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Abstract
Depression is a common mental health disorder. With current depression 
detection methods, specialized physicians often engage in conversations and 
physiological examinations based on standardized scales as auxiliary measures 
for depression assessment. Non-biological markers-typically classified as verbal 
or non-verbal and deemed crucial evaluation criteria for depression-have not been 
effectively utilized. Specialized physicians usually require extensive training and 
experience to capture changes in these features. Advancements in deep learning 
technology have provided technical support for capturing non-biological markers. 
Several researchers have proposed automatic depression estimation (ADE) sys-
tems based on sounds and videos to assist physicians in capturing these features 
and conducting depression screening. This article summarizes commonly used 
public datasets and recent research on audio- and video-based ADE based on 
three perspectives: Datasets, deficiencies in existing research, and future 
development directions.
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Core Tip: The automatic recognition of depression based on deep learning has gradually become a research hotspot. 
Researchers have proposed automatic depression estimation (ADE) systems utilizing sound and video data to assist 
physicians in screening for depression. This article provides an overview of the latest research on ADE systems, focusing on 
sound and video datasets, current research challenges, and future directions.
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DOI: https://dx.doi.org/10.5498/wjp.v14.i2.225

INTRODUCTION
With societal developments, the diagnosis and treatment of depression have become increasingly crucial. Depression is a 
prevalent psychological disorder characterized by symptoms such as low mood, diminished appetite, and insomnia in 
affected individuals[1]. Patients with severe depression may also exhibit a tendency towards suicide. In the field of 
medicine, researchers aspire to conduct comprehensive investigations of depression from both biological and non-
biological perspectives. Li et al[2] summarized biological markers, revealing associations between depression and 
indicators, such as gamma-glutamyl transferase, glucose, triglycerides, albumin, and total bilirubin. Non-biological 
markers can be broadly categorized into verbal and non-verbal features. Verbal features typically pertain to a subject’s 
intonation, speech rate, and emotional expressions in speech extracted from audio recordings. Early studies by 
Cannizzaro et al[3] and Leff et al[4] identified differences in the speech of individuals with psychiatric disorders compared 
to the general population. Non-verbal features typically refer to the facial expressions and body movements commonly 
embedded in video files. The Facial Action Coding System[5], a frequently employed tool for facial expression analysis, 
decomposes facial muscles into multiple action units (AUs) with corresponding numerical identifiers. For instance, AU1 
and AU2 represent inner brow raise and outer brow raise, respectively. A graphical representation of the AU can be 
accessed through the link indicated in the footnote (https://imotions.com/blog/learning/research-fundamentals/facial-
action-coding-system/)[1]. While Girard et al[6] found differences in AU 10, 12, 14, and 15 between individuals with 
depression and the general population, a unified research framework for bodily changes is yet to be established, with the 
core challenge lying in quantifying alterations in body movements. Joshi et al[7] demonstrated the potential of studying 
body movements for ADE using a method based on space-time interest points and a bag of words to analyze 
patients’upper-body movements.

During clinical assessments, specialized physicians detect and treat depression based on diagnostic criteria manuals 
issued by the relevant organizations. For instance, the World Health Organization released the 11th revision of the Interna-
tional Classification of Diseases in 2022, providing detailed classifications of various mental disorders. The American 
Psychiatric Association published the Diagnostic and Statistical Manual of Mental Disorders (DSM)-4[8], in 1994, and its 
updated version, DSM-5[9], in 2013. In 2001, China released the Chinese Classification and Diagnostic Criteria of Mental 
Disorders, Third Edition. Guided by diagnostic manuals, specialized physicians assessed the severity of depression in the 
participants based on the scores obtained from these scales. Rating scales are typically categorized into self-report and 
observer-report scales. The patient health questionnaire[10] is a lightweight self-report scale, whereas the Hamilton 
depression rating scale (HAMD)[11] is a common observer-report scale. Observer-report scales require specialized 
physicians to interview patients and score the details based on the scale. Completing an interview based on the HAMD 
scale typically takes 15-20 min.

In addition to detecting clinical depression based on rating scales, biological markers have been employed to assist 
with the assessment. Physicians use biochemical indicators extracted through techniques, such as blood tests, to aid their 
judgment. With the advancements in detection technologies, biological markers can be quantitatively measured, allowing 
specialized physicians to directly refer to numerical values to determine the clinical significance of a test. However, non-
biological markers, which are crucial features of depression, have not been extensively utilized, attributed to several 
factors. First, changes in non-biological markers, such as facial expressions and intonation, are often subtle. Specialized 
physicians require extensive training and accumulated experience to capture these changes; such training is typically 
time-consuming and inefficient. Second, unlike biological markers, systematic patterns of change in non-biological 
markers depend on their ability to capture spatial and temporal information, a challenging task for early computer 
technologies. The development of deep-learning technology and the computational capabilities of computers provide an 
opportunity to address these challenges. Deep-learning, with its robust capability of capturing temporal and spatial 
information, offers new avenues for constructing assistive systems. Automatic depression estimation (ADE) has become a 
significant research direction in the field of computational medicine, resulting in several ADE methods being proposed.

https://www.wjgnet.com/2220-3206/full/v14/i2/225.htm
https://dx.doi.org/10.5498/wjp.v14.i2.225
https://imotions.com/blog/learning/research-fundamentals/facial-action-coding-system/
https://imotions.com/blog/learning/research-fundamentals/facial-action-coding-system/
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A complete ADE study typically comprises three steps. The first step involves data collection, categorized based on the 
free or need for specific emotional stimulus experiments. The former typically utilizes devices such as cameras and 
microphones to capture audio-visual information of subjects during medical consultations or in natural states. The latter 
requires the design of specific emotional paradigms, followed by recording subjects’ audio-visual information under 
emotional stimuli. The second step involves constructing deep-learning models for ADE. In this phase, researchers 
designed different deep-learning architectures based on data characteristics to capture information for ADE. Finally, the 
model undergoes training and testing for ADE to essentially perform two tasks: classification, i.e., distinguishing whether 
the individual is a patient with depression or further categorizing the severity (non-depressed, mild, moderate, and 
severe), and scoring tasks, i.e., predicting the assessment scale scores of the subjects. Depending on the task, researchers 
choose different evaluation metrics to train and test the effectiveness of the model.

The initial ADE typically requires manual feature extraction and the application of machine learning methods such as 
decision trees and support vector machines for feature classification. Peng et al[12] initially constructed a sentiment 
lexicon, counted word frequencies, and then input these features into a support vector machine for ADE. Alghowinem et 
al[13] first used the openSMILE tool to extract audio features and then employed machine learning methods for ADE. 
Wen et al[14] extracted dynamic feature descriptors from facial region sub-volumes and used sparse coding to implicitly 
organize the extracted feature descriptors for depression diagnosis. With the development of deep learning and computa-
tional capabilities, deep models can perform feature extraction from complex data, eliminating manual feature extraction. 
Notably, owing to the specificity of audio information, certain manual feature extraction steps still exist. Therefore, a 
series of deep learning-based ADE methods, such as, have been proposed. In this review, we focus primarily on recent 
ADE methods based on deep learning approaches. We first introduce commonly used publicly available ADE datasets 
and then provide an overview and summary of recent outstanding audio-visual ADE models. All articles are summarized 
in Table 1. Finally, we summarize the existing challenges and future directions of ADE.

DATASETS
While data form the foundation of ADE research, owing to the inherent challenges in collecting depression data, such as 
strong privacy concerns, lengthy collection periods, and limited data volumes, obtaining subject authorization for public 
sharing is difficult, resulting in a scarcity of publicly available audio-visual datasets. Commonly utilized public datasets 
primarily originate from audio-visual emotion recognition challenges (AVEC), specifically the AVEC2013[15], AVEC2014
[16], and Distress Analysis Interview Corpus/Wizard-of-Oz set (DAIC-WOZ)[17] datasets.

AVEC2013
The AVEC2013 dataset was released as part of the third AVEC Challenge. This dataset comprises 340 video segments 
collected from 292 participants. AVEC2013 required participants to perform tasks such as vowel phonation, reading, 
recounting memories, and narrating a story based on a picture with their audio-visual information recorded. The Beck 
Depression Inventory (BDI) scores served as labels for AVEC2013.

AVEC2014
The AVEC2014 dataset was released as part of the fourth AVEC. This dataset comprises 150 audio-video data segments 
involving a total of 84 subjects. As a subset of AVEC2013, AVEC2014 required each participant to complete two tasks, 
Northwind and Freeform, which involved reading excerpts from articles and answering specific questions. Similar to 
AVEC2013, AVEC2014 also utilizes BDI scores as data labels.

DAIC-WOZ
This dataset encompasses the audio-visual information of subjects collected through various interview formats, with each 
data type being independent. The video information, which included a maximum of 263 audio-visual data points, was 
based on facial features (e.g., annotated directions, facial key points, and AUs features) after conversion.

AUDIO-BASED DEPRESSION ESTIMATION
Audio-based methods are crucial for ADE. In this process, participants often combine manual features with deep features 
for ADE. Manual features typically include time- and frequency-domains. Deep features are typically obtained from 
spectrograms using deep-learning models. These spectrograms often represent the waveform, spectrogram, Mel 
spectrogram, or processed data of raw audio graphically.

He and Cao[18] combined manually extracted audio features with deep-learning features for ADE. They divided the 
model into two parts. The first part employed a deep network to extract deep features from spectrograms and raw speech 
waveforms. The other part extracts median robust extended local binary patterns from spectrograms and low-level 
descriptors from raw speech. Finally, these features were fused using a fusion model to make the final decision. This 
approach achieved root mean squared error (RMSE) and mean absolute error (MAE) values of 10.001 and 8.201 on the 
AVEC2013 dataset and 9.999 and 8.191 on the AVEC2014 dataset. Zuo and Mak[19] recognized the potential performance 
decline associated with limited audio data. With a smaller dataset, capturing the patterns of depressive expressions 
becomes challenging, and deep models tend to learn audio features specific to individual subjects, leading to overfitting. 
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Table 1 Summary of advanced automatic depression estimation methods

Evaluation Criterion
Method Year Framework Dataset Modal

MAE RMSE Accuracy F1-score

AVEC2013 A 8.201 10.001 - -He and Cao[18] 2018 2DCNN

AVEC2014 A 8.191 9.999 - -

SIDD 2023 - DAIC-WOZ A - - - 0.601

MSCDR 2022 1DCNN/ 
RNN

DAIC-WOZ A - - 0.771 0.746

DALF 2023 2DCNN DAIC-WOZ A - - - 0.784

STFN 2023 1DCNN DAIC-WOZ A 5.38 6.36 0.780 -

Speech 
Former++

2023 Transformer DAIC-WOZ A - - 0.733 -

Mao et al[24] 2022 CNN 
RNN

DAIC-WOZ (5) A - - - 0.958

AVEC2013 V-F 6.59 8.39 - -LGA-CNN 2020 2DCNN

AVEC2014 V-F 6.51 8.30 - -

AVEC2013 V-F 7.02 9.37 - -SAN 2022 2DCNN

AVEC2014 V-F 6.59 9.24 - -

AVEC2013 V-F 5.97 7.36Zhao et al[27] 2023 2DCNN

AVEC2014 V-F 5.85 7.23

AVEC2013 V-F 6.08 7.59 - -PRA-Net 2023 2DCNN

AVEC2014 V-F 6.04 7.98 - -

Yuan and Wang
[32]

2019 MLP Private V-E - - 0.831 -

EnSA 2022 Transformer Private V-E - - 0.955 -

SATCN 2022 1DCNN Private V-B - - 0.758 -

Zhao and Wang
[35]

2022 Transformer Private V-B - - 0.729 -

ULCDL 2023 RNN DAIC-WOZ A + V - - 0.830 0.900

AVEC2013 A + V 6.14 8.16 - -Niu et al[37] 2020 2D/3DCNN

AVEC2014 A + V 5.21 7.03 - -

Shao et al[38] 2021 RNN/CNN Private V + V - - 0.854 -

TAMFN 2022 2DCNN D-Vlog A + V - - - 0.750

AVEC2013 A + V 5.38 6.83 - -Uddin et al[41] 2022 2DCNN

AVEC2014 A + V 5.03 6.16 - -

V: Video data; A: Audio data; F: Facial information; B: Body information; MAE: Mean absolute error; RMSE: Root mean squared error; MSCDR: Machine 
speech chain model for depression recognition; SIDD: Speaker-invariant depression detector; DALF: Depression classification; STFN: Spatial-temporal 
feature network; LGA-CNN: Local global attention convolutional neural network; SAN: Self-adaptation network; PRA-Net: Part-and-Relation Attention 
Network; SATCN: Spatial attention-dilated temporal convolutional network; ULCDL: Uncertainty-aware label contrastive and distribution learning; 
TAMFN: Tme-aware attention-based multi-modal fusion depression detection network; DAIC-WOZ: Distress Analysis Interview Corpus/Wizard-of-Oz 
set; AVEC: Audio-visual emotion recognition challenges; DCNN: Dilated Convolutional Neural Network; CNN: Convolutional neural network; RNN: 
Recurrent neural networks.

To address this issue, they proposed a speaker-invariant depression detector, which achieved an F1 score of 0.601 on the 
DAIC-WOZ dataset. Du et al[20] incorporated patients' vocal tract changes into conventional speech perceptual features 
and developed a machine speech chain model for depression recognition (MSCDR) for ADE. The MSCDR extracts speech 
features from both generation and perception aspects and uses recurrent neural networks (RNN) to extract time-domain 
features for depression detection. The MSCDR achieved accuracy and F1 scores of 0.771 and 0.746, respectively, on the 
DAIC-WOZ dataset.
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Yang et al[21] observed that many ADE models based on manually designed features lack good interpretability, with 
features not fully utilized. Therefore, the depression classification (DALF) was proposed. Learnable filters in DALF can 
more effectively decompose audio signals and retain effective features. Analyzing the automatically learned filters allows 
for a deeper understanding of the focus areas of the model. This method achieved an F1 score of 0.784 on the DAIC-WOZ 
dataset. Han et al[22] introduced a spatial-temporal feature network (STFN) to capture audio features. The STFN initially 
captured the deep features of audio information and then used a novel mechanism called hierarchical contrastive 
predictive coding loss, replacing the commonly used RNN to capture temporal information. This approach reduces the 
parameter count of the model, making it more trainable. As such, the STFN achieved accuracy, RMSE, and MAE values of 
0.780, 6.36, and 5.38, respectively, on the DAIC-WOZ dataset. Chen et al[23] focused on integrating the Transformer 
architecture with audio features. Their proposed model, SpeechFormer++, utilized prior knowledge to guide feature 
extraction, achieving an accuracy of 0.733% on the DAIC-WOZ dataset. Mao et al[24] recognized that text features in 
audio are also important for capturing the patterns of depressive expressions. Consequently, they proposed an attention-
based fused representation of text and speech features. This approach initially inputs text information and low-level 
features of raw speech into an encoder for encoding and subsequently employs the encoded features for depression 
detection, achieving an F1 score of 0.958 in a five-class classification task using the DAIC-WOZ dataset.

Overall, the design of ADE models based on audio relies on the initial feature selection. Because audio information 
cannot be utilized directly by deep models, it is typically transformed before being extracted by deep models. These 
transformations are diverse, including directly using the raw waveform, applying Fourier transform or Fast Fourier 
Transform to transform the time-frequency domain information, converting audio into Mel spectrograms, and directly 
extracting audio features such as frame intensity, frame energy, and fundamental frequency. Diverse feature selection 
methods provide various possibilities for ADE, leading to discussions regarding which audio representation is more 
beneficial for ADE. The construction of the model must be aligned with the selected features for an effective feature 
extraction. Given that depression datasets are often small, methods to limit the learning of individual features by the 
model, as demonstrated by Zuo and Mak[19], should be carefully considered.

VIDEO-BASED DEPRESSION ESTIMATION
Video information often preserves changes in participants' facial expressions during exposure to stimulus paradigms. 
Facial expressions include both facial and bodily expressions. In medical research, video-based ADE models typically 
incorporate various attention mechanisms to enhance local facial features. He et al[25] proposed an ADE framework 
called the deep local global attention convolutional neural network (DLGA-CNN). In the DLGA-CNN, multiple attention 
mechanisms are introduced and utilized for extracting multiscale local and global features. Finally, these multiscale 
features are fused and employed for depression detection. The DLGA-CNN achieved RMSE and MAE values of 8.39 and 
6.59 on AVEC2013 and 8.30 and 6.51 on AVEC2014. He et al[26] also recognized the presence of annotation noise in 
depression datasets, which could negatively affect feature extraction and result in suboptimal ADE performance. 
Therefore, they proposed a self-adaptation network (SAN) to relabel erroneous annotations in the datasets. SAN achieved 
RMSE and MAE values of 9.37 and 7.02 on AVEC2013 and 9.24 and 6.95 on AVEC2014.

Zhao et al[27] acknowledged the significance of local and global information and proposed an ADE architecture based 
on facial images. To enhance the quality of facial images, the architecture initially utilizes the Gamma Correction[28] and 
DeblurGAN-v2[29] algorithms to balance brightness and contrast and improve image clarity. The architecture employs 
ConvFFN[30] as the main framework and designs the Hi-Lo attention module to enhance the features in different facial 
regions. Ultimately, this method achieved RMSE and MAE values of 7.36 and 5.97 on the AVEC2013 dataset and 7.23 and 
5.85 on the AVEC2014 dataset. Liu et al[31] introduced another approach, Part-and-Relation Attention Network (PRA-
Net), for feature extraction from facial regions for ADE. PRA-Net initially segments the extracted facial feature maps by 
region; these segmented regions are fed into a self-attention mechanism to capture interregional correlations. The 
classifier merges the regional feature maps with weights for the final decision. PRA-Net achieved RMSE and MAE values 
of 7.59 and 6.08 on the AVEC2013 dataset and 7.98 and 6.04 on the AVEC2014 dataset.

In addition to extracting features from the entire face, Yuan and Wang[32] explored the use of gaze features for ADE. 
They employed a fully connected network to extract gaze features from the participants and achieved an accuracy value 
of 0.831. Subsequently, Zhao and Wang[33] designed an attention-based architecture, EnSA, for ADE that achieved an 
accuracy of 0.955.

In addition to using facial expressions for ADE, utilizing body expressions is also an important approach. Yu et al[34] 
initially captured the participants' body skeleton change sequences using Kinect. Subsequently, they constructed a spatial 
attention-dilated temporal convolutional network (SATCN) based on an improved temporal convolutional network. 
SATCN achieved a maximum accuracy of 0.758 for binary classification tasks and a maximum accuracy value of 0.643 for 
multiclass datasets. Similarly, Zhao and Wang[35] employed body skeletal information for ADE. They observed 
differences in reaction times between the case and control groups for specific tasks. Consequently, they used the reaction 
time as prior knowledge along with skeletal information and input them into a Transformer for ADE. This approach 
achieved an accuracy value of 0.729. Compared to the abundance of facial-based ADE models, the number of models 
based on body expressions is relatively limited, warranting further research and exploration.

Unlike audio information, the advancement of convolutional networks enables the direct utilization of image 
information. Consequently, the construction of end-to-end ADE models has become mainstream in recent years. The 
inputs for these models do not require complex preprocessing and typically involve region cropping and lighting 
balancing. Extracting local information has become a crucial aspect of model construction and has emerged as a primary 
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research direction for ADE based on video information.

FUSION OF AUDIO- AND VISUAL-BASED DEPRESSION ESTIMATION
In addition to using unimodal information for depression prediction, depression-detection models that jointly utilize 
multiple modalities are being developed. Various methods of complementing information enhance the accuracy of multi-
modal models compared to unimodal models, with the combination of audio and visual information a commonly used 
approach.

Yang et al[36] designed uncertainty-aware label contrastive and distribution learning (ULCDL) to integrate facial, 
audio, and text information for ADE. ULCDL introduces a contrastive learning framework into ADE to enhance a model's 
learning capability, achieving an accuracy value of 0.830 and F1 score of 0.900 on the DAIC-WOZ dataset. Niu et al[37] 
combined facial sequences with audio spectrograms to detect ADE. Leveraging the characteristics of both features, they 
proposed spatiotemporal attention and multi-modal attention feature fusion networks to enhance and obtain cross-modal 
attention for the two features. This architecture achieved RMSE and MAE values of 8.16 and 6.14 on AVEC2013 and 7.03 
and 5.21 on AVEC2014. Shao et al[38] observed that different features from the same data can be complementary. They 
combined the participants’ RGB images of the body and body skeleton images for the ADE, achieving an accuracy value 
of 0.854 on a dataset comprising 200 participants. Zhou et al[39] approached ADE from the perspective of video blogs. 
Their proposed time-aware attention-based multi-modal fusion depression detection network (TAMFN) extracts and 
fuses multi-modal information from three aspects: Global features, inter-modal correlations, and temporal changes. 
TAMFN obtained an F1 score of 0.75 on the D-Vlog[40] dataset. Uddin et al[41] initially segmented audio and video into 
equally sized segments before using volume local directional structural patterns and temporal attention pooling to 
encode facial and audio information to obtain the importance of each video and audio segment. The next step involved 
formatting video and audio segments. Finally, multi-modal factorized bilinear pooling was employed to fuse the features 
and make decisions. This method achieved RMSE and MAE values of 6.83 and 5.38 on AVEC2013 and 6.16 and 5.03 on 
AVEC2014.

Multimodality is a new approach to ADE. Multimodal information mimics the patterns of diagnosis and treatment 
from multiple perspectives in clinical examinations. The most crucial aspect of multimodal information is the exploration 
and integration of hidden relationships among the various types of information. Initially, feature and decision fusions 
were the primary methods for combining features. However, these two approaches are simple and do not consider deep 
feature integration. With further research, ADE will demand multiscale and deep fusion of multimodal features. Cross-
modal fusion methods are no longer limited to feature and decision fusions. When constructing new fusion methods, 
identifying relationships between different types of information and methods to capture these relationships become 
crucial.

DISCUSSION
Facial information has been favored by most researchers for ADE methods based on video information. Studies such as[6] 
subdivided faces into multiple AUs for investigation. Inspired by these studies, researchers recognized the importance of 
local facial information. A series of attention mechanisms were proposed and employed to facilitate the model’s focus on 
local information. Although researches[34,35] has explored aspects such as gait and body movements in individuals with 
depression, compared with the excessive attention paid to ADE methods based on facial information, methods based on 
body expressions for ADE appear to be relatively scarce. Notably, databases analyzing the body movements of 
individuals with depression are often not publicly accessible. In addition, publicly available depression databases rarely 
contain body information. The lack of visibility and the difficulty in data collection are significant reasons for the limited 
development of ADE methods based on body expressions. Despite these challenges, we believe that this is an important 
research direction as facial expressions. We hope to develop more ADE methods based on the proposed body changes. 
Research related to human motion recognition, keypoint capture, and skeleton tracking may serve as valuable references 
for constructing ADE models based on body expressions.

For audio-based ADE methods, current approaches primarily involve combining handcrafted features or their 
transformed versions with deep features. Unlike facial expressions, audio information possesses richer individual charac-
teristics, making feature selection more difficult. Finding a unified and effective feature selection pattern, along with deep 
learning architectural methods, remains a crucial task for future research.

The integration of multi-modal features is crucial for future depression detection. In clinical assessments, specialized 
doctors evaluate the subjects from various perspectives. Similarly, ADE based on deep learning should mimic this 
approach by extracting and merging features from multiple perspectives and modalities. In particular, methods for 
feature fusion should be carefully designed by considering common tendencies, temporal synchronicity, and the dynamic 
nature of modalities. With ongoing enhancements in computational power, ADE methods based on large models will 
continue to be proposed.

However, data collection and availability remain significant limitations for the development of ADE. First, owing to 
privacy policies and research ethics, existing open-source datasets are scarce. Second, multi-modal data are rarely used in 
open-source datasets. While the DAIC-WOZ dataset provides transcripts, audio, and desensitized video information, 
datasets that offer other features potentially relevant to depression detection are lacking. Third, most of the current 
research on AI-based depression diagnosis and treatment has a relatively small sample size, making it challenging to 
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accurately reflect the characteristics of the overall population with depression. Fourth, data collection by the different 
research groups did not follow a unified standard.

In practical applications, deep learning-based ADE methods are still in the early stages of development. Nemesure et al
[42] assessed the mental well-being of student populations by combining electronic health records with machine learning 
methods. Aguilera et al[43] developed applications and applied them to primary care. We believe that the interpretability 
of deep learning is a major limitation in its application. Future research should focus on two directions to enhance model 
credibility. The first is the construction of knowledge-guided ADE models. The research framework proposed by Hitzler 
and Sarker[44] is a novel research direction. The second is the incorporation of relevant analyses for model interpre-
tability. Researchers can analyze the operating mechanism of a model using techniques such as visualization and feature 
capture.

In summary, researchers should focus on ADE based on bodily expressions. Additionally, unified and effective 
methods for audio feature extraction should continue to be explored. When constructing ADE models, special attention 
should be paid to the interpretability of the models. We hope that future research will introduce new perspectives and 
methods to address this aspect. Regarding data collection, research groups should consider publicly sharing their 
research paradigms, psychological effect evaluations, and desensitization data to help considerably advance the 
construction of large models and research progress in ADE.

CONCLUSION
In this paper, we provided an overview of prominent audio- and video-based ADE models in recent years, covering the 
aspects of audio, video, and fusion. An analysis of the relevant research revealed a lack of exploration of the body 
expressions of individuals with depression. We encourage researchers to delve further into audio feature extraction. In 
addition, we believe that the construction of large models is crucial for future research. We hope that researchers will 
develop outstanding ADE models in the future.
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