World Journal of Gastrointestinal Surgery

World J Gastrointest Surg 2024 March 27; 16(3): 635-973

Published by Baishideng Publishing Group Inc

GS WŮ

World Journal of Gastrointestinal Surgery

Contents

Monthly Volume 16 Number 3 March 27, 2024

EDITORIAL

635 Ex vivo liver resection and auto-transplantation and special systemic therapy in perihilar cholangiocarcinoma treatment

Tchilikidi KY

641 Indocyanine green: The guide to safer and more effective surgery Fransvea P, Chiarello MM, Fico V, Cariati M, Brisinda G

MINIREVIEWS

- 650 Alcohol associated liver disease and bariatric surgery: Current perspectives and future directions Cooper KM, Colletta A, Hebda N, Devuni D
- 658 Applications of gastric peroral endoscopic myotomy in the treatment of upper gastrointestinal tract disease

Chang SY, Jin GH, Sun HB, Yang D, Tang TY

ORIGINAL ARTICLE

Retrospective Cohort Study

670 Evaluation of bacterial contamination and medium-term oncological outcomes of intracorporeal anastomosis for colon cancer: A propensity score matching analysis

Kayano H, Mamuro N, Kamei Y, Ogimi T, Miyakita H, Nakagohri T, Koyanagi K, Mori M, Yamamoto S

681 Rescue from complications after pancreaticoduodenectomies at a low-volume Caribbean center: Value of tailored peri-pancreatectomy protocols

Cawich SO, Dixon E, Shukla PJ, Shrikhande SV, Deshpande RR, Mohammed F, Pearce NW, Francis W, Johnson S, Bujhawan J

689 Comparison of prognosis and postoperative morbidities between standard pancreaticoduodenectomy and the TRIANGLE technique for resectable pancreatic ductal adenocarcinoma

Hang HX, Cai ZH, Yang YF, Fu X, Qiu YD, Cheng H

700 Analysis of the impact of immunotherapy efficacy and safety in patients with gastric cancer and liver metastasis

Liu K, Wu CX, Liang H, Wang T, Zhang JY, Wang XT

Retrospective Study

710 Clinical observation of extraction-site incisional hernia after laparoscopic colorectal surgery Fan BH, Zhong KL, Zhu LJ, Chen Z, Li F, Wu WF

717 Predicting short-term major postoperative complications in intestinal resection for Crohn's disease: A machine learning-based study

Wang FT, Lin Y, Yuan XQ, Gao RY, Wu XC, Xu WW, Wu TQ, Xia K, Jiao YR, Yin L, Chen CQ

Contor	World Journal of Gastrointestinal Surgery
Conter	Monthly Volume 16 Number 3 March 27, 2024
731	Analysis of factors impacting postoperative pain and quality of life in patients with mixed hemorrhoids: A retrospective study
	Sun XW, Xu JY, Zhu CZ, Li SJ, Jin LJ, Zhu ZD
740	Pre-operative visceral adipose tissue radiodensity is a potentially novel prognostic biomarker for early endoscopic post-operative recurrence in Crohn's disease
	Gu P, Dube S, Gellada N, Choi SY, Win S, Lee YJ, Yang S, Haritunians T, Melmed GY, Vasiliauskas EA, Bonthala N, Syal G, Yarur AJ, Ziring D, Rabizadeh S, Fleshner P, Kallman C, Devkota S, Targan SR, Li D, McGovern DP
751	Clinical study on the relationship between liver cirrhosis, ascites, and hyponatremia
	Li XJ, Meng HH
759	Comparison of the clinical effects of dual-modality endoscopy and traditional laparotomy for the treatment of intra- and extrahepatic bile duct stones
	Wang W, Xia H, Dai B
768	Role of ablation therapy in conjunction with surgical resection for neuroendocrine tumors involving the liver
	Ostapenko A, Stroever S, Eyasu L, Kim M, Aploks K, Dong XD, Seshadri R
777	Feasibility and safety of minimally invasive multivisceral resection for T4b rectal cancer: A 9-year review
	Chan KS, Liu B, Tan MNA, How KY, Wong KY
790	MH-STRALP: A scoring system for prognostication in patients with upper gastrointestinal bleeding
	Hu JN, Xu F, Hao YR, Sun CY, Wu KM, Lin Y, Zhong L, Zeng X
	Clinical Trials Study
807	Early postoperative complications after transverse colostomy closure, a retrospective study
	Liu F, Luo XJ, Li ZW, Liu XY, Liu XR, Lv Q, Shu XP, Zhang W, Peng D
816	Clinical study of enhanced recovery after surgery in laparoscopic appendectomy for acute appendicitis
	Li ZL, Ma HC, Yang Y, Chen JJ, Wang ZJ
	Observational Study
823	Reinforced tissue matrix to strengthen the abdominal wall following reversal of temporary ostomies or to treat incisional hernias
	Lake SP, Deeken CR, Agarwal AK
	Randomized Controlled Trial
833	Whole-process case management effects on mental state and self-care ability in patients with liver cancer
	Ju MD, Qin Q, Li M
842	Clinical and Translational Research
	Construction and validation of somatic mutation-derived long non-coding RNAs signatures of genomic instability to predict prognosis of hepatocellular carcinoma
	Duan BT, Zhao XK, Cui YY, Liu DZ, Wang L, Zhou L, Zhang XY

Contents

World Journal of Gastrointestinal Surgery

Monthly Volume 16 Number 3 March 27, 2024

Basic Study

- 860 Influence of different magnetic forces on the effect of colonic anastomosis in rats Tian BY, Zhang MM, Ma J, Lyu Y, Yan XP
- 871 Inflammatory responses in esophageal mucosa before and after laparoscopic antireflux surgery Ergun P, Kipcak S, Selvi Gunel N, Yildirim Sozmen E, Bor S
- 882 Etanercept-synthesizing adipose-derived stem cell secretome: A promising therapeutic option for inflammatory bowel disease

Kim SJ, Kim OH, Hong HE, Ju JH, Lee DS

SYSTEMATIC REVIEWS

893 Impact of frailty on short-term postoperative outcomes in patients undergoing colorectal cancer surgery: A systematic review and meta-analysis

Zhou Y, Zhang XL, Ni HX, Shao TJ, Wang P

META-ANALYSIS

907 Endoscopic-ultrasound-guided biliary drainage with placement of electrocautery-enhanced lumenapposing metal stent for palliation of malignant biliary obstruction: Updated meta-analysis

Peng ZX, Chen FF, Tang W, Zeng X, Du HJ, Pi RX, Liu HM, Lu XX

921 Clinical efficacy and safety of erlotinib combined with chemotherapy in the treatment of advanced pancreatic cancer: A meta-analysis

Liu XY. Pan HN. Yu Y

CASE REPORT

932 Link between mutations in ACVRL1 and PLA2G4A genes and chronic intestinal ulcers: A case report and review of literature

Tang YJ, Zhang J, Wang J, Tian RD, Zhong WW, Yao BS, Hou BY, Chen YH, He W, He YH

- 944 Mucinous neoplasm of the appendix: A case report and review of literature Chang HC, Kang JC, Pu TW, Su RY, Chen CY, Hu JM
- 955 Abdominal cocoon syndrome-a rare culprit behind small bowel ischemia and obstruction: Three case reports

Vipudhamorn W, Juthasilaparut T, Sutharat P, Sanmee S, Supatrakul E

966 Endoscopic ultrasound-guided lauromacrogol injection for treatment of colorectal cavernous hemangioma: Two case reports

Zhu HT, Chen WG, Wang JJ, Guo JN, Zhang FM, Xu GQ, Chen HT

Contents

World Journal of Gastrointestinal Surgery

Monthly Volume 16 Number 3 March 27, 2024

ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Surgery, Jia-Gang Han, MD, Professor, Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China. hjg211@163.com

AIMS AND SCOPE

The primary aim of World Journal of Gastrointestinal Surgery (WJGS, World J Gastrointest Surg) is to provide scholars and readers from various fields of gastrointestinal surgery with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGS mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal surgery and covering a wide range of topics including biliary tract surgical procedures, biliopancreatic diversion, colectomy, esophagectomy, esophagostomy, pancreas transplantation, and pancreatectomy, etc.

INDEXING/ABSTRACTING

The WJGS is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, PubMed Central, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2023 Edition of Journal Citation Reports® cites the 2022 impact factor (IF) for WJGS as 2.0; IF without journal self cites: 1.9; 5-year IF: 2.2; Journal Citation Indicator: 0.52; Ranking: 113 among 212 journals in surgery; Quartile category: Q3; Ranking: 81 among 93 journals in gastroenterology and hepatology; and Quartile category: Q4.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Zi-Hang Xu; Production Department Director: Xiang Li; Editorial Office Director: Jia-Ru Fan.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS	
World Journal of Gastrointestinal Surgery	https://www.wjgnet.com/bpg/gerinfo/204	
ISSN	GUIDELINES FOR ETHICS DOCUMENTS	
ISSN 1948-9366 (online)	https://www.wjgnet.com/bpg/GerInfo/287	
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH	
November 30, 2009	https://www.wjgnet.com/bpg/gerinfo/240	
FREQUENCY	PUBLICATION ETHICS	
Monthly	https://www.wjgnet.com/bpg/GerInfo/288	
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT	
Peter Schemmer	https://www.wjgnet.com/bpg/gerinfo/208	
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE	
https://www.wjgnet.com/1948-9366/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242	
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS	
March 27, 2024	https://www.wjgnet.com/bpg/GerInfo/239	
COPYRIGHT	ONLINE SUBMISSION	
© 2024 Baishideng Publishing Group Inc	https://www.f6publishing.com	

© 2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: office@baishideng.com https://www.wjgnet.com

WÙ

World Journal of Gastrointestinal Surgery

Submit a Manuscript: https://www.f6publishing.com

World J Gastrointest Surg 2024 March 27; 16(3): 635-640

DOI: 10.4240/wjgs.v16.i3.635

ISSN 1948-9366 (online)

EDITORIAL

Ex vivo liver resection and auto-transplantation and special systemic therapy in perihilar cholangiocarcinoma treatment

Konstantin Y Tchilikidi

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): 0 Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Yu HP, China

Received: November 16, 2023 Peer-review started: November 16, 2023

First decision: December 17, 2023 Revised: December 26, 2023 Accepted: February 18, 2024 Article in press: February 18, 2024 Published online: March 27, 2024

Konstantin Y Tchilikidi, Department of Surgery with Postgraduate Education, Altai State Medical University, Barnaul 656031, Russia

Corresponding author: Konstantin Y Tchilikidi, MD, Assistant Professor, Department of Surgery with Postgraduate Education, Altai State Medical University, Krasnoarmeysky avenue 131-10, Barnaul 656031, Russia. kt80876@gmail.com

Abstract

This editorial contains comments on the article "Systematic sequential therapy for ex vivo liver resection and autotransplantation: A case report and review of literature" in the recent issue of World Journal of Gastrointestinal Surgery. It points out the actuality and importance of the article and focuses primarily on the role and place of ex vivo liver resection and autotransplantation (ELRAT) and systemic therapy, underlying molecular mechanisms for targeted therapy in perihilar cholangiocarcinoma (pCCA) management. pCCA is a tough malignancy with a high proportion of advanced disease at the time of diagnosis. The only curative option is radical surgery. Surgical excision and reconstruction become extremely complicated and not always could be performed even in localized disease. On the other hand, ELRAT takes its place among surgical options for carefully selected pCCA patients. In advanced disease, systemic therapy becomes a viable option to prolong survival. This editorial describes current possibilities in chemotherapy and reveals underlying mechanisms and projections in targeted therapy with kinase inhibitors and immunotherapy in both palliative and adjuvant settings. Fibroblast grow factor and fibroblast grow factor receptor, human epidermal growth factor receptor 2, isocitrate dehydrogenase, and protein kinase cAMP activated catalytic subunit alpha (PRKACA) and beta (PRKACB) pathways have been actively investigated in CCA in last years. Several agents were introduced and approved by the Food and Drug Administration. They all demonstrated meaningful activity in CCA patients with no global change in outcomes. That is why every successfully treated patient counts, especially those with advanced disease. In conclusion, pCCA is still hard to treat due to late diagnosis and extremely complicated surgical options. ELRAT also brings some hope, but it could be performed in very carefully selected patients. Advanced disease requires systemic anticancer treatment, which is supposed to be individualized according to the genetic and molecular features of cancer cells. Targeted therapy in combination with chemo-immunotherapy could be effective in susceptible patients.

WJGS | https://www.wjgnet.com

Key Words: Perihilar cholangiocarcinoma; Klatskin' tumor; Ex vivo liver resection and autotransplantation; Chemotherapy; Immunotherapy; Targeted therapy

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Perihilar cholangiocarcinoma is still hard to treat due to late diagnosis and extremely complicated surgical options. Ex vivo liver resection and autotransplantation brings some hope, but it could be performed only in carefully selected patients. Advanced disease requires systemic anticancer treatment, which is supposed to be individualized according to the genetic and molecular features of cancer cells. Targeted therapy in combination with chemo-immunotherapy could be effective in susceptible patients.

Citation: Tchilikidi KY. Ex vivo liver resection and auto-transplantation and special systemic therapy in perihilar cholangiocarcinoma treatment. World J Gastrointest Surg 2024; 16(3): 635-640 URL: https://www.wjgnet.com/1948-9366/full/v16/i3/635.htm DOI: https://dx.doi.org/10.4240/wjgs.v16.i3.635

INTRODUCTION

Cholangiocarcinoma (CCA) is the main malignancy in the biliary tract. It is classified into three subtypes according to localization. Intrahepatic CCA is the second primary liver cancer after hepatocellular carcinoma (HCC). Perihilar CCA (pCCA) or Klatskin' tumor originates from left, right, and common hepatic ducts distal to second order biliary branches and proximal to the cystic duct confluence. Distal CCA arises from the common bile duct proximal to the Vater's ampula. In fact, CCA is a heterogeneous group of malignancies with different genetic and molecular features[1-4]. Those genetic and molecular properties make this malignancy chemo-radio-resistant, shrinking the number of available therapeutic options.

The only curative option is radical surgery. However, the location of pCCA leads to late diagnosis of the disease frequently in advanced stage[1]. In addition, surgical excision and reconstruction become extremely complicated and not always could be performed even in localized disease.

Results of allogeneic liver transplantation (LT) in CCA did not bring this procedure to routine use like in HCC. As stated by Sapisochin et al[5], as well as other authors, pCCA could be an accepted indication for orthotopic LT in some centers under a strict selection process and after neoadjuvant chemoradiation. Intrahepatic CCA is a formal contraindication for LT in most centers worldwide due to the poor reported results, despite that neoadjuvant chemoradiation makes them better [5-7].

On the other hand, ex vivo liver resection auto-transplantation (ELRAT), since first introduced by Pichlmayr et al[8] in 1988, has taken its place among surgical options for non-malignant lesions and malignancies including carefully selected pCCA patients[8,9].

Systemic anticancer therapy in pCCA has common limitations as in other CCA locations. Just a few chemotherapy regimens showed certain efficacy. Due to recent advances in genetic and molecular mapping, targeted agents have started to become treatment options for selected CCA patients. They open new possibilities in advanced stage CCA. Despite everything, CCA is still a highly lethal disease that requires complicated surgical excision and is resistant to systemic therapy. That is why every successful treatment should be taken into account. One of them is the case report by Hu et al [10] "Systematic sequential therapy for *ex vivo* liver resection and autotransplantation: A case report and review of literature" published in the recent issue of World Journal of Gastrointestinal Surgery[10].

ROLE OF EX VIVO LIVER RESECTION AND AUTO-TRANSPLANTATION IN PERIHILAR CHOLANGIO-**CARCINOMA TREATMENT**

Hardy et al[11,12] in 1963 first reported extracorporeal procedures with organs followed by kidney re-implantation after high ureteral injury. Newly introduced in the 1980s, reduced-size, split and auxiliary LT were techniques that precluded ex situ liver resections[13-15]. Publications about ELRAT started with Pichlmayr et al[8] in 1988[8]. ELRAT allows avoiding scarce donor organs and lifelong immunosuppression. Development of this surgical procedure led to different technical subtypes. Now many authors recognize in vivo total hepatectomy followed by ELRAT and in vivo partial hepatectomy followed by ELRAT[9,16]. Despite that ELRAT started to be used in patients with malignancies, patients with benign liver diseases far overweighed them now, mainly due to hepatic alveolar echinococcosis[16-18], where some authors reported low perioperative mortality and good survival[17-20].

Results in cancer patients are still controversial with higher morbidity and mortality that do not make ELRAT become a procedure widely used in these settings^[2]. According to Zawistowski et al^[20], among 244 patients involved in 53 studies, the 30-d mortality did not differ among patients with the nonmalignant and malignant diseases (11.3% vs 6.3%, P

Table 1 Results of ex vivo liver resection and auto-transplantation in malignant and non-malignant settings (%)					
Issue	Non-malignant diseases	Malignant tumors	P value		
30-d mortality	6.3	11.3	0.181		
90-d mortality	8.2	12.5	0.004		
In-hospital mortality	2.7	18.3	< 0.001		
1-year survival	89.7	65.0	< 0.001		
Major postoperative complications	21.0	50.0	< 0.001		
Post-hepatectomy liver failure	8.9	23.0	0.006		

= 0.181). The 90-d mortality was higher for malignant tumors (21.6% *vs* 8.2%, *P* = 0.004), as well as in-hospital mortality (18.3% *vs* 2.7%, *P* < 0.001). The postoperative 1-year survival was worse in the malignant group (65.0% *vs* 89.7%, *P* < 0.001). Major postoperative complications took place less commonly in the nonmalignant group (21.0% *vs* 50.0%, *P* < 0.001). Post-hepatectomy liver failure occurred more frequently among patients with malignant tumors (23.0% *vs* 8.9%, *P* = 0.006; Table 1)[20].

Nevertheless, several publications on ELRAT in malignancies including pCCA appeared in last years. That allows Kato *et al*[21] in 2020 and Weiner *et al*[22] in 2022 as well as other authors to make conclusion about this method as an alternative treatment in selective cancer patients[21,22]. Some researchers performed ELRAT for CCA with no additional anticancer therapy. Others combined them[16,23]. pCCA patients are not a preferable population for ELRAT. Despite good early results of the treatment in the article reported by Hu *et al*[16], it would be necessary to continue surveillance.

ROLE OF SYSTEMIC CHEMOTHERAPY IN CHOLANGIOCARCINOMA MANAGEMENT

Due to the lack of specific clinical presentations in early stages, most of biliary tract carcinomas are diagnosed as advanced disease[1,24], where patients have lost their chance for routine curative treatment. Thus, systemic anticancer therapy becomes the procedure of choice in neo-adjuvant and palliative settings. With curative resections, both adjuvant and neo-adjuvant chemotherapy prolonged overall survival and disease-free survival[25,26]. However, both studies did not find survival advantage of neo-aduvant chemotherapy *vs* adjuvant chemotherapy in sensitivity analysis. Since first reported in 2010, results of the ABC-02 trial (NCT00262769) made the gemcitabine and cisplatin regimen most popular. This doublet chemotherapy confirmed its superiority over other cytostatics. Its efficacy has allowed gemcitabine/cisplatin to become first line chemotherapy in CCA[27]. Nevertheless, this regimen could increase resectability only in few patients. In addition, most of patients required dose adaptions[28]. That forced researchers to seek other systemic agents including targeted therapy to increase survival and as a bridge to curative surgery in advanced disease.

TARGETED THERAPY AS A TREATMENT OPTION IN CHOLANGIOCARCINOMA PATIENTS

Rapid development of cancer genetic mapping and molecular mechanism discovery in the last decade has changed targeted therapy from experimental anticancer treatment to widely accepted. The fibroblast grow factor (FGF) and FGF receptor (FGFR) pathway is considered to be one of the most important pathways in CCA. Munugala *et al*[29] further discovered that the isocitrate dehydrogenase mutations took a significant percentage in different subsets of CCA[29,30]. Drugs include infigratinib, erdafitinib, TAS-120 (an irreversible pan-FGFR inhibitor), pemigatinib (a potent, selective oral inhibitor of FGFR isoforms 1, 2, and 3). Pemigatinib becomes the first Food and Drug Administration (FDA) approved anti-FGFR2 agent. They all demonstrated meaningful activity in CCA patients with no global change in outcomes[29,30]. Some other authors considered that extrahepatic CCA including pCCA is more related to human epidermal growth factor receptor 2 (HER2) and the protein kinase cAMP activated catalytic subunit alpha (PRKACA) and beta (PRKACB) pathways[31,32]. The antibody-drug conjugate trastuzumab emtansine experimentally used by some researchers in CCA settings showed higher activity in CCA cell lines with higher HER2 expression[33,34], though HER2 agents act indirectly on the FGF/FGFR pathway too[29,30].

Immunotherapy becomes a game changer in some malignancies such as melanoma, but unfortunately not in CCA. Results of programmed death protein ligand 1 (PD-L1) inhibitors pembrolizumab and nivolumab were mixed[29,35-37]. Programmed death protein 1 (PD-1)/PD-L1 inhibitors can be used in high microsatellite instable (MSI-H) tumors. MSI-H as a result of DNA mismatch repair defects (dMMR) could appear in different malignancies. MSI-H is rare in intrahepatic CCA, but more frequent in extrahepatic CCA[38]. The phase III TOPAZ-1 trial presented promising results for the PD-L1 inhibitor durvalumab in combination with gemcitabine/cisplatin, mostly confirmed by Rimini *et al*[39] and Macias *et al* [40]. Macias *et al*[40] in their recent editorial article called the above regimen "new first-line standard of care for patients with advanced biliary tract cancer after more than 10 years of chemotherapy alone" [40,41]. The FDA recommended pembrolizumab as a second line therapy for MSI-H/dMMR cancers[42,43]. Results of the phase III KEYNOTE-966 trial showed survival benefit by adding pembrolizumab to gemcitabine/cisplatin in advanced CCA[44].

Lenvatinib, as a multi-kinase inhibitor of VEGF receptors 1-3, FGF receptors 1-4, platelet derived growth factor receptor α , KIT, and RET, selectively inhibits tyrosine kinase receptors involved in tumor growth and angiogenesis[45]. Tislelizumab is a PD-1 monoclonal IgG4 antibody of high affinity that is mainly used in hematological malignancies and advanced solid cancers, which was conditionally approved in China[45]. Ding et al[45] reported successful neoadjuvant therapy with gemcitabine/cisplatin/lenvatinib/tislelizumab in patients with advanced intraheptic CCA followed by surgical resection with no recurrence at the 10-month follow-up[45].

Infigratinib is a reversible ATP-competitive FGFR 1-3 inhibitor. It is actively investigating now. Yu et al[46] concluded that tumor resistance to reversible FGFR inhibitors including infigratinib could be a barrier for the clinical benefits of infigratinib in CCA. They also proposed perspectives with its future administration in combination with immunotherapy [46].

Anticancer therapy in the article of Hu et al[10] included conditionally approved agents. So again, further surveillance is necessary.

CONCLUSION

pCCA is still hard to treat due to late diagnosis and extremely complicated surgical options. ELRAT also brings some hope, but it could be performed only in carefully selected patients. Advanced disease requires systemic anticancer treatment, which is supposed to be individualized according to the genetic and molecular features of cancer cells. Targeted therapy in combination with chemo-immunotherapy could be effective in susceptible patients.

FOOTNOTES

Author contributions: Tchilikidi KY is the sole author of this manuscript.

Conflict-of-interest statement: The author reports no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Russia

ORCID number: Konstantin Y Tchilikidi 0000-0002-8054-5777.

S-Editor: Li L L-Editor: Wang TQ P-Editor: Xu ZH

REFERENCES

- Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, 1 Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Rizvi S, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17: 557-588 [PMID: 32606456 DOI: 10.1038/s41575-020-0310-z]
- 2 Brindley PJ, Bachini M, Ilyas SI, Khan SA, Loukas A, Sirica AE, Teh BT, Wongkham S, Gores GJ. Cholangiocarcinoma. Nat Rev Dis Primers 2021; 7: 65 [PMID: 34504109 DOI: 10.1038/s41572-021-00300-2]
- Moris D, Palta M, Kim C, Allen PJ, Morse MA, Lidsky ME. Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of 3 the current and future therapeutic landscape for clinicians. CA Cancer J Clin 2023; 73: 198-222 [PMID: 36260350 DOI: 10.3322/caac.21759]
- DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, Choti MA, Yeo CJ, Schulick RD. 4 Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg 2007; 245: 755-762 [PMID: 17457168 DOI: 10.1097/01.sla.0000251366.62632.d3
- Sapisochín G, Fernández de Sevilla E, Echeverri J, Charco R. Liver transplantation for cholangiocarcinoma: Current status and new insights. 5 World J Hepatol 2015; 7: 2396-2403 [PMID: 26464755 DOI: 10.4254/wjh.v7.i22.2396]
- Safarpour AR, Askari H, Ejtehadi F, Azarnezhad A, Raeis-Abdollahi E, Tajbakhsh A, Abazari MF, Tarkesh F, Shamsaeefar A, Niknam R, 6 Sivandzadeh GR, Lankarani KB. Cholangiocarcinoma and liver transplantation: What we know so far? World J Gastrointest Pathophysiol 2021; 12: 84-105 [PMID: 34676129 DOI: 10.4291/wjgp.v12.i5.84]
- Giovinazzo F, Pascale MM, Cardella F, Picarelli M, Molica S, Zotta F, Martullo A, Clarke G, Frongillo F, Grieco A, Agnes S. Current 7 Perspectives in Liver Transplantation for Perihilar Cholangiocarcinoma. Curr Oncol 2023; 30: 2942-2953 [PMID: 36975438 DOI: 10.3390/curroncol30030225]
- Pichlmayr R, Bretschneider HJ, Kirchner E, Ringe B, Lamesch P, Gubernatis G, Hauss J, Niehaus KJ, Kaukemüller J. [Ex situ operation on 8 the liver. A new possibility in liver surgery]. Langenbecks Arch Chir 1988; 373: 122-126 [PMID: 3287072 DOI: 10.1007/BF01262775]

- Yang X, Lu L, Zhu WW, Tao YF, Shen CH, Chen JH, Wang ZX, Qin LX. Ex vivo liver resection and auto-transplantation as an alternative to 9 treat liver malignancies: Progress and challenges. Hepatobiliary Pancreat Dis Int 2024; 23: 117-122 [DOI: 10.1016/j.hbpd.2023.10.007]
- 10 Hu CL, Han X, Gao ZZ, Zhou B, Tang JL, Pei XR, Lu JN, Xu Q, Shen XP, Yan S, Ding Y. Systematic sequential therapy for ex vivo liver resection and autotransplantation: A case report and review of literature. World J Gastrointest Surg 2023; 15: 2663-2673 [PMID: 38111758 DOI: 10.4240/wjgs.v15.i11.2663]
- HARDY JD. High ureteral injuries. Management by autotransplantation of the kidney. JAMA 1963; 184: 97-101 [PMID: 13960761 DOI: 11 10.1001/jama.1963.03700150051008]
- HARDY JD, ERASLAN S. AUTOTRANSPLANTATION OF THE KIDNEY FOR HIGH URETERAL INJURY. J Urol 1963; 90: 563-574 12 [PMID: 14079696 DOI: 10.1016/S0022-5347(17)64454-9]
- 13 Broelsch CE, Emond JC, Thistlethwaite JR, Whitington PF, Zucker AR, Baker AL, Aran PF, Rouch DA, Lichtor JL. Liver transplantation, including the concept of reduced-size liver transplants in children. Ann Surg 1988; 208: 410-420 [PMID: 3052326 DOI: 10.1097/00000658-198810000-00003]
- Emond JC, Whitington PF, Thistlethwaite JR, Alonso EM, Broelsch CE. Reduced-size orthotopic liver transplantation: use in the management 14 of children with chronic liver disease. Hepatology 1989; 10: 867-872 [PMID: 2807168 DOI: 10.1002/hep.1840100520]
- Pichlmayr R, Ringe B, Gubernatis G, Hauss J, Bunzendahl H. [Transplantation of a donor liver to 2 recipients (splitting transplantation) -- a 15 new method in the further development of segmental liver transplantation]. Langenbecks Arch Chir 1988; 373: 127-130 [PMID: 3287073 DOI: 10.1007/BF01262776]
- Xu S, Hu C, Jiang Z, Li G, Zhou B, Gao Z, Yan S. In vivo total or partial hepatectomy followed by ex vivo liver resection and 16 autotransplantation for malignant tumors: a single center experience. Front Oncol 2023; 13: 1214451 [PMID: 37427118 DOI: 10.3389/fonc.2023.1214451
- 17 Aji T, Dong JH, Shao YM, Zhao JM, Li T, Tuxun T, Shalayiadang P, Ran B, Jiang TM, Zhang RQ, He YB, Huang JF, Wen H. Ex vivo liver resection and autotransplantation as alternative to allotransplantation for end-stage hepatic alveolar echinococcosis. J Hepatol 2018; 69: 1037-1046 [PMID: 30031886 DOI: 10.1016/j.jhep.2018.07.006]
- Qiu Y, Huang B, Yang X, Wang T, Shen S, Yang Y, Wang W. Evaluating the Benefits and Risks of Ex Vivo Liver Resection and 18 Autotransplantation in Treating Hepatic End-stage Alveolar Echinococcosis. Clin Infect Dis 2022; 75: 1289-1296 [PMID: 35271705 DOI: 10.1093/cid/ciac195]
- 19 Beldi G, Vuitton D, Lachenmayer A, Heyd B, Dufour JF, Richou C, Candinas D, Bresson-Hadni S. Is ex vivo liver resection and autotransplantation a valid alternative treatment for end-stage hepatic alveolar echinococcosis in Europe? J Hepatol 2019; 70: 1030-1031 [PMID: 30718093 DOI: 10.1016/j.jhep.2018.12.011]
- Zawistowski M, Nowaczyk J, Jakubczyk M, Domagała P. Outcomes of ex vivo liver resection and autotransplantation: A systematic review 20 and meta-analysis. Surgery 2020; 168: 631-642 [PMID: 32727659 DOI: 10.1016/j.surg.2020.05.036]
- Kato T, Hwang R, Liou P, Weiner J, Griesemer A, Samstein B, Halazun K, Mathur A, Schwartz G, Cherqui D, Emond J. Ex Vivo Resection 21 and Autotransplantation for Conventionally Unresectable Tumors - An 11-year Single Center Experience. Ann Surg 2020; 272: 766-772 [PMID: 32833756 DOI: 10.1097/SLA.00000000004270]
- 22 Weiner J, Hemming A, Levi D, Beduschi T, Matsumoto R, Mathur A, Liou P, Griesemer A, Samstein B, Cherqui D, Emond J, Kato T. Ex Vivo Liver Resection and Autotransplantation: Should It be Used More Frequently? Ann Surg 2022; 276: 854-859 [PMID: 35920562 DOI: 10.1097/SLA.000000000005640]
- George A, Rammohan A, Reddy SM, Rela M. Ex situ liver resection and autotransplantation for advanced cholangiocarcinoma. BMJ Case Rep 23 2019; 12 [PMID: 31431431 DOI: 10.1136/bcr-2019-230808]
- Valle JW, Kelley RK, Nervi B, Oh DY, Zhu AX. Biliary tract cancer. Lancet 2021; 397: 428-444 [PMID: 33516341 DOI: 24 10.1016/S0140-6736(21)00153-7
- 25 Hassan H, Chakrabarti S, Zemla T, Yin J, Wookey V, Prasai K, Abdellatief A, Katta R, Tran N, Jin Z, Cleary S, Roberts L, Mahipal A. Impact of perioperative chemotherapy on survival in patients with cholangiocarcinoma undergoing curative resection. Eur J Surg Oncol 2023; 49: 106994 [PMID: 37524649 DOI: 10.1016/j.ejso.2023.106994]
- Parente A, Kamarajah SK, Baia M, Tirotta F, Manzia TM, Hilal MA, Pawlik TM, White SA, Dahdaleh FS. Neoadjuvant Chemotherapy for 26 Intrahepatic, Perihilar, and Distal Cholangiocarcinoma: a National Population-Based Comparative Cohort Study. J Gastrointest Surg 2023; 27: 741-749 [PMID: 36749556 DOI: 10.1007/s11605-023-05606-y]
- 27 Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, Roughton M, Bridgewater J; ABC-02 Trial Investigators. Cisplatin plus gemcitabine vs gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273-1281 [PMID: 20375404 DOI: 10.1056/NEJMoa0908721]
- 28 Möhring C, Feder J, Mohr RU, Sadeghlar F, Bartels A, Mahn R, Zhou T, Marinova M, Feldmann G, Brossart P, von Websky M, Matthaei H, Manekeller S, Glowka T, Kalff JC, Weismüller TJ, Strassburg CP, Gonzalez-Carmona MA. First Line and Second Line Chemotherapy in Advanced Cholangiocarcinoma and Impact of Dose Reduction of Chemotherapy: A Retrospective Analysis. Front Oncol 2021; 11: 717397 [PMID: 34858809 DOI: 10.3389/fonc.2021.717397]
- Munugala N, Maithel SK, Shroff RT. Novel biomarkers and the future of targeted therapies in cholangiocarcinoma: a narrative review. 29 Hepatobiliary Surg Nutr 2022; 11: 253-266 [PMID: 35464290 DOI: 10.21037/hbsn-20-475]
- Goyal L, Kongpetch S, Crolley VE, Bridgewater J. Targeting FGFR inhibition in cholangiocarcinoma. Cancer Treat Rev 2021; 95: 102170 30 [PMID: 33735689 DOI: 10.1016/j.ctrv.2021.102170]
- 31 Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, Hama N, Hosoda F, Urushidate T, Ohashi S, Hiraoka N, Ojima H, Shimada K, Okusaka T, Kosuge T, Miyagawa S, Shibata T. Genomic spectra of biliary tract cancer. Nat Genet 2015; 47: 1003-1010 [PMID: 26258846 DOI: 10.1038/ng.3375]
- Jain A, Javle M. Molecular profiling of biliary tract cancer: a target rich disease. J Gastrointest Oncol 2016; 7: 797-803 [PMID: 27747093 32 DOI: 10.21037/jgo.2016.09.01]
- Yamashita-Kashima Y, Yoshimura Y, Fujimura T, Shu S, Yanagisawa M, Yorozu K, Furugaki K, Higuchi R, Shoda J, Harada N. Molecular 33 targeting of HER2-overexpressing biliary tract cancer cells with trastuzumab emtansine, an antibody-cytotoxic drug conjugate. Cancer Chemother Pharmacol 2019; 83: 659-671 [PMID: 30659304 DOI: 10.1007/s00280-019-03768-8]
- 34 Kuwatani M, Sakamoto N. Promising Highly Targeted Therapies for Cholangiocarcinoma: A Review and Future Perspectives. Cancers (Basel) 2023; 15 [PMID: 37509347 DOI: 10.3390/cancers15143686]
- Kang J, Jeong JH, Hwang HS, Lee SS, Park DH, Oh DW, Song TJ, Kim KH, Hwang S, Hwang DW, Kim SC, Park JH, Hong SM, Kim KP, 35

WJGS https://www.wjgnet.com

Ryoo BY, Yoo C. Efficacy and Safety of Pembrolizumab in Patients with Refractory Advanced Biliary Tract Cancer: Tumor Proportion Score as a Potential Biomarker for Response. Cancer Res Treat 2020; 52: 594-603 [PMID: 32019287 DOI: 10.4143/crt.2019.493]

- Kim RD, Chung V, Alese OB, El-Rayes BF, Li D, Al-Toubah TE, Schell MJ, Zhou JM, Mahipal A, Kim BH, Kim DW. A Phase 2 Multi-36 institutional Study of Nivolumab for Patients With Advanced Refractory Biliary Tract Cancer. JAMA Oncol 2020; 6: 888-894 [PMID: 32352498 DOI: 10.1001/jamaoncol.2020.0930]
- Wang M, Chen Z, Guo P, Wang Y, Chen G. Therapy for advanced cholangiocarcinoma: Current knowledge and future potential. J Cell Mol 37 Med 2021; 25: 618-628 [PMID: 33277810 DOI: 10.1111/jcmm.16151]
- Winkelmann R, Schneider M, Hartmann S, Schnitzbauer AA, Zeuzem S, Peveling-Oberhag J, Hansmann ML, Walter D. Microsatellite 38 Instability Occurs Rarely in Patients with Cholangiocarcinoma: A Retrospective Study from a German Tertiary Care Hospital. Int J Mol Sci 2018; **19** [PMID: 29747443 DOI: 10.3390/ijms19051421]
- Rimini M, Fornaro L, Lonardi S, Niger M, Lavacchi D, Pressiani T, Lucchetti J, Giordano G, Pretta A, Tamburini E, Pirrone C, Rapposelli IG, 39 Diana A, Martinelli E, Garajová I, Simionato F, Schirripa M, Formica V, Vivaldi C, Caliman E, Rizzato MD, Zanuso V, Nichetti F, Angotti L, Landriscina M, Scartozzi M, Ramundo M, Pastorino A, Daniele B, Cornara N, Persano M, Gusmaroli E, Cerantola R, Salani F, Ratti F, Aldrighetti L, Cascinu S, Rimassa L, Antonuzzo L, Casadei-Gardini A. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer: An early exploratory analysis of real-world data. Liver Int 2023; 43: 1803-1812 [PMID: 37452505 DOI: 10.1111/liv.15641]
- Macias RIR, Rimassa L, Lamarca A. The promise of precision medicine: how biomarkers are shaping the future of cholangiocarcinoma 40 treatment. Hepatobiliary Surg Nutr 2023; 12: 457-461 [PMID: 37351132 DOI: 10.21037/hbsn-23-215]
- 41 Du J, Lv X, Zhang Z, Huang Z, Zhang E. Revisiting targeted therapy and immunotherapy for advanced cholangiocarcinoma. Front Immunol 2023; 14: 1142690 [PMID: 36936931 DOI: 10.3389/fimmu.2023.1142690]
- 42 Marcus L, Fashoyin-Aje LA, Donoghue M, Yuan M, Rodriguez L, Gallagher PS, Philip R, Ghosh S, Theoret MR, Beaver JA, Pazdur R, Lemery SJ. FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mutational Burden-High Solid Tumors. Clin Cancer Res 2021; 27: 4685-4689 [PMID: 34083238 DOI: 10.1158/1078-0432.CCR-21-0327]
- Simile MM, Bagella P, Vidili G, Spanu A, Manetti R, Seddaiu MA, Babudieri S, Madeddu G, Serra PA, Altana M, Paliogiannis P. Targeted 43 Therapies in Cholangiocarcinoma: Emerging Evidence from Clinical Trials. Medicina (Kaunas) 2019; 55 [PMID: 30743998 DOI: 10.3390/medicina55020042]
- Kelley RK, Ueno M, Yoo C, Finn RS, Furuse J, Ren Z, Yau T, Klümpen HJ, Chan SL, Ozaka M, Verslype C, Bouattour M, Park JO, Barajas 44 O, Pelzer U, Valle JW, Yu L, Malhotra U, Siegel AB, Edeline J, Vogel A; KEYNOTE-966 Investigators. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023; 401: 1853-1865 [PMID: 37075781 DOI: 10.1016/S0140-6736(23)00727-4
- Ding Y, Han X, Sun Z, Tang J, Wu Y, Wang W. Systemic Sequential Therapy of CisGem, Tislelizumab, and Lenvatinib for Advanced 45 Intrahepatic Cholangiocarcinoma Conversion Therapy. Front Oncol 2021; 11: 691380 [PMID: 34527576 DOI: 10.3389/fonc.2021.691380]
- 46 Yu J, Mahipal A, Kim R. Targeted Therapy for Advanced or Metastatic Cholangiocarcinoma: Focus on the Clinical Potential of Infigratinib. Onco Targets Ther 2021; 14: 5145-5160 [PMID: 34720591 DOI: 10.2147/OTT.S272208]

WJGS | https://www.wjgnet.com

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: office@baishideng.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

