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Abstract
BACKGROUND 
Radiomics is a promising tool that may increase the value of magnetic resonance 
imaging (MRI) for different tasks related to the management of patients with 
hepatocellular carcinoma (HCC). However, its implementation in clinical practice 
is still far, with many issues related to the methodological quality of radiomic 
studies.

AIM 
To systematically review the current status of MRI radiomic studies concerning 
HCC using the Radiomics Quality Score (RQS).

METHODS 
A systematic literature search of PubMed, Google Scholar, and Web of Science 
databases was performed to identify original articles focusing on the use of MRI 
radiomics for HCC management published between 2017 and 2023. The methodo-
logical quality of radiomic studies was assessed using the RQS tool. Spearman’s 
correlation (ρ) analysis was performed to explore if RQS was correlated with 
journal metrics and characteristics of the studies. The level of statistical signi-
ficance was set at P < 0.05.

RESULTS 
One hundred and twenty-seven articles were included, of which 43 focused on 
HCC prognosis, 39 on prediction of pathological findings, 16 on prediction of the 
expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 
had multiple purposes. The mean RQS was 8 ± 6.22, and the corresponding 
percentage was 24.15% ± 15.25% (ranging from 0.0% to 58.33%). RQS was 
positively correlated with journal impact factor (IF; ρ = 0.36, P = 2.98 × 10-5), 5-
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years IF (ρ = 0.33, P = 1.56 × 10-4), number of patients included in the study (ρ = 0.51, P < 9.37 × 10-10) and number of 
radiomics features extracted in the study (ρ = 0.59, P < 4.59 × 10-13), and time of publication (ρ = -0.23, P <  0.0072).

CONCLUSION 
Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a 
noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to 
allow its introduction into clinical practice.

Key Words: Hepatocellular carcinoma; Systematic review; Magnetic resonance imaging; Radiomics; Radiomics quality score

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This systematic review aimed at evaluating the status of magnetic resonance imaging (MRI) radiomic studies 
related to hepatocellular carcinoma (HCC) using the Radiomics Quality Score (RQS) to assess methodological quality. A 
systematic literature search identified 127 articles covering various steps of HCC management. The mean RQS was 8 ± 6.22, 
with significant variation. RQS was significantly correlated with journal impact factor (IF), 5-year IF, the number of patients 
involved, the number of radiomic features extracted, and the publication year. Despite the potential of MRI radiomics in 
HCC, its clinical implementation is hindered by a lack of quality in studies in this field.

Citation: Brancato V, Cerrone M, Garbino N, Salvatore M, Cavaliere C. Current status of magnetic resonance imaging radiomics in 
hepatocellular carcinoma: A quantitative review with Radiomics Quality Score. World J Gastroenterol 2024; 30(4): 381-417
URL: https://www.wjgnet.com/1007-9327/full/v30/i4/381.htm
DOI: https://dx.doi.org/10.3748/wjg.v30.i4.381

INTRODUCTION
Medical imaging has progressed over the last few decades from a simple diagnostic tool for diseases to a massive supply 
of quantitative data free of the normal subjective interpretation that characterizes conventional clinical practice. The 
introduction of technological advances and the quest for precision medicine have given rise to a new potential branch of 
research known as "radiomics". Radiomics is a quantitative technique that turns digitized medical pictures into high-
dimensional mineable features that may be correlated with clinical endpoints such as pathological findings, treatment 
response, and survival. Radiomics can also be integrated with other quantitative data, such as genomics and pathomics 
data, to provide a comprehensive approach to disease[1-4]. As a quantitative analysis of digital images, radiomics has the 
potential to reveal specific disease characteristics that are otherwise inaccessible to the naked eye using conventional 
imaging modalities. This method may increase the quantity of clinically relevant data that may be extracted from medical 
images, offering the possibility of discovering innovative imaging biomarkers for the diagnosis, characterization, and 
prediction of outcomes in a wide range of diseases, including oncologic diseases[5]. In the field of oncology, the rationale 
behind radiomics is that biological tumor characteristics might be mirrored by quantifying medical image heterogeneity 
using extracted radiomic features, encompassing aspects of tumor progression, response to therapeutic interventions, and 
clinical outcomes. Quantitative imaging has garnered significant interest in the non-invasive detection of tumor hetero-
geneity, and recent radiomics studies across various oncological fields have shown a strong association between imaging 
heterogeneity and the characteristics of solid tumors[6].

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide and poses serious 
challenges for screening, early diagnosis and treatment firstly because most HCC is diagnosed at an advanced stage when 
curative treatment options are limited, and also because of its complex heterogeneity at multiple levels: heterogeneity 
between tumor nodules from the same patient (intertumor heterogeneity), within the same tumor nodule (intratumor 
heterogeneity) and between patients (interpatient heterogeneity)[7,8]. Furthermore, current clinical practice based on 
single bioptic or tumor tissue section fails to discover useful biomarkers, and many existing staging systems for HCC are 
based on postoperative pathological examinations, which cannot aid in preoperative decision-making[9]. In contrast to 
numerous other solid tumors, HCC can be diagnosed by using distinctive enhancement patterns on dynamic multiphasic 
CT or magnetic resonance imaging (MRI), without additional histopathologic confirmation[10,11]. Although imaging 
plays an important role in the screening, early identification, and management of HCC patients, the imaging evaluation 
of HCC is still based on subjective interpretation of qualitative imaging descriptors and tumor size estimate, both of 
which are prone to variability[10,12,13]. Of note, although CT is more generally available, faster, and needs less exper-
ience to administer and interpret pictures than MRI, its downsides include radiation exposure and low soft tissue 
contrast, which demands the use of iodinated contrast agents. The increased soft tissue contrast of MRI, on the other 
hand, enables for the examination of a range of tissue features that may be relevant in HCC therapy[14,15]. In this 
context, recent advantages in MRI radiomics can potentially address the urgent need for noninvasive, radiation-free 
strategies that can aid in the early detection of HCC and preoperative prediction of tumor behavior, as well as address the 
inherent variability of qualitative imaging descriptors and provide previously unavailable information to obtain a better 
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stratification of HCC patients for a more precise treatment decision making.
Over the last decade, there has been a significant increase in radiomics studies in the field of HCC. Many of these 

studies have demonstrated the effectiveness of radiomic features for differential diagnosis, grading, predicting 
microvascular invasion, overall survival, recurrence, and treatment response[16-19]. Nevertheless, radiomics is presently 
limited to academic literature in the context of HCC, as physicians question its utility due to the absence of a translation 
from research studies to clinical application. This is attributed, at least in part, to the overall deficiency of streamlined and 
productive methods for integrating imaging biomarkers into clinical practice[20-22]. Lambin et al[2] developed the 
Radiomics Quality Score (RQS) to provide a standardized evaluation of the radiomics performance, reproducibility, and 
clinical. The RQS metric system determines the validity and comprehensiveness of radiomics investigations. This tool is 
modality-independent tool and was designed to assess the methodological quality of radiomics studies. The methodology 
and analyses of a radiomics study are evaluated based on 16 criteria that reward or penalize, promoting the best scientific 
practice[2]. Recent research tried to examine the current state of the art in HCC radiomics, stressing the major concepts, 
clinical applications, and limitations[23-25]. However, it is clear from these research that the bulk of radiomic investig-
ations on HCC have been conducted on CT, with only a few looking into MRI. Furthermore, the quality of science and 
reporting in HCC MRI radiomics research investigations is mainly unknown.

Hence, the objective of this study was to provide a comprehensive overview of the existing state of MRI radiomic 
investigations related to HCC. Simultaneously, we aimed to evaluate the methodological quality of each study using the 
RQS to assess the radiomics analyses conducted in prior publications. The study’s goal is to promote the quality of MRI 
radiomics research studies in HCC as a diagnostic, prognostic, and/or predictive tool, to allow radiomics to become an 
appropriate medical decision-making tool by facilitating the combined analysis of clinical data and high-throughput 
imaging features, while taking advantage of the benefits arising from the MRI technique.

MATERIALS AND METHODS
Search strategy and selection criteria
A systematic search was conducted for all published studies exploring the role of MRI radiomics in the field of HCC. 
PubMed, Web of Science and Google Scholar electronic databases were comprehensively explored and used to build the 
search. Only studies published in the last six years were selected. The last search was performed on June 1, 2023. The 
search terms consisted in: (“radiomics” OR “texture” OR “histogram”) AND (“MRI” OR “Magnetic Resonance Imaging”) 
AND (“Hepatocellular Carcinoma” OR “HCC”). The literature search was limited to English language publications and 
studies of human subjects. Two reviewers, after having independently screened the identified titles and abstracts, 
assessed the full text of articles aiming at exploring MRI radiomics in the field of HCC and that were not review articles. 
For articles meeting these criteria with full text available, the following further selection criteria had to be fulfilled: 
Involvement of adult patients (age > 18 years); involvement of patients with HCC confirmed by pathology and/or 
surgery and/or overall analysis combined with medical history, clinical symptoms, and imaging data; presence of 
information about MRI protocol. Moreover, studies were excluded if they performed analyses on mixed patients (e.g., 
groups of patients with multiple hepatic malignant diseases) that did not allow conclusions to be drawn only about HCC 
patients; if they did not evaluate an outcome measure; if they were focused only on semantic imaging features 
(radiologist-dependent). After selecting the studies that met the inclusion and exclusion criteria, reference lists of these 
studies were also searched in order to recruit any potential eligible studies. In addition, pre-existing reviews/systematic 
reviews/meta-analyses were also searched in order to recruit any other potentially eligible studies from their reference 
lists.

Planning and conducting the review
After the above-mentioned selection procedure, selected articles were analysed by two reviewers, and data useful for 
conducting the systematic review were collected in a predesigned sheet. Extracted data will include the following: first 
author name, publication year, Journal name, scientometric indexes [impact factor (IF), 5-years IF, CiteScore, H-index, 
first author IF with and without self-citations], study design, in particular prospective/retrospective, clinical purpose, 
specific output measured in the study, number and type of patients, imaging modalities used for radiomic feature 
extraction, information on region of interest (ROI)/volume of interest (VOI) placement (segmentation technique and 
ROI/VOI type), software used for radiomic feature extraction, number and features type, feature selection methods (if 
used), classification methods, information on if models were applied to a separate dataset, highest accuracy/most 
important results and main findings.

This systematic review was conducted according to the PRISMA statement[26].

Quality assessment with RQS
The methodological quality of each radiomics study was assessed by two reviewers using the RQS tool[2]. The 
assessment was performed independently, and any disagreement was resolved by consensus. RQS tool is composed of 16 
items structured to assess various crucial steps in the workflow of radiomics analyses (see Supplementary Table 1). In 
particular, a maximum of 36 points can be assigned to each study: up to 2 points for the first RQS checkpoint (a single 
item, namely “Image protocol quality”), up to 3 points for the second RQS checkpoint (3 items, specifically on multiple 
segmentation strategies, the use of phantoms and multiple imaging time points) and up to 31 points for the third RQS 
checkpoint (12 items, encompassing feature extraction, exploratory analysis design as well as model building and 
validation). The total score ranges between −8 and 36 and can be translated into a final 0–100 RQS percentage, with −8 to 
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0 defined as 0%, indicating the lowest quality, and 36 as 100%, indicating the highest quality in terms of the methodology 
and reporting standards of the radiomics study[2].

Correlation analysis between RQS and journal metrics
Spearman’s correlation (ρ) analysis was performed to explore if there was a correlation between RQS and journal metrics, 
comprising IF of the journal at the year of publication, 5-year IF, CiteScore, and H-index at the year of publication. 
Additionally, Spearman’s correlation was used to explore the correlation between RQS and H-index of the first author at 
the year of publication of the study (both with and without self-citations), time of publication (calculated as time between 
the publication date and the date of last literature research, in months), as well as the association with the number of 
patients involved and the number of radiomic features extracted in the study. Finally, to explore if there was a difference 
in RQS according to clinical purpose of the study, a subgroup analysis using Kruskal-Wallis H test was performed. In 
case of significance, Wilcoxon rank-sum post hoc tests with Bonferroni correction were carried out on each pair of groups. 
The significance level was set at 0.05. All statistical analysis was performed using SPSS (version 27).

RESULTS
Study selection
A total of 537 articles were identified from scientific electronic scientific databases. Only 211 articles were retained after 
the removal of duplicates.

We reviewed the titles and abstracts of these records, excluding 59 due to non-compliance with inclusion criteria (29 
unrelated to the topic, 16 were reviews, 5 conducted analyses on mixed patients, and 9 did not assess an outcome 
measure). The full text of 149 articles was assessed, leading to the exclusion of 16 off-topic articles. Additionally, four 
studies were excluded for not evaluating an outcome measure, and two for analyzing mixed patients. Thirteen more 
articles were found through references in selected articles or existing reviews/systematic reviews/meta-analyses, and 
seven of these were incorporated into the review. A total of 127 data sets were included in the review. Figure 1 shows the 
PRISMA flow diagram of the included studies based on the inclusion and exclusion criteria.

Characteristics of included studies
The details regarding the characteristics of the 127 studies chosen for this review are presented in Table 1. Approximately 
half of these studies (51 out of 127) were published in the last two years, and only 9 studies deviated from a retrospective 
design. Most of the selected studies (43 out of 127) explored radiomic approaches for HCC prognosis after surgical, 
radiofrequency ablation and/or trans-arterial chemo embolization treatment. Forty studies investigated the ability of 
radiomics in predicting pathological findings [e.g., microvascular invasion (MVI), vessels encapsulating tumor clusters, 
histologic grade], of which 27 aimed at investigating the performance of radiomics analysis for MVI prediction. Sixteen 
studies aimed at exploring if MRI radiomics could infer the expression of molecular markers (e.g., CK19, Ki67, GPC3) 
outcomes. Among the remaining studies, 24/127 aimed to evaluate the power of radiomics for distinguishing HCC from 
other solid hepatic lesions, while 11 had multiple aims.

The number of total included patients was 18.949, with a sample size varying from 17 to 602 patients (median: 309.5). 
Most studies (96 out of 127) explored more than one phase/sequence to perform radiomic analysis. Most studies (106 out 
of 127) performed 3D segmentation. In 114 of them, segmentation was manually performed, while in the remaining 
studies was used a semiautomatic (12 studies) or automatic (2 study) segmentation approach. Concerning software used 
for feature extraction, PyRadiomics was the most popular (used in 42 out of 127 studies), followed by AK software (used 
in 23 out of 127 studies) and Matlab (used in 19 out of 127studies). The number of radiomics features extracted from each 
phase/sequence ranged from 3 to 3144 (mean: 68 ± 206). Shape features were extracted in 55 out of 127 studies, first-order 
features in all but three studies, textural features in 82/127 studies, and features from filtered images (e.g., wavelet, 
Laplacian of gaussian) in 34 out of 127 studies. Concerning feature selection algorithms, the Least Absolute Shrinkage and 
Selection Operator regression was the most widely used (used in 55 out of 127 studies). Other frequently used algorithms 
for feature selection were intra-class correlation coefficient (used in 25 studies), correlation (used in 12 studies) and 
minimum redundancy maximum relevancy (used in 9 studies). The performance metrics of the studies, when present, 
corresponded to accuracy in 9 out of 127 studies, area under the receiver operating characteristic curve (AUC) in 99 out of 
127 studies and to C-index in 12 out of 127 studies. Most studies involved machine learning techniques for radiomic 
analysis, of which 51 splitted the subjects into training and test cohort to test the prediction models performance. Further 
details on these characteristics can be found in Table 1 and Supplementary Table 2.

Quality assessment with RQS
Supplementary Table 3 provides the RQS details of all included studies. The average total RQS score was 8 ± 6.22, corres-
ponding to a percentage of 24.15% ± 15.25%, with a range from 0.0% to 58.33% (Figure 2). Concerning the first RQS 
checkpoint, nearly all studies, excluding ten, provided thorough documentation of the imaging protocol, yet none 
achieved the maximum points for utilizing a public protocol. In relation to the second RQS checkpoint (items 2 to 4), a 
majority of studies (84.25%, 107 out of 127) employed multiple segmentation, mainly by different radiologists, but none of 
the articles met the requirement for 'imaging at multiple time points' and only one article met the requirement for a 
'phantom study'.  With respect to the third RQS checkpoint (items 5 to 16), feature reduction techniques were applied in 
all but 15 studies (88.28%). Multivariable analysis with non-radiomics features was performed in 85 studies (66.92%) of 
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Table 1 Characteristics of included studies

Ref. ST CP Specific 
outcome NP (type)

Modalities 
used for 
feature 
extraction

Seg
Software used 
for feature 
extraction

Features number 
(type) FS CM

Model 
applied to 
a 
separate 
dataset?

Most important 
result Main findings

Liu et al
[42], 2023

R PPF MVI 104 (HCC) T2WI M, 3D AK SOFTWARE 851 (first order, 
shape, GLCM, 
GLSZM, GLRLM, 
NGTDM, and 
GLDM)

LASSO, LR LR Yes AUC = 0.867 in the 
TS, 0.820 in the VS

A prediction model 
using radiomic 
features from single 
T2WI can predict MVI 
in HCC

Wang et al
[43], 2023

R PR LRT 100 (HCC) AP, PVP, 
T2WI

M, 3D 3D SLICER 851 (first-order, 
shape, GLCM, 
GLDM, GLSZM, 
GLRLM, NGTDM 
and wavelet)

t-test/Mann 
Whitney, LASSO

ROC Yes AUC = 0.867 MRI-based radiomics 
analysis may serve as 
a promising and 
noninvasive tool to 
predict outcome of 
locoregional treatment 
in HCC patients

Gong  et al
[44], 2023

R MC PD-1/PD-L1 108 (HCC) T2WI FS, AP, 
PVP

M, 3D NS 352 (GLCM, 
GLRLM, intensity 
histogram, and 
shape)

ICC, t-test/ MANN 
WHYTNEY, LASSO

LR Yes AUC = 0.946 in the 
TS and 0.815 in the 
VS

A radiomics model 
based on 
multisequence MRI 
has the potential to 
predict the 
preoperative 
expression of PD-1 
and PD-L1 in HCC

Zhang et al
[45], 2023

R MC CK 19+/-HCC 311 (HCC) T1WI, T2WI, 
DWI, AP, 
VP, and DP

M, 3D uRP 2286 (first order, 
wavelet)

ICC, LASSO LR Yes in the TS (C-index, 
0.914), internal (C-
index, 0.855), and 
external VS (C-
index, 0.795)

The combined model 
based on clinic-
radiological radiomics 
features can be used 
for predicting CK19+ 
HCC preoperatively

Zhang et al
[46], 2023

R PPF MTM HCC 232 (HCC) DCE-MRI M, 3D Pyradiomics 1037 (first order, 
shape GLRLM, 
GLSZM, NGTDM, 
GLCM, GLDM LoG 
and wavelet)

ICC, GBDT LR, KNN, Naive-
Bayes, Decision 
Tree, SVM

Yes AUCs of 0.896 and 
0.805 in the TS e VS

The nomogram 
containing radiomics, 
age, alpha-fetoprotein, 
tumour size, and 
tumour-to-liver ADC 
ratio revealed 
excellent predictive 
ability in preoper-
atively identifying the 
MTM-HCC Subtype

The DLR model 
provides a 
noninvasive method 

Dong  et al
[47], 2024

R D, PR VETC 221 (HCC) DCE-MRI M, 3D Pyradiomics 1218 (FIRST 
ORDER)

ICC LR, decision tree, 
RF, SVM, KNN, 
and Bayes

Yes AUC = 0.844
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to discriminate VETC 
status and prognosis 
of HCC patients 
preoperatively

Tabari et al
[48], 2023

R PPF Pre-ablation 
tumor radiomics

97 (HCC) AP, DCE-
MRI

M, 3D NS 112 first-order, 
(GLCM, GLDM, 
GLRLM, GLSZM, 
NGTDM)

mRMR RF Yes AUC = 0.83 Pre-ablation MRI 
radiomics could act as 
a valuable imaging 
biomarker for the 
prediction of tumor 
pathologic response in 
patients with HCC

Cao et al
[49], 2023

R PR RFS 249 (HCC) T2WI FS, 
T1WI FS, 
DCE-MRI

M, 3D Pyradiomics NS (first-order, 
shape, and texture, 
wavelet, Laplacian)

LASSO Cox regression Yes C-index = 0.893 TS, 
0.851 (test set), 
0.797 (external)

The combined 
radiomic model 
provides superior 
ability to discern the 
possibility of 
recurrence-free 
survival in HCC over 
the total radiomic and 
the 
clinical–radiological 
models

İnce et al
[50], 2023

R PPF TARE 82 (HCC) DCE-MRI S, 3D Pyradiomics 1128 (first-order, 
GLCM, GLDM, 
GLRLM, GLSZM, 
and NGTDM)

ICC, PCA, SFS SVM, LR, RM, 
LightGBM

No AUC = 0.94 Machine 
learning–based 
clinicoradiomic 
models demonstrated 
potential to predict 
response to TARE

Chen et al
[51], 2023

R PR TACE 144 (HCC) T2WI, AP, 
PVP, DP

M, 3D Pyradiomics 110 (NS) mRMR, LASSO, 
DNN

SVM, LR Yes AUC = 0.974 DNN model performs 
better than other 
classifiers in 
predicting TACE 
response. Integrating 
with clinically 
significant factors, the 
CD model may be 
valuable in pre-
treatment counseling 
of HCC patients who 
may benefit the most 
from TACE 
intervention

The multiparametric 
MRI-based radiomics 
nomogram is a 
promising tool for the 
preoperative 
diagnosis of 
peritumoral MVI in 

Jiang et al
[52], 2023

R PPF MVI 102 (HCC) T1_in, T1_A, 
T2W, DWI

M, 3D Pyradiomics 1967 (first-order, 
shapes, textures, 
GLCM, GLSZM, 
GLDM, GLRLM, 
and filter-
transformed)

LASSO ULR Yes AUC = 0.901, 0.923 
for TS and VS
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HCCs

Hu et al
[53], 2023

R D, 
MC

CK19+ 110 (HCC) AP, VP, HBP M, 3D PyRadiomics 1130 (shape, first 
order, GLCOM, 
GLRLM, GLSZ, 
GLDM)

ICC RFE No AUC = 0.92 The established 
radiomics signature 
based on preoperative 
gadoxetic acid-
enhanced MRI could 
be an accurate and 
potential imaging 
biomarker for HCC 
CK19 (+) prediction

Chong et al
[54], 2023

R MC, 
PR

Glypican 3-
Positive HCC

259 (HCC) T2WI, DWI, 
PRE, AP, 
PVP, TP and 
HBP

M, 3D PyRadiomics 749 (first order 
statistics, shape and 
size) and textural 
property types 
(GLSZM, GLCM, 
GLDM, GLRLM, 
and NGTDM)

Test-retest 
procedure, ICC, 
LASSO, RF, SVM

LR, RF, SVM Yes AUC = 0.943 vs 
0.931 TS and VS 
respectively

Preoperative EOB-
MRI radiomics-based 
nomogram 
satisfactorily distin-
guished GPC3 status 
and outcomes of 
solitary HCC 5 cm

Hu et al
[55], 2023

R D, 
PPF

Functional liver 
reserve

403 (HCC) DCE MRI M, 3D Pyradiomics 851 (shape, first-
order GLCM, 
GLRLM, GLSZ, 
GLDM, NGTDM, 
wavelet)

ICC, Spearman’s 
correlation

LR, SVM No AUC = 0.71 A radiomics model 
based on gadoxetic 
acid-enhanced MRI 
was constructed in 
this study to 
discriminate HCC 
with different 
histopathologic grades

Tao Y et al
[56], 2023

R MC PD-L2 108 (HCC) T2WI, AP, 
PV

M, 3D R 1130 ICC, LASSO ROC No AUC = 0.871 Prediction based on 
the radiomic charac-
teristics of MRI could 
noninvasively predict 
the expression of PD-
L2 in HCC

Yang et al
[57], 2022

R PR ER 181 (HCC) T1WI, T2WI M, 3D LIFEx 34 (Histogram, 
Shape)

LASSO ROC Yes AUC = 0.79 The model for early 
recurrence of HCC 
after ablation based on 
the clinical, imaging, 
and radiomics 
features presented 
good predictive 
performance

Liu et al
[58], 2023

R PPF MVI 161 (HCC) AP, PVP, DP M, 3D 3D Slicer, 
Pyradiomics

321 (shape, first-
order histogram, 
GLCM, GLDM, 
GLRLM, GLSZM, 
NGTDM)

LASSO, ICC LR Yes AUC = 0.87 The nomogram model 
can effectively predict 
MVI in patients with 
HCC

Depending on the 
clinicoradiological 
factors and 

Zhang et al
[59], 2022

R PPF MVI 189 (HCC) HBP M, 3D IBEX 
SOFTWARE

1768 LASSO, ICC nomogram Yes AUC = 0.884
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radiological features, 
nomograms can 
effectively predict 
MVI status in HCC 
patients

Sim et al
[60], 2022

R PPF MVI 50 (HCC) T1 AP, 
T1PVP

M, 2D MaZda 290 (area, histogram, 
gradient, GLCM, 
GLRLM, autore-
gressive, and 
wavelet)

Mutual Information, 
recursive pruning

SVM No Accuracy = 0.878 Texture analysis of 
tumours on pre-
operative MRI can 
predict presence of 
MVI in HCC

Zhang et al
[61], 2022

R PR RFA, ER 90 (HCC) T1WI, T2WI, 
CE-MRI

M, 2D AK Software 1316 (first-order 
histogram, shape, 
texture, GLCM, 
GLRLM, GLSZM, 
NGTDM, GLDM, 
and local binary 
pattern, high-order, 
and wavelet)

ANOVA RF, LASSO Yes AUC of 0.822 in 
the TS and 0.812 in 
the VS

The multi-parametric 
MRI-based radiomics 
nomogram has a high 
predictive value for 
ER of small HCC after 
RFA

Zhao et al
[62], 2023

R PR HAIC 112 (HCC) T2WI M, 3D AK software 396 (histogram, form 
factor, texture, 
GLZSM, GLCM, 
GLRLM, and 
Haralick)

LASSO ROC Yes Accuracy = 0.81 The nomogram based 
on the combined 
model consisting of 
MRI radiomics and 
ALBI score could be 
used as a biomarker to 
predict the therapeutic 
response of 
unresectable HCC 
after HAIC

Lu et al
[63], 2022

R PPF MVI 165 (HCC) T2WI, DWI 
(b = 800 
s/mm2), 
T1WI, AP, 
PP, TP, and 
HBP

M, 3D Pyradiomics 1227 (shape, first-
order, texture, 
GLSZM, GLRLM, 
GLCM, NGTDM, 
and GLDM)

LASSO multivariate LR Yes AUC = 0.826 The combined model 
based on radiomics 
features of Gd-EOB-
DTPA enhanced MRI, 
tumour margin, and 
peritumoural hypoin-
tensity was valuable 
for predicting HCC 
MVI

Yang et al
[64], 2022

R PPF MVI 110 (HCC) DCE-MRI M, 3D A.K. Software 11 (Grey Histogram, 
GLCM)

NO ROC No AUC = 0.797 The combination of 
MR image features 
and texture analysis 
may improve the 
efficiency in 
prediction of MVI

The addition of 
radiomics-based 
texture analysis 
improved HCC 
grading over that of 

Ameli et al
[65], 2022

R D Degree of tumor 
differentiation

129 (HCC) ADC, VE 
MAPS

S, 3D MATLAB R2017B 95 (global, 
histogram, GLCM, 
GLRLM, GLSZM, 
NGTDM)

multi-class classi-
fication algorithm

RF Yes AUC = 0.832
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ADC or venous 
enhancement values 
alone

Li et al[66], 
2022

R PR ER 302 (HCC) T2WI, DWI 
(800 s/mm2), 
AP, and PVP

M, 3D Pyradiomics 853 (shape, first 
order, texture, and 
wavelet)

SPSS, LASSO, ICC ROC Yes AUCs of 0.91 and 
0.87 in the TS and 
VS

The proposed 
predictive model 
incorporating clinico-
radiological factors 
and the fusion 
radiomics signature 
derived from 
multiparametric MR 
images may be an 
effective tool for the 
individualized 
prediction of 
postoperative ER in 
patients with HCC

Zeng et al
[67], 2022

R PPF BETA-
CATENIN 
MUTATION

98 (HCC) AP, PVP, DP, 
HBP

M, 3D Pyradiomics 1674 (first order, 
GLCOM, GLSZM, 
GLRLM, GLDM)

T-test, fisher's exact 
test

LSVC Yes AUC = 0.86 The RHBP radiomics 
model may be used as 
an effective model 
indicative of HCCs 
with b-catenin 
mutation preoper-
atively

Aujay et al
[68], 2022

R PR TARE 22 (HCC) AP, PVP M, 3D Pyradiomics 107 (Shape, first- 
and second- order)

Mann-Whitney U 
test

LR No AUC = 0.92 Radiomics could aid 
in the prediction of 
early treatment 
response following 
TARE in patients with 
HCC

Chen et al
[69], 2022

R PPF MVI 415 (HCC) T1WI, T2WI, 
DWI, AP, 
PVP, HBP

M, 3D R 1409 (First order, 
shape, two order 
texture, Laplacian, 
wavelet, 
logarithmic, and 
exponential filters)

LASSO SVM, XGBoost, RF, 
LR

Yes AUC = 0.979 Machine learning with 
an LR classifier 
yielded the best 
radiomics score for 
HBP and DWI. The 
radiomics nomogram 
developed as a 
noninvasive 
preoperative 
prediction method 
showed favorable 
predictive accuracy 
for evaluating MVI in 
sHCC

MRI radiomics models 
may be useful for 
discriminating 
DPHCC from non-
DPHCC before 

Wu et al
[70], 2023

R D DP-HCC 179 (DPHCC, 
non DPHCC)

DCE-MRI M, 3D PyRadiomics 1781 (first-order 
statistics, shape, and 
texture)

PCC, RFE SVM, LR, LR-
LASSO

Yes AUC = 0.908
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surgery

Li et al[71], 
2022

R PPF MVI 113 (HCC) T2WI, T1WI, 
DCE MRI

M, 2D MaZda 101 (histogram, 
GLCOM, GLRLM)

t-test, Mann-
whitney U test

ROC No AUC = 0.939 Noninvasive MRI 
radiomic model based 
on MDF values and 
imaging biomarkers 
may be useful to make 
preoperative 
prediction of MVI in 
patients with primary 
HCC

Wang et al
[72], 2022

R PR ER 190 (HCC) T2WI, T2WI 
FS, DCE MRI

M, 3D PyRadiomics 1316 (first-order 
histogram, texture, 
shape, GLZSM, 
GLRLM, GLCM, 
GLDM, and 
NGTDM, wavelet, 
local binary pattern, 
and Laplacian of 
Gaussian)

ICC, LASSO LASSO, ICC, LR Yes AUC = 0.90 The predictive model 
incorporated the 
clinical–radiological 
risk factors and 
radiomics features 
that could adequately 
predict the individu-
alized ER risk in 
patients with solitary 
HCC ≤ 5 cm

Zhang et al
[73], 2023

P PPF MVI 602 (HCC) T1WI, T2WI, 
AP, VP, HBP 
and ADC

M, 3D Radcloud 
platform

1409 (First order, 
second order, shape, 
texture)

LASSO LR, RF, SVM Yes AUC = 0.824 E 
0.821 in the TS and 
VS

The combination of 
clinicoradiological 
factors and fusion 
radiomics signature of 
AP and VP images 
based on Gd-EOB-
DTPA-enhanced MRI 
can effectively predict 
MVI

Brancato et 
al[74], 2022

R PPF IABR 38 (HCC) T2WI, DCE-
MRI

M, 3D Pyradiomics 386 (shape, first-
order, and texture)

correlation filter, 
Wilcoxon-rank sum 
test, MI

LR No AUC = 0.96 Radiomics MRI based 
on T2 and DCE-MRI 
revealed promising 
results concerning 
both HCC detection 
and grading

Fan et al
[75], 2022

R PR VEGF 202 (HCC) AP, PV, 
HBP, BP, DP

M, 3D PyRadiomics 1906 (first order, 
shape)

ICC, ANOVA LR Yes AUC = 0.892 in the 
TS, 0.800 in the VS

The combined model 
acquired from Gd-
EOB-DTPA enhanced 
MRI could be 
considered as a 
credible prognostic 
marker for the level of 
VEGF in HCC

The fusion model of 
multi-region 
radiomics achieves an 
enhanced prediction 
of the individualized 

Gao et al
[76], 2022

R PPF MVI 115 (HCC) T2WI, T1WI, 
AP, PVP, DP, 
and HBP

M, 3D Pyradiomics 107 (shape, first-
order, and textural)

LR, SVC, RFC, and 
AdaBoost

LR Yes AUCs of 0.866 in 
the TS and 0.855 in 
the VS
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risk estimation of MVI 
in HCC patients

Hu et al
[77], 2022

R PPF MVI 501 (HCC) T1WI, AP, 
PVP, HBP

M, 3D Pyradiomics 2600 (first order, 
shape, GLCM, 
GLRLM, GLSZM, 
GLDM and 
NGTDM)

LASSO ROC Yes AUC = 0.962 The radiomics 
signatures of the dual 
regions for tumor and 
peritumor on AP and 
PVP images are of 
significance to predict 
MVI

He et al
[78], 2022

R PR DFS, OS 103 (HCC) DCE MRI M, 2D AK software 1217 (First order, 
Morphological, 
GLCM, GLRLM, 
GLSZM, GLDM, 
LOG)

ICC, Lasso, cox 
regression

LASSO Yes AUC = 0.884 Multimodal radiomics 
models can serve as 
effective visual tools 
for predicting 
prognosis in patients 
with liver cancer

Ren et al
[79], 2023

R PR HCC grade 270 (HCC) T2WI M, 3D Pyradiomics 1197 (first-order and 
shape, GLCM, 
GLRLM, GLRM, and 
spatial gray scale 
corre-lation matrix)

MIC, Spearman’s 
correlation, LR

LR Yes AUC = 0.864 The clinical–radiomics 
model integrating 
radiomics features 
and clinical factors can 
improve recurrence 
predictions beyond 
predictions made 
using clinical factors 
or radiomics features 
alone

Luo et al
[80], 2022

R PR TACE 61 (HCC) T1WI, T1WI 
AP, T1WI 
PP, T2WI, 
DWI (b = 
800), ADC

M, 3D Pyradiomics 1782 (shape, GLCM, 
GLRLM, GLSZM, 
NGTDM)

RF, single cox 
regression

ROC No AUC = 0.71 Radiomic signatures 
derived from 
pretreatment MRIs 
could predict response 
to combined 
Lenvatinib and TACE 
therapy. Furthermore, 
it can increase the 
accuracy of a 
combined model for 
predicting disease 
progression

Wang et al
[81], 2022

R PPF MVI 113 (HCC) AP M, 3D MATLAB 12 (first order) NO Mann-Whitney U 
test, LR

No AUC = 0.741 Peritumoral AP 
enhanced degree on 
MRI showed an 
encouraging 
predictive 
performance for 
preoperative 
prediction of MVI

Prediction models 
consisting of clinical 
parameters and Gd-

Mao et al
[82], 2022

R PPF HCC GRADE 122 (HCC) T2WI (AP, 
HBP phases)

M, 3D Image Analyzer 121 (histogram, 
shape, texture, 
GLRLM and GLCM)

ICC ANN, LR Yes AUC = 0.889
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EOB-DTPA-enhanced 
MRI radiomic features 
could distinguish 
between high-grade 
HCCs and low-grade 
HCCs

Anderson 
et al[83], 
2023

P PR IVIM 17 (HCC) DWI-MRI M, 2D Matlab 3 (10th, 50th, and 90th 
percentiles)

NO Wilcoxon signed-
rank test

No NS DW-MRI with IVIM 
and histogram 
analysis revealed 
significant reductions 
of D* early after 
treatment as well as 
an association 
between D at baseline 
and smaller tumor 
growth at three 
months

Li et al[84], 
2022

R PPF SEV, MVI 43 (HCC) DWI, DCE-
MRI

M, 2D Matlab, SPSS, 
Medcalc

8 (Histogram) NO ROC No AUC = 0.863 Histogram parameters 
DDC and ADC, but 
not the α value, are 
useful predictors of 
MVI. The fifth 
percentile of DDC was 
the most useful value 
to predict MVI of 
HCC

Li et al[85], 
2022

R PPF MVI 301 (HCC) T1WI, T2WI M, 3D MITK 
SOFTWARE

328 (first-order, 
GLCM, GLRLM, 
form factor)

LASSO, ANOVA, 
MANN-WHITNEY 
TEST

LASSO Yes AUC = 0.914 The preoperative 
MRI-based radiomic-
clinical model 
predicted the MVI of 
HCC effectively and 
was more efficient 
compared with the 
radiomic model or 
clinical model alone

Wang et al
[86], 2022

R D DD (cCC-HCC, 
HCC, CC)

196 (33 cHCC-
CC, 88 HCC 
and 75 CC)

DCE (ART, 
PVP, DP)

M; 3D Pyradiomics 1316 (shape, first-
order, texture -
GLCM, GLSZM, 
GLRLM, GLDM, 
NGTDM- from 
original, LoG and 
wavelet filtered 
images)

MI, F-test, Chi2-test, 
LASSO

SVM No AUC = 0.91 The classification 
ability of cHCC-CC, 
HCC and CC can be 
further improved by 
extracting MRI high- 
order features and 
using a two-level 
feature selection 
method

851 (shape, first-
order, texture-
GLCM, GLSZM, 
GLRLM, GLDM, 
NGTDM-, wavelet-

Radiomics: AUC = 
0.896 (TS), 0.788 
(VS); Radiomics + 
clinical: AUC = 
0.932 (TS), 0.917 

The preoperative 
nomogram integrating 
clinicoradiological risk 
factors and the MR 
radiomics signature 

Yang et al
[87], 2021

R PPF MVI 201 (HCC) DCE (Pre-
T1WI, AP, 
PVP, DP and 
HBP)

S; 3D AK software mRMR, LASSO ROC; LR Yes
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transformed) (VS) showed favourable 
predictive efficiency 
for predicting MVI

Lv et al[88], 
2021

R PR AIR of RFA-
treated HCC

58 (HCC) DCE S; 3D AK software 396 (histogram, 
GLCM, GRLM, 
GLSZM, formfactor)

LASSO LASSO, ROC Yes AUC = 0.941 and 
0.818 in the TS and 
VS

The predictive 
nomogram integrated 
with clinical factors 
and CE-T1WI -based 
radiomics signature 
could accurately 
predict the occurrence 
of AIR after RFA

Yu et al
[89], 2022

R PPF, 
PR

VECT, PFS in 
VETC + and 
VETC-patients

182 (HCC) HBP M; 3D Pyradiomics 1316 (shape, first-
order, texture-
GLCM, GLRLM, 
GLSZM, GLDM, 
NGTDM-)

LASSO Multivariate LR; 
forest, SVM; DT

Yes AUC = 0.972 
(peritumoral 
radiomics model), 
AUC = 0.91 (intrat-
umoral model)

The intratumoral or 
peritumoral radiomics 
model may be useful 
in predicting VETC 
and patient prognosis 
preoperatively. The 
peritumoral radiomics 
model may yield an 
incremental value 
over intratumoral 
model

Fang et al
[90], 2021

R PR PFS of TACE + 
RFA treated 
HCC

113 (HCC) DCE (HAP, 
PVP, SPP, 
and DP)

S; 3D AK software 396 (histogram, 
GLCM, GLSZM 
GRLM)

LASSO Cox regression; 
ROC

Yes C-index radiomics: 
0.646 and 0.669 in 
TS and VS; C-index 
combined model: 
0.772 and 0.821 in 
TS and VS

A nomogram 
combining radiomics 
and clinical factors 
predicted the PFS of 
intermediate and 
advanced HCC 
treated with TACE 
plus RFA

Yang et al
[91], 2021

R MC CK19+ HCC 257 (HCC) T2WI; DWI M; 3D MATLAB 968 (shape, first-
order, texture-
GLCM, GLRLM, 
GLSZM, NGTDM-, 
wavelet)

Univariate analysis, 
mRMR

Multiple LR; SVM; 
RF; ANN

Yes ANN-model: 
AUROCs = 0.857, 
0.726, and 0.790 in 
the TS and VS A 
and B

The combined model 
based on mpMRI-
radiomics accurately 
classify CK19+ HCC

Chen et al
[92], 2021

R MC CK19+ HCC 141 (HCC) HBP S; 3D Python (U-Net) 1024 (Deep 
semantic)

grid search GBDT Yes AUC = 0.820 and 
0.781 in TS and VS

DCE-MRI-based 
radiomics DLR model 
can preoperatively 
predict CK19-positive 
HCCs

Horvat et al
[93], 2021

R PR Sustained 
complete 
response in RFA-
treated HCC

34 (HCC) DCE (AP and 
EP)

M; 3D Pyradiomics 107 (shape, first-
order, texture-
GLDM, NGTDM, 
GLSZM, GLCM-)

NO ROC No AUC > 0.7 Second-order features 
extracted from 
equilibrium phase 
obtained highest 
discriminatory 
performance

Alksas et al DD (types and 95 (38 benign DCE (Pre- 249 (morphological, Wrapper approach, RF; SVM; NB, The identified R D M; 3D NS No Accuracy = 0.88
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[94], 2021 grades of liver 
tumors)

tumors, 19 
intermediate 
tumors, 38 
HCC)

T1WI, LAP, 
PVP, and 
DP)

functional, first-
order, texture-
GLCM, GLRLM-)

and Gini impurity-
based selection

KNN; LDA imaging markers and 
CAD system can early 
and accurately detect 
and grade liver cancer

Chong et al
[95], 2021

R PR 2 yr RFS after 
hepatectomy

23 (HCC) DCE (AP, 
PVP, TP, 
HBP)

M; 3D Pyradiomics 2950 (shape, first-
order, texture-
GLCM, GLRLM, 
GLSZM, GLDM, 
NGTDM- from 
original and filtered 
images -Wavelets, 
Gaussian, Laplacian 
Sharpening-)

Inter-correlation, 
LASSO

LR, RF, SVM Yes AUC = 0.93 and 
0.84 in TS and VS

DCE-MRI-based 
peritumoral dilation 
radiomics is a 
potential preoperative 
biomarker for early 
recurrence of HCC 
patients without MVI

Ding et al
[96], 2021

R D DD (HCC vs 
FNH)

224 (149 HCC, 
75 FNH)

AP and PVP M; 3D Pyradiomics 2260 (shape, first-
order, texture -
GLDM, GLCM, 
GLRLM, GLSZM, 
NGTDM-, from 
original LoG and 
wavelet filtered 
images)

mRMR, RF, 
correlation, LASSO

LR Yes AUC combined 
model = 0.984 and 
0.972 in TS and VS

The combined model 
can differentiate HCC 
from FNH in non-
cirrhotic liver with 
higher accuracy than 
the clinical model

Fan et al
[97], 2021

R MC Ki67+ HCC 51 (HCC) DCE (AP, 
PVP, HPB); 
T2WI

M; 3D Pyradiomics 1300 (shape, first-
order, texture -
GLCM, GLSZM, 
GLRLM, GLDM, 
NGTDM- from 
original, LoG and 
wavelet filtered 
images)

LASSO LR Yes Combined model: 
AUC = 0.922 (TS) 
and 0.863 (VS)

Combined AP-Rad-
score-serum AFP 
model can preoper-
atively predict Ki-67 
expression in HCC 
and outperforms AP-
based radiomics 
model

Gao et al
[98], 2021

R PPF MVI 225 (HCC) T2WI M; 3D Matlab, SE-
DenseNet

180 low level 
(intensity, shape, 
GLCM, GLRLM) + 
high-level semantic 
with CNN

LASSO LR, KNN, RF, 
SVM, CNNs

Yes AUC = 0.826 The proposed 
ensemble learning 
algorithm is proved to 
be an effective method 
for MVI prediction

Li et al[99], 
2022

R MC GOLM1, SETD7, 
and RND1 
expression levels

92 (HCC) T2WI M; 2D MATLAB 307 (first-order 
statistics, GLCM, 
GLRLM, GLSZM, 
NGTDM), with five, 
LBP, fractal analysis, 
shape metrics, FOS, 
variance, power)

Correlation, 
RELIEFF

SVM Yes r = 0.67 MRI radiomics 
features could help 
quantify GOLM1, 
SETD7, and RND1 
expression levels and 
predict the recurrence 
risk for early-stage 
HCC patients

Radiomics analysis of 
Gd-EOB-DTPA 
enhanced hepatic MRI 
can be used for 
assessment of 
functional liver 

Shi et al
[100], 2022

R PR Functional liver 
reserve

60 (HCC) HBP M; 3D QTIELAB 165 (shape, 
histogram, texture-
GLCM, GLRLM, 
GLZSM-)

Boruta algorithm RF No AUC = 0.90, 0.95, 
0.99 for ICG R15 < 
10%, < 15%, and < 
20%
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reserve in HCC 
patients

Dai et al
[101], 2021

R PPF MVI 69 (HCC) DCE (Pre-
T1WI, AP, 
PVP or HBP)

M; 3D Matlab 106 (texture -GLCM, 
GLRLM, GLSZM, 
SGLDM, NGTDM, 
and NGLDS-)

LASSO, SVM-RFE, 
mRMR, LASSO-RFE

GBDT; SVM; LR; 
RF

No AUC = 0.792 for 
HBP model

The radiomics model 
based on the HBP had 
better predictive 
performance than 
those based on the AP, 
PVP, and pre-
enhanced T1W

Fan et al
[102], 2021

R PPF VECT+ HCC 81 (HCC) DCE (AP and 
HBP)

M; 3D Pyradiomics 1316 (first-order, 
texture -GLCM, 
GLSZM, GLRLM, 
GLDM, NGTDM- 
from original, 
wavelet and LoG 
filtered images)

ICC, LASSO ROC; LR No AUC = 0.84 Texture analysis based 
on Gd-EOB-DTPA-
enhanced MRI can 
help identify VETC-
positive HCC

Yang et al
[103], 2021

R PPF Poorly differen-
tiated HCC

188 (HCC) T1WI, T2WI, 
DCE (AP, PP 
and DP)

M; 3D LIFEx 200 (shape, 
histogram, texture -
GLCM, NGLDM, 
GLRLM, GLZLM-)

LASSO LASSO Yes Model1: AUC = 
0.623 and 0.576 in 
TS and VS, while it 
is 0.576 in the 
validation cohort. 
Model2: AUC = 
0.721, and 0.681 in 
TS and VS

The MRI-based 
radiomics signature 
and clinical model can 
distinguish HCC 
patients that belong in 
a low differentiation 
group fromother 
patients

Chen et al
[104], 2021

R PPF MVI 269 (HCC) T2WI; DWI, 
DCE (AP, 
PVP, and 
HBP)

M; 3D Pyradiomics 1395 (first-order, 
GLRLM, GLCM 
from original, 
Laplacian, 
logarithmic, 
exponential, and 
wavelet filtered 
images)

Variance threshold, 
LASSO

KNN SVM, 
XGBoost, RF, LR, 
DT

Yes For HBP model: 
AUC = 0.942 
(SVM), 0.938 
(XGBoost), and 
0.936 (LR)

Radiomics signatures 
with machine learning 
can further improve 
the ability to predict 
MVI and are best 
modeled during HBP

Kong et al
[16], 2021

R PR Response to 
TACE

99 (HCC) T2WI M; 3D AK software 396 (histogram, 
texture-GLSZM, 
GLCM, GLRLM-)

LASSO, correlation ROC Yes AUC = 0.861 and 
0.884 in TS and VS

The radiomics and 
clinical-based 
nomogram can well 
predict TR in 
intermediate-
advanced HCC

Elevated serum AFP 
levels and lower 75th 
percentile ADC values 
were helpful in differ-
entiating GPC3-
positive and GPC3-
negative HCCs. The 
combined nomogram 
achieved satisfactory 
preoperative risk 

Zhao et al
[105], 2021

R MC GPC3 143 (HCC) DCE-MRI, 
DWI

M; 3D MedCalc, R 6 (Histogram) NO Mann-Whitney U 
test

No C-INDEX = 0.804
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prediction of GPC3 
expression in HCC 
patients

Song et al
[106], 2021

R PPF MVI 601 (HCC) T2WI FS; 
DWI; ADC; 
DCE (AP, 
PVP, and 
DP)

M; 3D PyRadiomics 110 (shape, first-
order, texture)

PCA, ANOVA SVM, AE, LDA, 
RF, LR, LASSO, 
AdaBoost, DT, 
Gaussian process, 
NB, DL

Yes DLC model: AUC 
= 0.931 for MVI 
prediction; AUC = 
0.793 for MVI-
grade stratification

DLC model predicts 
and grades MVI better 
than DL model

Zhong et al
[107], 2021

R D DD (small HCC 
3 cm vs benign 
nodules)

150 (112 HCC, 
44 benign 
nodules)

in phase 
sequence; 
T2WI FS; 
ADC

M; 2D MaZda 837 (histogram, 
GLCM, RLM, 
wavelet, absolute 
gradient, autore-
gressive model)

ICC, Mann-
Whitney, LASSO

LR; ROC No AUC = 0.917 MRI-based radiomics 
analysis showed 
additive value to the 
LI-RADS v 2018 
algorithm for differen-
tiating small HCCs 
from benign nodules 
in the cirrhotic liver

Zhao et al
[105], 2021

R MC GPC3 expression 143 (HCC) ADC M;3D MR Multipara-
metric Analysis 
software

6 (histogram) Univariate analysis (
t-test, Mann-
Whitney, Pearson, χ
2, Fisher)

LR No C-index = 0.804 The combined 
nomogram achieved 
satisfactory 
preoperative risk pre-
diction of GPC3 
expression in HCC 
patients

Chen et al
[108], 2021

R PR Post 
hepatectomy 
liver failure

144 (HCC) HBP M; 2D AK software 1,044 (shape, first-
order, texture-
GLSZM, GLCM, 
GLRLM-)

Correlation, RFE LR; ROC; liver 
failure model

Yes AUC = 0.956 and 
0.844 in TS and VS

The LF model is able 
to predict PHLF in 
HCC patients

Liang et al
[109], 2021

R PPF MVD 30 (HCC) DCE M; 2D AK software 376 (histogram, 
texture-GLSZM, 
GLCM, GLRLM-)

Mann-Whitney LR No AUC = 0.83 and 
0.94

DITET model 
provides a better 
indication of the 
microcirculation of 
HCC than SITET

Zhang et al
[110], 2021

R PR RFS of HCC 
patients treated 
with surgical 
resection

153 (HCC) T2WI FS; 
DCE (AP, 
PVP, and 
HBP)

M; 3D Pyradiomics 107 (shape, first-
order, texture -
GLCM, GLSZM, 
GLRLM, GLDM, 
NGTDM-)

LASSO LASSO Cox 
regression

Yes C-index 0.725 The prediction model 
combining MRI 
radiomics signatures 
with clinical factors 
predicts the prognosis 
of surgically resected 
HCC patients

Zhang et al
[111], 2021

R PR RFS after 
curative ablation

132 (HCC) T2WI FS; 
T1WI FS; 
DCE (AP, 
PVP, and 
HBP)

M; 3D Pyradiomics 1316 (shape, first-
order, texture -
GLCM, GLSZM, 
GLRLM, GLDM, 
NGTDM-, LoG, 
wavelet)

RandomForestSRC Cox regression; 
random survival 
forest; ROC

Yes C-index = 0.706 The radiomics model 
combining DCE-MRI 
with clinical character-
istics could predict 
HCC recurrence after 
curative ablation

Zhang et al T2WI FS; 396 (histogram, ANOVA, Mann- AUC = 0.901 and The combined R PPF MVI 195 (HCC) M; 3D AK software Multivariate LR Yes
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[112], 2021 DWI; ADC; 
DCE (AP, 
PP, DP)

GLCM, GLSZM, 
RLM, formfactor, 
haralick)

Whitney U-test, 
correlation, LASSO

0.840 in the TS and 
VS

radiomics-clinical 
model can preoper-
atively and 
noninvasively predict 
MVI in HCC

Zhao et al
[113], 2021

R PR Response to 
TACE

122 (HCC) DCE (AP, 
PVP, and 
DP)

M; 3D AK software 789 
(histogram,GLCM, 
GLRLM, GLZSM, 
Haralick,Gaussian 
transform)

ICC, Spearman's 
correlation, 
univariate LR, 
LASSO

LR; ROC Yes AUC = 0.838 and 
0.833 in TS and VS

The combined model 
(radiomics score + 
clinical-radiological 
risk factors) showed 
better performance 
than the clinical-
radiological model in 
predicting TACE 
efficacy in HCC 
patients

Kuang et al
[114], 2021

R PR Predict short-
term response 
after TACE in 
HCC

153 (HCC) T2WI; DCE 
(AP)

A; 3D AK software 396 (shape, 
histogram, GLSZM, 
GLCM, RLM)

mRMR, LASSO LR Yes AUC = 0.83 and 
0.81 in TS and VS

MRI-based nomogram 
has greater predictive 
efficacy to predict the 
response after TACE 
than radiomics and 
clinics models alone

Meng et al
[115], 2021

R PPF MVI 402 (HCC) T1WI, T2WI, 
DWI, CE-CT

M, 3D Pyradiomics 1288 ICC, MANN-
WHITNEY, LASSO

LR Yes AUC = 0.804 CT and MRI had a 
comparable predictive 
performance for MVI 
in solitary HCC. The 
RS of MRI only 
hadsignificant added 
value for predicting 
MVI in HCC of 2–5 cm

Zhu et al
[116], 2021

R D DD (MTM-HCC 
vs HCC)

88 (32 MTM-
HCCs, 56 Non-
MTM-HCC)

T2WI FS; in-
phase and 
out-of-phase 
sequences; 
DCE (AP, 
PVP, and 
DP)

M; 2D MaZda 101 (histogram, the 
absolute gradient, 
GLRLM, GLCM, 
autoregressive 
model and wavelet 
transform)

Fisher, MI, POE + 
ACC, LASSO

LR; ROC No AUC = 0.785 A DCE-MRI-based 
radiomics nomogram 
can predict MTM-
HCC

Liu et al
[117], 2021

R PR TACE, MWA 102 (HCC) T1WI, T2WI, 
PVP

M, 2D MaZda 20 (First order, 
GLCM)

NS ROC No AUC = 0.876 MR imaging texture 
features may be used 
to predict the 
prognosis of HCC 
treated with TACE 
combined with MWA

854 (shape, first-
order, texture -
GLCM, GLDM, 
GLRLM, NGTDM, 
GLSZLM- from 
original and wavelet 

Preoperative 
radiomics-based 
nomogram using 
random forest is a 
potential biomarker of 
MVI and RFS 

Chong et al
[118], 2021

R PR MVI, RFS after 
curative surgery 
(HCC≤ 5 cm)

356 (HCC) DWI, DCE 
(Pre-T1WI, 
AP, PVP, TP, 
HBP)

M; 3D Pyradiomics LASSO RF; LR Yes AUC = 0.920 with 
RF, 0.879 with LR 
in validation 
cohort
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filtered images) prediction for solitary 
HCC ≤ 5 cm

Gu et al
[119], 2020

R MC GPC3+ HCC 293 (HCC) DCE (DP) M; 3D Pyradiomics 853 (shape, 
histogram, texture -
GLCM, GLSZM, 
GLRLM, GLDM, 
NGTDM-, wavelet)

ICC, Mann-
Whitney, Fisher

LR; SVM Yes AUC = 0.926 and 
0.914 in TS and VS

The combined AFP + 
radiomics nomogram 
may provide an 
effective tool for 
noninvasive and 
individualized 
prediction of GPC3-
positive in HCC 
patients

Zhao et al
[120], 2021

R PR ER after partial 
hepatectomy

113 (HCC) T2WI; in-
phase and 
out-of-phase 
sequences; 
DWI; DCE 
(AP, PVP, 
and DP)

M; 3D AK software 1146 (shape, 
histogram, texture -
GLCM, GLRLM, 
GLSZM-)

Spearman's 
correlation, LASSO, 
stepwise LR

Multivariate LR Yes Radiomics: AUC = 
0.771 in the VS. 
Combined 
nomogram: AUC = 
0.873

A combined 
nomogram 
incorporating the 
mpMRI radiomics 
score and clinicopath-
ologic-radiologic 
characteristics can 
predict ER (≤ 2 yr) in 
HCC

Ai et al
[121], 2020

R D DD (HCC, HH, 
HC)

89 (33 HH, 22 
HC, 34 HCC)

IVIM M; 3D MITK-DI 13 (histogram) Kruskal-Wallis ROC No AUC = 0.883 A multiparametric 
histogram from IVIM 
is an effective means 
of identifying HH, 
HC, and HCC

Shaghaghi 
et al[122], 
2021

R PR Post-TACE OS 
and TFS

104 (HCC) ADC S; 3D NS 3 (mean, skewness, 
and kurtosis)

NO NO No Significant results 
for changes in 
ADC mean and 
Kurtosis

Changes in mean 
ADC and ADC 
kurtosis can be used 
to predict post-TACE 
OS and TFS in well-
circumscribed HCC

Li et al
[123], 2020

R D DD (HCC vs 
HMRC)

75 (41 HCC, 34 
HMRC)

DCE M; 2D OmniKinetic 67 (First order, 
histogram, GLCM, 
Haralick, RLM)

t-test, ROC FDA No AUC = 0.86 
(radiomics + 
pharmacokinetic) 
and 0.89 (DA based 
on radiomics)

A model based on 
DCEMRI radiomics 
and pharmacokinetic 
parameters was useful 
for differentiating 
HCC from HMRC

Geng et al
[124], 2021

R PPF, 
MC

MVI; GRADE; 
CK-7, CK-19, 
GPC3 expression 
status

53 (HCC) SWI M;3D PyRadiomics 107 (first-order, 
shape, GLCM, 
GLRLM, GLSZM, 
NGTDM)

ICC LR No AUC = 0.905 (CK-
19+), 0.837 (CK-
7+), 0.800 (high 
histopathologic 
grade) and 0.760 
(GPC-3+)

Extracting the 
radiomics features 
from SWI images was 
feasible to evaluate 
multiple histo-
pathologic indexes of 
HCC

384 (histogram, 
GLCM, GLSZM, 
RLM, formfactor, 

Parameters 
independently 
associated with OS 

Clinicopathological 
and radiomics 
features are 

Zhang et al
[125], 2020

R PR OS after surgical 
resection

136 (44 MCC, 59 
HCC, 33 
CHCC)

DCE (EP); 
DWI

M; 3D AK software mRMR method and 
the elastic network 
algorithm

Multivariable cox 
regression

No
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haralick) (P < 0.05) independently 
associated with the OS 
of patients with 
primary liver cancer

Zhang et al
[126], 2020

P PR OS after surgical 
resection

120 (HCC) T2WI FS; 
DCE (AP, 
PVP, TP, and 
HBP)

S; 2D AK software 350 (histogram, form 
factor, GLCM, 
GLRLM)

ICC, LASSO LASSO Cox 
regression

Yes C-index = 0.92 Radiomics + clinic-
radiological predictors 
can efficiently aid in 
preoperative HCC 
prognosis prediction 
after surgical resection 
with respect to clinic-
radiological model

Hectors et 
al[127], 
2020

P PR 6- and 12- week 
response to 90 yr

24 (HCC) DCE-MRI, 
IVIM-DWI

M; 3D Matlab 40 DCE MRI 
histogram 
parameters and 20 
IVIM DWI histo-
gram parameters

Stepwise feature 
selection

LR No AUC = 0.92 Diffusion and 
perfusion MRI can be 
combied to evaluate 
the response of HCC 
to radioembolization

Shi et al
[128], 2020

P PPF, 
MC

HCC GRADE, 
KI67+ HCC, 
CAPSULE 
FORMATION+

52 (HCC) IVIM M; 3D ImageJ, Mazda 15 (histogram) t-test LR No AUC = 0.92 
(grading), 0.86 
(Ki67+) and 0.84 
(capsule 
formation)

Multiple prognostic 
factors can be 
accurately predicted 
with assistance of 
histogram metrics 
sourced from a single 
IVIM scan

Feng et al
[129], 2020

R D, 
MC

DD 104 (HCC) Gd-EOB-
DTPA-
enhanced 
MRI and 
T2WI

M, 3D Mazda 262 (Histogram, 
GLCOM, GLRLM, 
WAVELET 
TRANSFORM)

PCA, LDA, NDA, 
RDA

ROC No AUC = 0.879 Texture analysis of 
Gd-EOB-DTPA-
enhanced MRI and 
T2WI was valuable 
and might be a 
promising method in 
identifying the HCC 
grade

Nebbia et al
[130], 2020

R PPF MVI 99 (HCC) T2WI; DCE 
(AP and PP); 
DWI

M; 3D Pyradiomics 100 (shape, first-
order, texture -
GLCM, GLDM, 
GLSZM-)

LASSO SVM; DT; KNN, 
NB

No AUC = 0.867 Information from 
mpMRI sequences is 
complementary in 
identifying MVI

Schobert et 
al[131], 
2020

R PR Response to 
DEB-TACE, PFS

46 (HCC) DCE (HAP, 
PVP, and 
DP)

M; 3D Pyradiomics 14 (shape, first-
order)

Univariate analysis, 
stepwise forward 
selection

LinearRegression; 
Cox regression; 
Kaplan–Meier 
analysis

No High NLR and 
PLR correlated 
with non-spherical 
tumor growth (P = 
0.001 and P < 
0.001)

This study establishes 
the prognostic value 
of quantitative inflam-
matory biomarkers 
associated with 
aggressive 
nonspherical tumor 
growth and predictive 
of poorer tumor 
response and shorter 
PFS after DEB-TACE
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Sun et al
[132], 2020

R PR Early 
progression of 
unresectable 
HCC after TACE

84 (HCC) T2WI; DWI; 
ADC

M; 3D Pyradiomics 1597 (first-order, 
shape, texture -
GLCM, GLRLM, 
GLSZM, NGTDM, 
GLDM-)

Variance threshold, 
Pearson's 
correlation, LASSO

LR Yes AUC = 0.800 mpMRI-based 
radiomic model 
predicts the outcome 
of TACE therapy for 
unresectable HCC 
outperforms 
monomodality 
radiomic models

Wilson et al
[133], 2020

R PPF, 
PR

MVI, OS, DFS 
after surgery

38 (HCC) T2WI; in-
phase and 
out-of-phase 
sequences; 
DCE (HAP, 
and PVP)

M; 2D TexRAD 7 (histogram) NO LR No AUC = 0.83 Tumor entropy and 
mean are both 
associated with MVI. 
Texture analysis on 
preoperative imaging 
correlates with 
microscopic features 
of HCC

Hectors et 
al[134], 
2020

R MC, 
PR

Immuno-
oncological 
markers (CD3, 
CD68, CD31), 
recurrence at 12 
m

48 (HCC) DCE (Pre-
T1WI, AP, 
PVP, LVP, 
and HBP); 
ADC

M; 2D MATLAB 36 (Haralick, 
qualitative and 
quantitative)

NO LR No AUC = 0.76–0.80 MRI radiomics 
features may serve as 
noninvasive 
predictors of HCC 
immuno-oncological 
characteristics and 
tumour recurrence

Wang et al
[135], 2020

R MC CK19+ HCC 227 (HCC) DWI; ADC; 
T2WI; DCE 
(Pre-T1WI, 
AP, PVP, DP, 
and HBP)

M; 3D Pyradiomics 647 (shape, 
histogram, texture, 
wavelet)

ICC, LASSO Logistic model; 
ROC

Yes AUC = 0.95 The combined model 
based on a fusion 
radiomics signature 
derived from AP and 
HBP can be a reliable 
biomarker for CK19 
status of HCC

Wang et al
[136], 2020

R PR 5 yr survival 
after curative 
hepatectomy

201 (HCC) T1WI; T2WI; 
DWI; ADC; 
DCE (AP, 
PVP, and EP)

S; 3D Precision 
Medicine Open 
Platform

3144 (histogram, 
texture, wavelet, 
statistical)

Gini index Random Forest Yes AUC = 0.9804 and 
0.7578 in the TS 
and VS

This radiomics model 
is a valid method to 
predict 5-year survival 
in HCC patients

Song et al
[137], 2020

R PR RFS after c-
TACE

184 (HCC) DCE (AP, 
and PVP)

S; 3D AK software 396 (histogram, 
GLCM, GRLM, 
GLSZM)

ICC, LASSO LASSO Cox 
regression

Yes C-index = 0.802 The combined model 
is more valuable than 
the clinical-
radiological model or 
radiomics model alone 
for evaluating the RFS 
of HCC patients after 
c-TACE

Texture analysis based 
on preoperative MRI 
are potential 
quantitative 
predictors of ER in 
HCC patients after 

Zhang et al
[138], 2019

R PR ER (1 yr after 
hepatectomy)

100 (HCC) DCE (AP, 
PVP, and 
DP)

S; 3D Omni Kinetic 6 (skewness, 
kurtosis, uniformity, 
energy, entropy, and 
correlation)

NO LR No AUC = 0.867
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hepatectomy

Huang al
[139], 2019

R D, PR DD (HCC vs 
DPHCC), DFS, 
OS after surgery

100 (HCC) DCE (AP, 
PVP, DP, 
and HBP)

M; 3D Huiying Medical 
Technology

1029 (First-order, 
shape, texture -
GLCM, GLRLM, 
GLSZM-)

LASSO Multi-layer 
perceptron; SVM; 
LR; K-nearest-
neighbor; ROC

No Accuracy of LR in 
PVP (0.77), DP 
(0.798), HBP (0.756) 
and of multi-layer 
perceptron in PVP 
(0.798)

The radiomics features 
extracted from DCE-
MRI can be used to 
diagnose preoperative 
DPHCC

Ye et al
[140], 2019

P MC Ki67 expression 89 (HCC) T2WI FS; 
DCE (Pre-
T1WI, AP, 
PVP, TP, and 
HBP)

M; 3D AK software 396 (histogram, 
texture, GLCM, 
GLRLM)

LASSO LR No C-index = 0.936 The combination of 
DCE-MRI texture 
signature and clinical 
factors demonstrated 
the potential to 
preoperatively predict 
Ki-67 status of HCC 
after curative 
resection

Zhang et al
[141] 2019

R PPF MVI 267 (HCC) T2WI FS; in-
phase and 
out-of-phase 
sequences; 
T1WI; DWI; 
DCE (AP, 
PVP, and EP)

M; 3D MATLAB 484 (intensity, 
texture, wavelet)

mRMR LR Yes AUC = 0.784 and 
0.820 in TS and VS

The radiomics 
nomogram can serve 
as a visual predictive 
tool for MVI in HCC 
and outperformed 
clinico-radiological 
model

Chen et al
[142], 2020

R MC CK19+, EpCAM 115 (HCC) T2WI, pre-
T1WI, DCE 
(AP, PVP, 
HBP), ADC

M; 3D AK software 23 (histogram) Univariate analysis LR No Accuracy = 0.86, C-
index = 0.94

Noninvasive 
prediction of HCCs 
with progenitor 
phenotype can be 
achieved with high 
accuracy by integrated 
interpretation of 
biochemical and 
radiological 
information

Xu et al
[143], 2019

R PPF HCC GRADE 51 (HCC) ADC M; 3D SPSS 27 (histogram) NO NO No ρ = −0.397 for ADC 
25th percentile; 
AUC = 0.76 for 
ADC min

The 25th percentile 
ADC showed a 
stronger correlation 
with the histological 
grade of HCC than 
other ADC 
parameters, and the 
minimum ADC value 
might be an optimal 
metric for determining 
poor and fair diferen-
tiations of HCC in 
DWI

DCE (HAP, 
PVP, EP, and 

30 (histogram, 
GLCM, GLRLM, 

Fisher coefficient, 
MI, POE + ACC, 

Lowest misclassi-
fication rates: PCA-

Texture analysis of 
HBP, arterial phase, 

Li et al
[144], 2019

R MC Ki67 expression 83 (HCC) M; 3D MaZda ROC (accuracy) No
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HBP); T2WI 
FS

absolute gradient, 
the autoregressive 
model, wavelet 
transform)

correlation PVP = 40.96%; 
LDA-PVP = 9.64%; 
NDA-AP = 6.02%.

and portal venous 
phase are helpful for 
predicting Ki67 
expression

Oyama et al
[145], 2019

R D DD (HCC, MT, 
HH)

93 (50 HCCs, 50 
MTs, 50 HHs)

T1WI M; 3D MATLAB 43 (GLCM, GLRLM, 
GLSZM, NGTDM)

correlation LDA No Accuracy = 92% 
(texture analysis) 
and 85% 
(persistence imges 
analyses)

Texture analysis or 
topological data 
analysis support the 
classifcation of HCC, 
MT, and HH with 
considerable accuracy, 
solely based on non-
contrast-enhanced 
T1WI 3D

Wang et al
[146], 2019

R MC CK19+ HCC 48 (HCC) T2WI FS; in-
phase and 
out-of-phase 
sequences; 
DCE (AP, 
PVP, DP); 
DWI (b 
values 0 and 
500 s/mm²); 
ADC

M; 2D In-house 
software

2415 (intensity, 
gradient, Gabor 
wavelet, local binary 
pattern histogram 
Fourier, GLCM, 
GLGCM)

LDA (AUC) LR No AUC = 0.765 The StdSeparation 3D 
texture character may 
be a reliable imaging 
biomarker which can 
improve the 
diagnostic 
performance.

Zhu et al
[147], 2019

R PPF MVI 142 (HCC) DCE (AP, 
PVP)

M; 3D Omni-kinetics 
software

58 (histogram, 
GLCM, Haralick, 
GRLM)

Kruskal-Wallis, 
univariate LR, 
Pearson's 
correlation

LR Yes AUC = 0.81 The combined model 
of arterial phase 
radiomic features with 
clinical-radiological 
features could 
improve MVI 
prediction ability

Zhang et al
[148], 2019

P PR ER (1 yr after 
surgical 
resection)

155 (HCC) T2WI FS, 
DCE (AP, 
PVP, TP, and 
HBP)

M; 3D AK software 385 (histogram, 
texture, GLCM, 
GLRLM)

LASSO LR; ROC Yes AUC = 0.844 The radiomics 
nomogram integrating 
the radiomics score 
with clinical-
radiological risk 
factors showed better 
discriminative 
performance than the 
clinical-radiological 
nomogram

Gordic et al
[149], 2019

R PR CR, PR, SD 22 (HCC) volumetric 
ADC

M; 3D MATLAB 7 (histogram) Wald test LR No AUC = 0.91 Diffusion histogram 
parameters obtained 
at 6w and early 
changes in ADC from 
baseline are predictive 
of subsequent 
response of HCCs 
treated with RE
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Jansen et al
[150], 2019

R D DD (adenomas, 
cysts, 
hemangiomas, 
HCC, 
metastases)

211 (40 
adenomas, 29 
cysts, 56 
hemangiomas, 
30 HCC, 56 
metastases)

DCE-MRI, 
T2WI

M; 2D NS 164 (contrast curve, 
histogram, and 
GLCM texture)

ANOVA F-SCORE Randomized tree 
classifier

No Accuracy = 0.77 The proposed classi-
fication system using 
features derived from 
clinical DCE-MR and 
T2WI, with additional 
risk factors is able to 
differentiate five 
common types of 
lesions and is a step 
forward to a clinically 
useful aid for focal 
liver lesion diagnosis

Ma et al
[151], 2019

R PR Post RFA 
progression

64 (HCC) ADC M; 3D Volume View 8 (histogram) NO Cox-regression No C-index = 0.62 Pre-RFA ADC 
histogram analysis 
might serve as a 
useful biomarker for 
predicting tumor 
progression and 
survival in patients 
with HCC treated 
with RFA

Wu et al
[152], 2019

R D DD (HCC, HH) 369 (222 HCCs, 
224 HHs)

In-phase and 
out-of-phase 
sequences; 
T2WI; DWI

M; 3D PyRadiomics 1029 (shape, first-
order, texture -
GLCM, GLRLM, 
GLSZM-, 
exponential, square, 
square root, 
logarithm, and 
wavelet)

Variance threshold, 
select k best, LASSO

Decision tree; 
random forest; K 
nearest 
neighbours; LR; 
ROC

Yes AUC = 0.86 and 
0.89 in TS and VS

mpMRI radiomics 
signature is an adjunct 
tool to distinguish 
HCC and HH, outper-
formed a less 
experienced 
radiologist, and is 
nearly equal to an 
experienced 
radiologist

Kim et al
[153], 2019

R PR ER (< = 2 yr), LR 
(> 2 yr) after 
curative 
resection

167 (HCC) DCE (AP, 
PP, HBP, AP-
PP, AP-HBP, 
PP-HBP, and 
AP-PP-HBP)

S; 3D PyRadiomics 1301 (first-order, 
shape, texture -
GLCM, GLRLM, 
GLSZM, NGTDM, 
GLDM-, LoG, 
wavelet)

RF minimal depth 
algorithm

random survival 
forest

Yes C-index = 0.716 The clinicopathologic-
radiomic model 
showed best 
performances, 
suggesting the 
importance of 
including clinicopath-
ologic information in 
the radiomic analysis 
of HCC

The combination of 
quantitative ADC 
histogram parameters 
and LI-RADS categor-
ization yielded the 
best prediction 
accuracy for 
distinction of HCC vs 
ICC and combined 

Lewis et al
[154], 2019

R D DD (HCC, ICC, 
HCC-ICC)

63 (36 HCC; 17 
ICC; 12 HCC-
ICC)

ADC M; 3D MATLAB 11 (histogram) Wald criteria Binary LR and 
AUROC

No AUC = 0.9
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HCC-ICC

Chen et al
[155], 2019

R MC Immunoscore 
(CD3+ and 
CD8+)

207 (HCC) HBP M; 3D AK software 1044 (histogram, 
texture, factor 
parameters, GLCM, 
GLRLM, GLSZM)

Recursive 
elimination

LR Yes AUC = 0.92 The combined MRI-
radiomics-based 
clinical nomogram is 
effective in predicting 
immunoscore in HCC

Feng et al
[156], 2019

R PPF MVI 160 (HCC) HBP M; 3D AK software 1044 (histogram, 
texture, wavelet 
transformed, filter 
transformed texture)

LASSO LR Yes AUC = 0.85 and 
0.83 in TS and VS

A combined intrat-
umoural and peritu-
moural radiomics 
model based on DCE-
MRI is able to pre-
operatively predict 
MVI in primary HCC 
patients

Wu et al
[157], 2019

R PPF HCC grade 170 (HCC) T1WI; T2WI 
FS

M; 3D MATLAB 656 (histogram, 
shape, GLCM, 
wavelet)

LASSO LR Yes AUC = 0.8 The combination of 
the radiomics 
signatures with 
clinical factors may be 
helpful for the 
preoperative 
prediction of HCC 
grade

Yang et al
[158], 2019

R PPF MVI 208 (HCC) T2WI FS; 
DWI; DCE 
(AP, PVP, 
DP, and 
HBP)

M; 3D MATLAB 647 (shape, intensity, 
textur-GLCM, 
GLRLM, GLZLM, 
NGLDS-)

LASSO, AIC LR Yes AUC = 0.94 and 
0.86

The nomogram 
incorporating 
clinicoradiological risk 
factors and radiomic 
features derived from 
HBP images achieved 
satisfactory 
preoperative 
prediction of the 
individualized risk of 
MVI in HCC patients

Stocker et al
[159], 2018

R D DD (HCC vs 
FNH vs HA)

108 (55 HCC, 24 
HA, 29 FNH)

T1WI FS; 
T2WI; DCE 
(AP, PVP, 
and HBP)

M; 2D MATLAB 19 (histogram, 
GLCM, GLRLM)

LR LR; ROC No AUC = 0.92 2D-TA of MR images 
may help to 
distinguish HCC from 
benign hepatocellular 
tumors in the non-
cirrhotic liver, with 
most promising 
results were found in 
TA features in the AP 
images

When added texture 
variables to MRI 
findings, the 
diagnostic 
performance for 

Ahn et al
[160], 2019

R PR ER (1y after 
surgical 
resection)

179 (HCC) HBP M; 3D In-house 
software 
program

13 (histogram, 
GLCM)

Univariate analysis LR No AUC = 0.83
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predicting early 
recurrence is 
improved

Hui et al
[161], 2018

R PR ER (1yr), LNR 
(late or no 
recurrence) after 
surgery

50 (HCC) T2WI; DCE 
(AP, PVP 
and EP)

M; 2D MaZda 290 (histogram, 
texture, autore-
gressive model, 
GRLM, GLCM, 
wavelet)

PRTools ROC No Accuracy 78%-84% Texture analysis of 
preoperative MRI has 
the potential to predict 
ER of HCC with up to 
84% accuracy using an 
appropriate, single 
texture analysis 
parameter

Zou et al
[162], 2019

R D DD (IMCC and 
HCC)

33 IMCC, 98 
HCC

volumetric 
ADC, DCE-
MRI

M; 3D SPSS 9 (histogram) NO ROC No AUC = 0.79 Volumetric ADC 
histogram analysis 
provides additional 
value to dynamic 
enhanced MRI in 
differentiating IMCC 
from HCC

Li et al
[163], 2018

P PPF MVI 41 (HCC) IVIM-DWI M; 3D MATLAB 10 (histogram) Univariate analysis ROC No AUC = 0.87 Histogram analysis of 
IVIM based on whole 
tumor volume can be 
useful for predicting 
MVI. The 5th 
percentile of D was 
most useful value to 
predict MVI of HCC

Wu et al
[164], 2019

P PR TTP after TACE 55 (HCC) IVIM-DWI S; 3D MR OncoTreat 8 histogram 
parameters

NO Cox-regression No AUC = 0.82 Pre-TACE kurtosis of 
ADCtotal is the best 
independent predictor 
for TTP

Li et al
[165], 2017

R D DD (HH vs HM 
vs HCC)

162 (55 HH, 67 
HM, 40 HCC)

SPAIR T2WI M; 2D MATLAB 233 (histogram, 
GLCM, GLGCM, 
GLRLM, GWTF, 
ISZM)

CCC, DR, R2 ROC, KNN, BP-
ANN, SVM, LR

Yes Misclassification 
rates: 11.7% (HH vs 
HM), 9.6% (HM vs 
HCC) and 9.7% 
(HH vs HCC)

Texture features of 
T2WI SPAIR can 
classify HH, HM and 
HCC

Moriya et al
[166], 2017

R D HCC grade 53 (HCC) DWI, ADC A; 3D SPSS 11 (First Level) ANOVA ROC No sensitivity: 100%, 
specificity: 54%

Minimum ADC was 
most useful to differ-
entiate poorly differ-
entiated HCC in 3D 
analysis of ADC 
histograms

ST: Study type; R: Retrospective; P: Prospective; CP: Clinical purpose; D: Diagnosis; PPF: Prediction of pathological findings; PR: Prognosis; MC: Molecular characterization; NP: Number of patients; Seg: Segmentation; FS: Feature 
selection; CM: Classification method; DD: Differential diagnosis; cCC-HCC: Combined hepatocellular cholangiocarcinoma; HCC: Hepatocellular carcinoma; CC: Cholangiocarcinoma; MVI: Microvascular invasion; AIR: Aggressive 
intrasegmental recurrence; RFA: Radiofrequency ablation; VECT: Vessels encapsulating tumor clusters; PFS: Progression-free survival; TACE: Transcatheter arterial chemoembolization; CK19: Cytokeratin19; RFS: Recurrence-free 
survival; FNH: Focal nodular hyperplasia; GOLM1: Golgi membrane protein 1; SETD7: SET domain containing 7; RND1: Rho family GTPase 1; GPC3: Glypican-3; MVD: Microvessel density; MTM-HCC: Macrotrabecular-massive 
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hepatocellular carcinoma; ER: Early recurrence; HH: Hepatic hemangioma; HC: Hepatic cysts; OS: Overall survival; TFS: Transplant-free survival; HMRC: Hepatic metastasis of rectal cancer; CK7: Cytokeratin7; DEB-TACE: Drug-
eluting bead-transcatheter arterial chemoembolization; DFS: Disease-free survival; DPHCC: Dual-phenotype HCC; EpCAM: Epithelial Cell Adhesion Molecule; MT: Metastatic tumor; CR: Complete response; PR: Partial response; SD: 
Stable disease; LR: Logistic regression; LRec: Late Recurrence; ICC: Intrahepatic cholangiocarcinoma; HA: Hepatic adenoma; LNR: Late regional recurrence; IMCC: Mass-forming cholangiocarcinoma; TTP: Time to progression; HM: 
Hepatic metastases; DCE: Dynamic contrast-enhanced; ART: Arterial phase; PVP: Portal venous phase; DP: Delayed phase; T1WI: T1-weighted imaging; AP: Arterial phase; HBP: Hepatobiliary phase; HAP: Hepatic arterial phase; SPP: 
Substantial period phase; T2WI: T2-weighted imaging; DWI: Diffusion-weighted imaging; EP: Equilibrium phase; LAP: Late arterial phase; TP:  Transitional phase; PP: Portal phase; FS: Fat saturation; ADC: Apparent diffusion 
coefficient; DCE-MRI: DCE-Magnetic Resonance Imaging; IVIM: Intravoxel incoherent motion; SWI: Susceptibility weighted imaging; LVP: Late venous phase; SPAIR T2WI: Spectral attenuated inversion-recovery T2WI; M: Manually; S: 
Semi-automatic; A: Automatic; GLCM: Gray-level co-occurrence matrix; GLSZM: Grey Level Size Zone Matrix; GLRLM: Gray-level run-length; GLDM: Gray level dependence matrix; NGTDM: Neighboring gray tone difference matrix; 
CNN: Convolutional neural network; LBP: Local binary patterns; FOS: First-order statistics; NGLDS: Neighborhood gray-level difference statistics; RLM: Run-length matrix; GWTF: Gabor wavelet transform; ISZM: Intensity-size-zone 
matrix; MI: Mutual information; LASSO: Least absolute shrinkage and selection operator; mRMR: Minimum redundancy maximum relevance; RF: random forests; SVM-RFE: Support vector machine-recursive feature elimination; ICC: 
Intra-class correlation coefficient; PCA: Principal component analysis; RandomForestSRC: Random Forests for Survival, Regression, and Classification; LR: Logistic regression; POE + ACC: Classification error probability combined with 
average correlation coefficients; ROC: Receiver operating characteristic; LDA: Linesar discriminant analysis; AUC: Area under the curve; AIC: Akaike information criteria; CCC: Concordance correlation coefficient; DR: Dynamic range; 
ANN: Artificial neural network; GBDT: Gradient Boosting Tree; KNN: K-nearest Neighbours; XGBoost: Extreme gradient boosting; DT: Decision trees; DL: Deep learning; FDA: Fisher discriminant analysis; AUROC: Area under the 
receiver operating characteristic; BP-ANN: Back propagation artificial neural network; TS: Training sets; VS: Validation sets; ICG: Indocyanine green retention rate; NLR: Neutrophil-to-lymphocyte ratio; PLR: Platelet-to-lymphocyte 
ratio; CAD: Computer-aided diagnostic; TR: Transcatheter arterial chemoembolization response; SITET: Single-input two-compartment extended Tofts; DITET: Dual-input two-compartment extended Tofts; c-TACE: Conventional-
transcatheter arterial chemoembolization; TA: Texture analysis; RE: Radioembolization.

the 128 included articles. However, only 40 (31.25%) identified and discussed biological correlates and only 50 (39.06%) 
provided cut-off analysis.

Of the 127 studies included, almost all (123) reported discrimination statistics and their statistical significance. About a 
quarter of these studies used resampling techniques. However, only 58 studies reported calibration statistics, and none of 
them applied resampling techniques.

A significant proportion (39.37%) of the studies (50 out of 127) did not provide any validation of their results. Only 
three studies validated their results using one external validation cohort and five studies used two external validation 
cohorts. Furthermore, only 47 out of 127 research examined the clinical utility of the produced model using decision 
curve analysis, while 42 out of 127 studies compared radiomics models with the particular gold standard (based on the 
study purpose).

Lastly, no study disclosed code and data to the public or performed a cost-effectiveness analysis.

Correlation analysis between RQS and journal metrics
A significant positive correlation was found between RQS and journal IF (ρ = 0.36, P = 2.98 × 10-5), 5-years IF (ρ = 0.33, P = 
1.56 × 10-4), number of patients involved (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features (ρ = 0.59, P  < 4.59 × 
10-13) extracted in the study. On the other hand, there was a significant negative correlation between RQS and time 
between the publication and the performed literature research (ρ = -0.23, P  = 0.0072) and there were no statistically 
significant differences identified in the RQS among studies with different objectives. Scatterplots with regression lines 
showing significant correlations between RQS and journal metrics are shown in Figure 3.

DISCUSSION
In this systematic review, we aimed at summarizing the current status of the fast-growing research on MRI radiomics for 
the management of HCC. We explored whether it could offer diagnostic, prognostic, and predictive information about 
pathological outcomes and molecular expression. Additionally, we assessed the quality of the science and reporting 
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Figure 1 PRISMA flow diagram of included studies. HCC: Hepatocellular carcinoma.

Figure 2 Results of Radiomics Quality Score assessment. A: Histogram plot of row counts of included studies according to Results of Radiomics Quality 
Score (RQS) percentage; B: Pie chart of the mean RQS of included studies. RQS: Radiomics Quality Score.

across the studies using the RQS tools. 127 studies from November 2017 onwards were examined in our study. Despite 
promising results obtained from each of them (with best AUC and C-indexes reaching 0.98 and 0.94, respectively), our 
study revealed that the methodological variability of the research is considerable, and the reporting quality is insufficient.

Mean RQS was 8 out of 36, with a mean percentage RQS of 24.15%. These results are consistent with previously 
published data on a variety of tumors, including prostate, breast, lung, renal, and brain cancer[27-31]. Recent studies 
evaluating research quality in HCC radiomics also align with our findings[25,32]. However, direct comparison with our 
study is not possible due to differences in purpose and inclusion criteria.
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Figure 3 Scatterplots with regression lines showing correlations between Radiomics Quality Score and journal metrics. A: Correlation 
between Radiomics Quality Score (RQS) and number of included patients; B: Correlation between RQS and number of radiomic features extracted; C: Correlation 
between RQS and impact factor (IF); D: Correlation between RQS and 5-years IF; E: Correlation between RQS and first author. Each point corresponds to a study. 
RQS: Radiomics Quality Score; IF: Impact factor; HI: H-Index.

The results of our analysis showed that the poor RQS scores of the included studies were mostly caused by the absence 
of rigorous procedures pertaining to radiomics workflow.

Regarding RQS checkpoint 1, practically all investigations have a thorough documentation of the imaging 
methodology. Nevertheless, the lack of public image methods in the investigations negatively impacts the radiomic 
studies' repeatability and reproducibility. Notably, the CE-T1WI MRI sequence emerged as the most extensively 
explored, given its primary role in preoperative HCC assessment. Nevertheless, there exists variability in MRI acquisition 
due to differences in manufacturers, scanning protocols, contrast media, and phases employed. A significant diversity 
across the included studies was also noted in terms of RQS checkpoint 2. Specifically, 108 out of 127 studies adopted 
multiple segmentations to mitigate bias arising from segmentation variability. It's crucial to highlight, however, the lack 
of consistency among studies regarding the type of ROI (2D/3D) and the segmentation method used (manual, semi-
automatic, automatic). It is worth mentioning that the majority of studies used manual or semi-automated image 
segmentation with manual correction, which restricts the studies included. Both manual and semi-automatic 
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segmentation can introduce significant observation bias, which may affect studies on intra- and interobserver variation in 
ROI/VOI delineation[1].

None of the studies determined scanner/manufacturer variability or collected images at multiple time points, making 
it difficult to detect potential feature variability between scanners and manufacturers, as well as temporal variability. 
Positively, all but twelve studies performed feature reduction, which is consistent with the third RQS checkpoint. In fact, 
excessive dimensionality of features can negatively affect model performance and lead to overfitting[33]. The RQS 
showed high variability in items 6, 7 and 8. However, it is important to note that these items are highly dependent on the 
aim of the study.

Another notable finding from our review was that only nine of the studies in the review were prospective studies, 
which is the highest weighting in the RQS tool. This constitutes a significant drawback in radiological studies since a 
meticulously planned prospective trial serves to diminish and control potential confounding factors, thereby offering a 
superior level of evidence regarding the trial's quality. This elucidates the rationale behind assigning the highest weight 
(7 points) to studies with a prospective design in the RQS tool, representing approximately 20% of the total score. Thus, 
this limitation highlights the importance of conducting well-designed prospective studies.

It is noteworthy that nearly half of the examined papers lacked outcome validation which increases the risk of false-
positive results and hinders the implementation of radiomics in clinical practice. However, approximately half of the 
studies that did not validate their results with an independent cohort chose to perform cross-validation.

The majority of the studies did not provide open access to their data sets, segmentations or codes, which limits the 
ability to verify and reproduce their results[34,35].

Cost-effectiveness analyses that evaluate radiomic prediction models from a health economic perspective when applied 
in clinical practice have the same limitation. The assumption is that a new predictor should be no more costly than 
existing predictors, given comparable accuracy. In addition, the health impact of a radiomics predictor is compared to a 
condition in which no radiomic predictor[2,32]. However, this criterion of RQS is not as important as the need to 
standardize and validate the models.

As far as we are aware, this is the first systematic review that looks into the possibility of employing MRI radiomics to 
gather information regarding the management of HCC and to assess studies using the RQS tool.

Previous studies evaluated the quality of radiomic analysis in different studies for different oncologic applications[27-
31,36]. Similar to our study, Wakabayashi et al[25] assessed whether radiomics is a valuable and reproducible method for 
clinical management of HCC using RQS. However, their work included studies up to 2018 and was not focused on MRI 
modality. In addition, Wang et al[32] also aimed to assess the methodological quality of radiomics studies for HCC 
management. However, although similar findings with respect to our study were found (mean RQS of 10), their study 
was focused on the prediction of MVI in HCC patients and also included studies involving other imaging modalities than 
MRI.

I contrast to most studies that focus on assessing the quality of radiomic studies by means of RQS, our approach 
involved exploring the potential correlation between RQS and scientometric indixes. Our findings revealed that public-
ations that have higher RQS were published in journals with higher IF and 5-years IF. However, studies with high/low 
RQS and low/high IF and 5-years IF were also found. Moreover, although no significant correlation was found, it was 
observed that RQS tended to increase with time (decreasing number of months passed from literature research). 
Interestingly, we discovered that the quality of included studies increased as the number of included patients and 
extracted attributes grew.

It is crucial to underscore that only 45 out of 127 studies referenced the Image Biomarker Standardization Initiative 
(IBSI) guidelines or utilized software for radiomic feature extraction compliant with IBSI standards (e.g., PyRadiomics). 
Emphasizing the importance of adhering to standardized radiomic features nomenclature and calculation according to 
IBSI, our study highlights the need for future research to align with these standards, thus enhancing the reproducibility of 
scientific researches[37].

Despite the insights gained, our study is not without limitations. The RQS scoring system, as acknowledged in prior 
research, is not a definitive standard for evaluating radiomics studies and requires ongoing refinement for widespread 
acceptance in radiology. The existing research is limited by issues including conducting phantom studies across all 
scanners, applying imaging at multiple time points, and lacking definition for a particular study purpose[38,39]. 
Additionally, the predominantly retrospective nature of the included studies introduces bias, compounded by the 
absence of external validation cohorts and comparisons with reference standards, hindering conclusive remarks on the 
efficacy of MRI radiomics in HCC[40,41]. Variability in sample size, inclusion criteria, and methodological settings across 
studies precluded a meta-analysis aligned with study objectives. Furthermore, the study did not explore specific shared 
radiomic features among different studies, considering the wide-ranging variability in imaging protocols and software for 
feature extraction.

CONCLUSION
In summary, despite the potential of recent developments in MRI radiomics to fulfill the urgent requirement for 
noninvasive, radiation-free, and quantitative approaches to support decision-making in HCC treatment, the current 
studies in this domain lack the requisite quality for integration into clinical practice. Emphasizing the significance of 
external validation, addressing concerns related to feature reproducibility, conducting clinical utility analyses, and 
fostering scientific openness are crucial steps that need to be addressed. This endeavor aims to provide fresh perspectives 
and contribute to the establishment of a consensus regarding the application of the radiomic method in assessing HCC.
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ARTICLE HIGHLIGHTS
Research background
Radiomics is a promising tool that may increase the value of Magnetic Resonance Imaging (MRI) for different tasks linked 
to the management of patients with hepatocellular carcinoma (HCC).

Research motivation
Over the last decade, there has been a substantial increase in radiomics studies in the field of HCC. Many of these studies 
have demonstrated the power of radiomic features for differential diagnosis, grading, predicting microvascular invasion, 
overall survival, recurrence, and treatment response. However, the use of radiomics in HCC is currently limited to 
academic literature, and no studies have yet been translated into clinical applications. This has led to doubts among 
clinicians about the radiomics validity. This is in part due to many issues related to the methodological quality of 
radiomic studies.

Research objectives
To summarize the status of MRI radiomic studies concerning HCC, using the radiomics quality score (RQS) to assess the 
quality of the methodology used in each study.

Research methods
We systematically reviewed PubMed, Google Scholar, and Web of Science databases to identify original articles focused 
on using MRI radiomics for HCC management published between 2017 and 2023. The RQS tool was employed to 
evaluate the methodological quality of radiomic studies. Spearman’s correlation (ρ) analysis was conducted to investigate 
the association between RQS and journal metrics, as well as the characteristics of the studies. The threshold for statistical 
significance was established at P < 0.05.

Research results
127 articles were included, of which 43 focused on HCC prognosis, 39 on prediction of pathological findings, 16 on 
prediction of the expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 had multiple aims. 
Mean RQS was 8 ± 6.22, with the corresponding percentage of 24.15% ± 15.25% (ranging from 0.0 to 58.33%). RQS was 
positively correlated with journal impact factor (IF; ρ = 0.36, P =2.98 × 10-5), 5-years IF (ρ = 0.33, P = 1.56 × 10-4), number of 
patients involved (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features (ρ = 0.59, P < 4.59 × 10-13) extracted in the 
study, and time of publication (ρ = -0.23, P  = 0.0072).

Research conclusions
Although the MRI radiomics in HCC represents an auspicious tool for developing adequate personalized treatment as a 
noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to allow 
its introduction in clinical practice.

Research perspectives
Although recent advantages in MRI radiomics can potentially satisfy the urgent need for noninvasive, radiation-free and 
quantitative strategies that can aid in HCC treatment decision making, studies in this field still lack the quality required 
to allow its introduction in clinical practice. Future studies including external validation and adhering to the standard-
ization of radiomics features are necessary. Moreover, limitations and challenges related to feature reproducibility, 
analysis of the clinical utility, and openness of science need to be addressed. This work may provide new insights and 
contribute to a common understanding of the use of radiomics in the assessment of HCC.
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