced studies. 51 of the cancer cases were used for 
training while 7 were retained for validation. The cases were retrieved from the picture archiving and communications 
system of the respective institutions and de-identified. The de-identified cases and their annotations were transferred 
between the research sites and the medical centers through the HIPPA compliant cloud server from Box.com. 20 of the 25 
cases (8 males and 12 female) from TCGA-COAD were used to test the outcome of the training using the two different 
training techniques. The 5 excluded cases did not have clearly identifiable CRC on CT scans. The imaging stage of the 58 
CRC cases and the 20 The Cancer Imaging Archive (TCIA) cases are listed in Table 1.

Cancer annotation
The location and slices of the cancer were identified on the CT images using ITK-SNAP (versions 3.6.0 and 3.8.0; www.
itksnap.org)[22]. For annotation, the CT axial slices containing the CRC from our cancer center and from TCGA-COAD 
were identified and a contour outlining the edges of the cancer was drawn using the drawing tool. All the CT slices 
containing the tumor were segmented. At the time of training, to simulate sparse annotation, the skip-slice training 
would evenly skip one or two annotated slices among those containing the tumor from being used in training AI methods 
for every annotated tumor slice used for training. For AI-Init technique, the TCGA-COAD cases were initially segmented 
by the trained AI-model after training with the 51 CRC and 59 normal cases described in the previous section. This 
segmented model was then viewed with ITK-SNAP and adjusted to the ground truth established by human 
segmentation. The time required to fully adjust the contour and to eliminate false positives and to correct the false 
negatives was recorded for each TCGA-COAD case.

AI algorithm
The AI algorithm used in the project is a 2D U-Net, which is a convolutional neural network (CNN). The U-Net is a 
popular image segmentation algorithm for medical image segmentation tasks because it requires less training inputs than 
other techniques and is more robust with small training dataset[23]. In addition, recent research findings show that 2D U-
Net has equivalent performance as that of 3D U-Net, but with lower computational requirement[24,25]. Inputs to the 
CNN consisted of 2D images with 512 × 512 pixels. The training dataset was augmented using the standard affine 
transformation with up to 30° rotation and up to 30% scale variation applied to the training patches. The CNN uses a 3 × 
3 kernel and has 5 encoding layers containing 32, 64, 128, 256, and 512 filters and 5 decoding layers with each layer 
containing 512, 256, 128, 64, and 32 filters, respectively. Adam optimizer was used for training the model, and the model 
with the best validation accuracy was chosen. The network was trained using all the training cases, treating each image of 
a subject’s study as a case, with 1 case per batch and trained with 200 epochs. The 7 validation cases were used to choose 
the optimal model parameters while the 20 TCGA-COAD cases were used to validate the final accuracy of the different 
techniques. For evaluating the effects of sparse-annotation, the AI model was trained with either all of the slices of 
annotation or evenly skipping either 1 or 2 slices of annotation for every slice used for training.

In order to determine how to improve the AI-Init technique in establishing the ground-truth, we also developed a 
simple ensemble model with each individual component of the ensemble being an independently trained 2D U-Net 
model with a random initiation. This was obtained to improve the specificity of the AI segmentation. To this end, we 
trained five randomly initialized U-Net models for voting-based model ensemble. Each of these five model is trained as 
described in the previous paragraph. The difference is that the final decision is based on the voter ensemble inference 
technique. For voting-based model ensemble, a voxel is labeled as tumor by the algorithm if and only if at least certain 
number of automatic segmentation models label the voxel as tumor. The U-Net models were also trained with the skip 

http://www.itksnap.org
http://www.itksnap.org
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Table 1 Clinical and protocol details of training and test cases

Training cases (n = 58) Test cases (n = 20)

AJCC stage

Stage 1 0 5

Stage 2 15 5

Stage 3 14 7

Stage 4 29 3

T stage

T1 0 2

T2 0 4

T3 21 13

T4 37 1

Location

Right 39 17

Transverse 3 2

Left 16 1

CT slice thickness (mm)

7 0 1

5 29 17

3-4 25 0

2 or less 4 2

Contrast

IV+PO 27 18

IV 22 1

PO 4 1

None 5 0

AJCC: American Joint Commission on Cancer; CT: Computed tomography; IV: Intravenous; PO: Positive oral.

annotation technique (with skip 0, 1, and 2 slices). We then compared the accuracy and number of false positives per case 
to see how the ensemble method would influence the time required to adjust the segmentation results. For this approach, 
the model ensemble approach generated 3 unique segmentation algorithms (for each annotation technique) based on 
whether at least one, two, or three member(s) of the ensemble identified the same lesion. The segmentation was reviewed 
using ITK-SNAP.

Accuracy and sensitivity analysis
To analyze the algorithm’s accuracy, the AI-generated segmentations were compared to ground-truth annotations, which 
were established as described previously. The AI model generated a DICOM image series for each case with the number 
of slices for each case ranging from 60-400. The cancer segmented by the AI model was compared to the annotated 
ground truth in 3D to determine the false positives, false negatives, and the Dice coefficient (DSC). A false positive was 
considered any segmentation created by the algorithm that did not overlap any part of the ground-truth segmentation. A 
false negative was considered as any image series with human annotated tumor that was not identified by the algorithm’s 
segmentations. For true positive segmentation, DSC was visually estimated and categorized to be 0%-25%, 26%-50%, and 
> 50%. We obtained visual estimate as we do not have readily available software for full DSC calculation.

Time analysis for AI-Init and skip-slice annotation methods
In order to measure the amount of time saved by initiating annotation by the rudimentarily-trained AI model (as 
described earlier), we recorded the time required for annotating the CRC. The time required for initial, full annotation of 
CRC as well as the time required to adjust the AI produced model were acquired. For adjusting the AI-model, the 
obtained time included the time to adjust the boundary of the CRC and for erasing the false positives. We randomly 
selected 3 large, 3 medium, and 3 small CRC from the TCIA dataset and analyzed these times. The sizes of the CRC were 
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considered small, medium, or large if the lesion spanned ≤ 5 CT slices, 5-15 CT slices, and ≥ 15 CT slices, respectively. The 
median and average times were calculated. These same 9 cases were used for measuring the time needed to complete 
skip-slice annotation by annotating every other or every third slices of the tumor mass.

RESULTS
Comparison of training and TCIA datasets
The details of the location of the tumor and the scanning protocols from the training and TCIA testing datasets are listed 
in Table 1. The training dataset contains more higher stage cancers with 74 % of cases at stage 3 or 4 while the TCIA 
dataset has 50% of the cases at stage 3 or 4. All of the training cases is T3 or T4 in T-stage, while the TCIA dataset has 70% 
of the cases being T3 or T4. 67% of the training dataset has right-sided tumor (being defined as ascending colon) while the 
TCIA test dataset has 85% of the cases being right-sided. In terms of scanning protocol, 50% of the training dataset has 5 
mm slice thickness while 90% of the TCIA testing dataset has slice thickness being 5 mm or more. In terms of contrast 
administration, the training dataset has 47% of the cases with IV and positive oral (PO) contrast while the TCIA dataset 
has 90% of the cases with both IV and PO contrast. 38% of the training dataset has just IV contrast whereas TCIA data has 
5% of cases with IV contrast only.

Segmentations from skip-slice annotation trained AI-model
The AI-models generated by skip-slice annotation did not significantly alter the segmentation outcome of the AI-model. 
Figure 1 shows two separate cases segmented by the AI-models; although there is very subtle difference in the segment-
ations, the difference could not be detected by the measure that we chose (false positives per case, sensitivity, and DSC). 
For all three models, the sensitivity was 80% and the false positive lesions identified per case was 22. The DSC category 
distribution was 25% for 0-0.25, 60% for 0.26-0.5, and 15% for > 0.5.

Ensemble voting for decreasing false positives per case
Prior to obtaining the AI-initiated annotation, we aimed to minimize the number of false positives per case as the false 
positives could decrease the efficiency of this technique in establishing the ground-truth. To do this, we chose a simple 
voting-based ensemble method to reduce the number of false positives per case. When the number of votes required by 
the ensemble technique for determining tumor segmentation is increased, there is a corresponding drop in false positives 
per case while there is also a decrease in sensitivity, although the drop in false positives was much greater than the drop 
in sensitivity. The DSC distribution also shifts toward more cases being in 0 to 0.25 category. These data are shown in 
Tables 2 and 3. Figures 2 and 3 show an example of both agreement and disagreement between 1- and 2-voter models.

Time needed to adjust AI-Init segmentation and to complete skip-slide annotation
The models from the section above were used to generate the initial annotation of CRC which was then adjusted 
manually to fit the established ground truth. The amount of time required to modify these annotations to the ground 
truth was then recorded for 3 randomly selected cases from each of the large, medium, and small tumors. The complexity 
of these cases was determined as described in the methods section. The amount of time required to adjust these cases is 
listed in Table 4, along with the median and average. The measured time includes the time needed to remove the false 
positives as well as contouring the false negative lesions. The data show that AI-Init does decrease the time required to 
annotate the cases, although a statistical test of the distributions among the measured annotation time from the original, 
1-voter, and 2-voter model using the Friedman’s two-way analysis of variance by ranks did not yield statistical 
significance (P = 0.121). Some improvement is seen, primarily, with medium sized tumors.

For skip-slice annotation, the actual timed annotation revealed significant reduction in time needed to complete the 
annotation (Table 4). Although the reduction is not proportional, the differences are significant between full annotation 
and either skip-1 or skip-2 slice methods, using the Friedman’s two-way analysis of variance by ranks. The P-values for 
univariate analysis between fully-annotated and skip-1, fully-annotated and skip 2, and skip-1 and skip-2 annotation 
style are 0.034, < 0.001, and 0.034. When using multivariate analysis, the same P-values are 0.102, < 0.001, and 0.102. This 
suggests that skipping slices can reduce the labor necessary for establishing the ground-truth for supervised or semi-
supervised training of AI models, and in multivariate analysis, the time different is statistically significant when higher 
number of slices are skipped.

DISCUSSION
Our results provide a direct comparison of annotation techniques for supervised training of AI models as second observer 
for detecting CRC. Supervised AI-model training by skipping-slices of CRC did not appreciably influence the outcome of 
segmentation. There were very subtle visual differences, but these were not detectable with the measures used. No 
significant segmentation difference could be detected when skipping up to 2 slices. For AI-initiated annotation, the model 
does not improve the time spent annotating large and small cancers, but does show some improvement for medium sized 
tumors. These methods allow for time-reduction in annotating the ground truth so supervised training of AI-models 
could be more efficient and allow greater participation by busy radiologists.
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Table 2 Sensitivity and false positives/case for ensemble technique

Single voter 2 voter 3 voter

Sensitivity 0.8 0.6 0.3

False positives/case 21.95 7.55 3.7

Table 3 Dice coefficient distribution for ensemble technique

Estimated dice coefficient
Percentage of cases

0 0-0.25 0.25-0.5 > 0.5

Single voter 20 5 60 15

2 voter 40 35 20 5

3 voter 70 15 10 5

Table 4 Amount of time needed to annotate the tumor

Annotation time based on technique (Min:Sec ± min)
Lesion size

Manual (n = 3 each) AI-single voter (n = 3 each) AI-2-voter (n = 3 each) Skip-1 (n = 3 each) Skip-2 (n = 3 each)

Large 22:09 ± 0.18 21:00 ± 0.23 20:29 ± 0.22 8:58 ± 1.22 5:34 ± 1.19

Medium 15:06 ± 0.4 10:37 ± 0.25 9:13 ± 0.15 4:58 ± 2.57 1:14 ± 1.38

Small 5:54 ± 0.07 6:26 ± 0.03 5:44 ± 0.02 2:23 ± 0.14 1:24 ± 0.28

AI: Artificial intelligence.

Figure 1 Artificial intelligence segmentation by models with skipped slice training. A-C: Artificial intelligence (AI) segmented lesion by model trained 
without skipping slices (A), with skipping 1 slice (B), and with skipping 2 slices (C). There is slight difference in the segmentation, but insufficient to modify the Dice 
coefficient. The cancer is in the descending colon, only a small portion of which was segmented by AI model. The slightly larger false positive lesion may be due to 
slightly different slice level.

Skip-slice annotation is similar to a sparse-annotation technique, which has been explored in the literature. This 
technique was tested in confocal images of Xenopus kidney segmentation[19]. Cicek et al[19] showed that the DSC 
equivalent (intersection of union) improved with increasing slices in each axis, starting with one slice in each direction. 
Increasing the annotated slices was equivalent to increasing the number of ground-truth pixels based on their study. The 
authors achieved their annotation goal using up to 9% of all the available pixels as ground truth for training. With this 
training, the network achieved segmentation with 85% overlap with the ground truth. Our data also support this finding 
that not all ground truth needs to be presented to an AI-algorithm to train the algorithm properly. The difference between 
Cicek et al[19] and our study is that they began with the minimal number of slices while we evaluated from the maximum 
number of slices. Increasing from the minimum showed that minimalist approach may underfit the algorithm, while 
maximal approach may over-fit the network. The minimum necessary amount of established ground truth pixel for 
optimal network training is yet to be identified so that the amount of human effort in establishing ground truth can be 
minimized while maintaining optimal AI model training.
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Figure 2 Examples of lesion agreement by 1- and 2-voter ensemble technique. A and B: 1- (A) and 2- (B) voter(s) model agreeing on the same tumor 
mass, although 2-voters mark less of the mass.

Figure 3 Example of lesion disagreement by 1- and 2-voter ensemble technique. A and B: 1- (A) voter model marks a false positive in the liver which 
is rejected by 2- (B) voter model.

The literature reports multiple techniques for minimizing false positives, particularly regarding pulmonary nodule 
reduction which can be categorized into ones that use single modes of information (imaging only) or multimodal 
technique (combines imaging with clinical information). Jin et al[26] constructed a false-positive reduction algorithm for 
pulmonary nodule detection. This is constructed as a separate algorithm that could serve as add on to a nodule detector. 
They combined several methods to avoid the traps that cause false-positives. First, they deployed a 3D residual CNN 
which minimizes the effect of diminishing gradient in the stochastic gradient descent algorithm during training, so as to 
avoid local minima that may trap the algorithm. They also combined spatial pooling and cropping which provides multi-
scale contextual information to improve the learning process. A similar technique uses multiscale contextual information 
where variable amount of the pulmonary nodule and surrounding normal lung is included for training[27,28]. The 
multiple levels of information are integrated and significantly lower the false positives[27,28]. Lastly, online hard sample 
selection training was chosen to maximize training of hard-to-discern examples so that the network can learn from its 
own failures. This technique replaces a portion of correctly detected training cases with ones that were previously missed 
so that the network can learn the features of the missed cases to improve its outcome[29].

The multimodal technique is a broad category of AI technique where different aspects of a patient’s clinical 
information are integrated to improve the classification and prediction algorithm. The additional information restricts the 
bias and variance of the model to improve the accuracy of the outcome[30]. For our algorithm, we employed the 
simulated multimodal technique with ensemble voting by integrating information from different instances of the AI 
model. This is similar to selecting 5 different models from the same model space to restrict bias and variance[30]. By 
generating 5 models from the base CNN technique, we chose a lesion to be cancer only if 2 or 3 of the 5 models agreed on 
a pixel being cancerous. This allowed us to dramatically decrease the number of false positives per case. This, however, 
also decreased sensitivity of the model. This trade-off is also seen with ensemble techniques trained with clinical data in 
predicting diabetic retinopathy[31]. Other studies have shown that the information contains different degree of relevance
[32,33]. In the study by Boehm et al[32], applying all available information regarding a patient (clinical, genetic, histo-
logical, and radiological) resulted in less accurate outcome than one that deployed a limited dataset (genetic, histological, 
and radiological). Likewise the study by Iseke et al[33] which used both clinical and imaging information to predict 
hepatocellular carcinoma recurrence after treatment did not achieve a better prediction than using imaging alone. 
Multimodal AI can provide better outcomes, but only with the appropriate dataset; overloading the AI system with lower 
relevance data may over-fit the system to a less than optimal parameter space.
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The findings that skip-slice annotation may reduce the time required for establishing the ground-truth for AI model 
training can significantly impact the development of AI models in imaging research. Annotating the ground truth 
requires trained personnel capable of identifying normal and abnormal structures on CT images, who are typically 
physicians or physicians in training. As we have shown in Table 4, full annotation of a case will require anywhere from 5-
20 min, which can be reduced significantly with skip-slice annotation. This will significantly reduce the time of the highly 
trained personnel, who are involved in busy clinical work. Minimizing the time spent in establishing the ground-truth 
should theoretically improve participation of these highly trained personnel in assisting AI research in medical imaging.

There are several limitations to the present study. The first is the small size of the training and testing dataset. These 
training and testing dataset is also unbalanced and unmatched in both stage of the disease and the scanning protocol. 
Table 1 showed that the training dataset consists of higher stage disease than the testing dataset which may limit 
detection of the earlier stage disease in the testing dataset. In addition, the training dataset also has lower proportion of 
the cases containing both IV and PO contrast and has thinner slice images. It is uncertain if the blur from the thicker slices 
may influence the decision of the model, but the trained model have been exposed to thicker slices with IV and PO 
contrast. It will be interesting to evaluate the dilutive effect on model performance when the model is trained with a 
broader range of protocols and stages of the disease. The current model with limited training dataset is not generalizable, 
but it does show the potential of the second observer with better trained model[34]. Another limitation of the study is the 
lack of full software for calculating the precision, F1 score, and DSC of the model outcome. The sensitivity provided in the 
present study is equivalent to the recall measure of the model.

CONCLUSION
In comparing the different techniques for reducing annotation time to establish the ground truth, we developed a U-NET 
model in detecting CRC. This pilot model has the potential to serve as a second observer with further research. In order to 
accelerate AI second observer training, we compared different techniques of annotation in minimizing this data 
preparation work. Our results showed that skip slice annotation may lead to the most time reduction as there was 
minimal effect on model outcome when slices are skipped, leading to proportional decrease in time needed to annotate. 
Although AI-initiated segmentation may lead to reduced annotation time, it tends to reduce time for medium sized lesion 
while large complex and small lesions do not benefit. At this time, skipping slices may result in the most time efficient 
method for annotating cancer on training images.

ARTICLE HIGHLIGHTS
Research background
Up to 40% of colorectal cancer (CRC) goes undetected on initial computed tomography (CT) scan performed in either the 
emergency department or outpatient imaging setting. This delay in diagnosis significantly impacts the overall survival of 
the patients. The ultimate goal is to develop an artificial intelligence (AI)-based second observer for clinical integration so 
as to improve the clinical diagnosis of CRC on CT studies.

Research motivation
The development of deep learning has shown that AI can potentially serve as a second observer to assist busy radiologist 
at a reasonable cost, as second reader has been shown in past research to improve imaging diagnosis. However, to 
develop an AI second observer, large number of training cases with annotated ground truth is required necessitating 
significant time commitment on the part of the research radiologists.

Research objectives
Our main objective in this research is to compare skip-slice annotation with AI-initiated annotation in time savings for 
annotating the ground truth for training dataset preparation. Saving annotation time will help improve the efficiency in 
dataset preparation. Our secondary objective was to evaluate whether ensemble technique could help improve false 
positive rate for AI-initiated annotation technique. Decreasing false positives per case will make the model more 
acceptable by clinical radiologist.

Research methods
The dataset was manually annotated for the entire tumor as well as skipping annotation by one or two slices was 
measured; 9 total cases were randomly selected to measure the time required to annotate these tumors. These datasets 
were used to train 2D U-Net model with 5 encoding and 5 decoding layers, using the Adam optimizer. The model 
accuracy consisting of sensitivity, Dice coefficient estimate, and false positive per case were used to evaluate the model 
accuracy. The rudimentary AI model was also used to annotate the ground truth; the times required to adjust the 
annotation for the 9 cases from manually annotation were also measured.

Research results
We found that the model trained on skip-slice annotation did not have significant difference in tumor segmentation as a 
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fully annotated dataset and which is statistically significant, thus showing that skip slice annotation can reduce the data 
preparation time. Although AI-initiated annotation also reduces time, the difference was not statistically significant. 
Ensemble technique is shown to reduce false positive per case, but at decreased sensitivity.

Research conclusions
This study proposes that skip-slice annotation can improve the efficiency in data preparation for AI model training. The 
significance is that it will reduce the time commitment of highly trained medical personnel in participating in AI medical 
imaging research.

Research perspectives
The future direction of the present research is that this should improve the efficiency in training dataset development 
given the decreased annotation time.
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