
localized there - in addition to the hitherto known ROS 
sources like the visual pigments with their intermedi-
ates and the photoreceptor mitochondria harbouring 
the respiratory chain.
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Core tip: The role of blue light and oxidative stress in 
the pathogenesis of retinal degenerative diseases like 
age related macular degeneration is still under debate. 
Recent studies including ours have demonstrated that 
all molecules of the respiratory chain are present in 
the outer segment of the photoreceptors-also being 
the source of reactive oxygen species-even more than 
the reactive oxygen species production in inner seg-
ment mitochondria. These two new findings have also 
important implications for many degenerative diseases 
of the retina. In this respect we revisited the literature 
regarding the photoreceptor reactions after blue light 
and radical stress.
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INTRODUCTION
Age related macular degeneration (AMD) has-like many 
neurodegenerative diseases-a multifaceted genesis with 
genetic, metabolic, immune and environmental factors[1,2]. 
Blue light damage and oxidative stress are prominent 
among the environmental factors, which are discussed 
recently[3,4]. Comprehensive and update reviews were 
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Abstract
A number of studies have shown that oxidative stress 
can be harmful for the retina. The real causal circum-
stances that lead to degenerative diseases like age 
related macular degeneration remain obscure. Whether 
light induced radical stress is a direct interaction of 
light with photoreceptors or a secondary mechanism 
within the pigment epithelium or choroid is in discus-
sion. Among the molecular mechanisms involved are 
production of reactive oxygen species (ROS), secondary 
lipid peroxidation, protein oxidation and DNA-damage. 
The initial trigger to write this review was first a recent 
finding of our group that the photoreceptor outer seg-
ments produce great amounts of ROS and second the 
detection of ectopic enzymes of the respiratory chain 
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published about oxidative stress in retinal cells in general 
and the relation to AMD by Jarrett et al[2] as well as about 
the blue light impact in the retina[4]. So we focussed more 
on the localization of  blue light induced oxidative stress 
in retinal cells, especially in photoreceptors. 

Here we want to show that photoreceptors are direct 
sources of  oxidative stress after blue light impingement-
especially their outer segments, in addition to the com-
monly known sites of  radical production (mitochondria, 
chromophores and photosensitizers like lipofuscin). This 
is due to complex metabolic machinery in the outer seg-
ments where ectopic enzymes of  the respiratory chain 
are located - besides the commonly known sources like 
NADPH-oxidases (NOX) and the visual pigments and 
their metabolites.  

THE PHOTORECEPTORS AND THEIR 
SURROUNDINGS AS POSSIBLE SITES OF 
RADICAL PRODUCTION
Compared to other cell types of  the retina, some features 
render the photoreceptors most vulnerable to oxidative 
damage. The photopigment rhodopsin is located within 
the outer segment discs. This rhodopsin undergoes 
photochemical processes, which lead to intermediates 
producing radicals a fact which is shown by the protein 
RPE65 (regeneration cycle protein of  rhodopsin): with-
out RPE65 blue light is much less dangerous for the 
retina[5]. Rhodopsin regeneration can also be halted by 
halothane, which renders the retina relatively insensitive 
to blue light[6]. 

Also secondary sources for radicals exist in the 
outer segments of  the photoreceptors: high amounts of  
polyunsaturated fatty acids, which are especially prone 
to oxidation and carboxyethylpyrrol-modified proteins 
(CEP). These derivates of  the non enzymatic oxidation 
of  docosahexanoid acid originate during radical impact, 
molecules that are believed to be very harmful because 
these adducts can cause neovascularisation in tiny con-
centrations and independent from the VEGF pathway[7]. 
All these lipid and protein oxidation products deposit 
near Bruch’s membrane and in Drusen below the RPE. 
Furthermore, these CEP proteins and other derivates of  
this kind are antigenic[8]. 

Normally, an over boarding accumulation of  such 
waste products is prevented by constant renewal of  the 
outer segment discs (around 10 of  the many 100 discs 
per day)-means about 3 billion times disc shedding till an 
age of  70 years[9-11]. 

Oxidation of  the disc membranes is also driven by the 
enormously high pO2 coming from the choroid-a region, 
which was previously thought to be “overperfused”[12-14]. 
However, in more pathologic states also zones of  cho-
roidal hypoxia can exist. Mostly, zones of  wet-AMD-
choroidal neovascularisation are located in areas of  poor 
choroidal perfusion[13,14]. In non-exudative AMD, too the 
average choroidal flow is lower[15]. 

Even more important than the absolute oxygen par-

tial pressure (pO2) in the choroid is the pO2 gradient 
also under physiological conditions. In their review, Ste-
fánsson et al[14] report that under physiologic conditions 
“the pO2 decreases almost linearly with the distance 
from the choro capillaries to the inner portion of  the 
photoreceptors”. Interestingly, at the inner portion of  the 
photoreceptors, the pO2 can reach 0 mmHg in the dark 
and is a little higher in the light. Hindrances in the dif-
fusion through Bruch´s membrane (see above) will even 
lower this pO2 at the inner segment of  the photorecep-
tor. At its outermost part (the ellipsoid), is the location of  
the photoreceptor mitochondria. This location, nearest 
possible to the pO2 source, is typical for the mitochon-
dria that are moving actively to this location in many cell 
types[16].

BLUE LIGHT STRESS IN THE RETINA
The term light (or blue light-) stress of  the retina is a 
multifaceted one: One should discern between (1) high 
intensity short-term damage (till 10 s): this means that 
the energy which impinges the retina is higher than the 
thermal diffusion (burning of  the retina and especially of  
the RPE); and (2) low-dosage long-term effects (10 s and 
longer - till decades in human eyes).

For AMD pathogenesis Lawwill et al[17] demonstrated 
in 1977 that also low irradiation intensities of  short 
wave length light could induce significant quantities of  
radicals-here, a cumulative retinal damage takes place 
during this kind of  irradiation. Such low threshold blue 
light (may also be fractionated) can lead to accumulation 
of  dangerous oxidation products also with the previously 
mentioned secondary oxidative reactions[17-19].

Regarding the whole eye, the cornea absorbs the UV 
- fraction of  the light, the lens absorbs also wavelengths 
above 380 nm till around 400 nm. In elderly persons, the 
lens can absorb even wavelengths higher than 450 nm. 
This means the lens has a yellow till brownish colour-
filtering out parts of  the blue spectrum[20-22]. 

Besides the regulation via the pupil, the sensitivity of  
the eye is adjusted by regulation of  the amount photopig-
ment within the photoreceptors. More sensitive photopig-
ment is located in the disc membranes under low light 
than if  it is adapted to bright light. In addition to this, a 
feedback control via the horizontal cells exists[23]. If  the 
spectrum is not continuous and shows only a few peaks, 
e.g., in strip lamp light the eye adjusts to the irradiation en-
ergy, which is integral to the peaks (which is less than in a 
continuous spectrum at the level of  the peaks). Thus, the 
eye increases its sensitivity and gets more vulnerable light 
especially to the harmful wavelengths (blue peak). Many 
experimental studies prove the capability of  the photo-
receptors to adapt by the mechanisms mentioned above. 
Indeed, animals reared in dark have more photopigment 
than those reared under a normal day-night cycle [18,24-28].

ROS DAMAGE IN THE MACULA
The photoreceptors of  the macula are exposed directly 
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to the light-no other cell layers are covering the photore-
ceptors and are absorbing parts of  the light spectrum via 
cytochromes or other cell pigments[29]. 

Within the photoreceptors of  the macula, the antioxi-
dative molecules lutein and zeaxanthin filter out blue light 
due to their yellow colour as natural “sunglasses”. These 
(also antioxidative) molecules are concentrated here thou-
sand fold compared to other regions of  the retina. The 
presence of  lutein in this domain is also consistent with 
the proposed role of  carotenoids in energy dissipation: in 
post-mortem human macula and retinal pigment epithe-
lium a significant singlet oxygen scavenging capacity was 
found, which was based on these carotenoids[30]. Further-
more, Woo et al[31] could show experimentally that lutein 
itself  has a great neuroprotective potential. 

COMBINATION OF BLUE LIGHT STRESS 
AND ROS DAMAGE
A hint for the close connection of  blue light stress and 
ROS production in the RPE comes from the observation 
that blue light toxicity is much higher under oxygenation 
levels near 100%-a situation found in vicinity to the cho-
roid[32]. 

Another factor is the wavelength of  light: In contrast 
to green light, blue light only hardly regenerates the rho-
dopsin molecule, thus intermediates accumulate and pro-
duce again ROS, superoxide radicals, hydrogen peroxide, 
hydroxyl radicals and other free radicals[12,33-40]. 

MITOCHONDRIA AS SOURCES OF ROS 
The photoreceptors need even more energy than neu-
rons and under aerobic conditions this energy is delivered 
by mitochondria[41,42]. Blue light and oxidative stress can 
elicit extra radical production by the respiratory chain 
handling with free electrons[43]. As a consequence of  the 
radical stress coming from the mitochondria also other 
cell organelles are under thread including the nucleus and 
the DNA[44]. 

In the photoreceptors the mitochondria are most nu-
merous in the “ellipsoid” of  the inner segment-directly 
beneath the cilium that connects the inner segment with 
the outer segment forming a very small channel where 
the membranes, proteins and also ATP, pyruvate and 
other energy sources have to pass to the outer segments. 
However, one should keep in mind that the outer seg-
ment discs membranes consume a lot of  energy, too. 

In addition to mitochondria, numerous other radi-
cal sources are present in the cell, e.g., membrane bound 
NADH and NADPH oxidases, so the impact of  oxida-
tive stress can elicit enhanced ROS production from dif-
ferent sites. 

EFFECT OF BLUE LIGHT ON 
MITOCHONDRIA
Experimental studies show that blue light impact en-

hanced radical production especially in mitochondria. 
Enzymes of  the respiratory chain absorb wavelengths 
between 440 and 450 nm producing radicals subsequent-
ly[45]. Inhibiting the respiratory chain by enzyme blockers 
or application of  antioxidants reduces ROS formation 
and cell death[46]. 

The high amount mitochondria within the photore-
ceptors are sources of  radical production and indeed, 
blue light elicits radical production there[47]. Also the 
radicals originating in the rhodopsin cycle in the outer 
segments produce di-retinoid-pyridinium-ethanolamine 
(A2E)-the most hazardous component of  lipofuscin first 
found within the retinal pigment epithelium (RPE) and 
later within the Drusen[48-50]. Interestingly, A2E blocks 
cytochrome c oxidase within the mitochondria[51]. So the 
radical product A2E itself  is blocking the respiratory 
chain and leads (as vicious cycle) to an increased devia-
tion of  electrons producing again new ROS.

ECTOPIC ENZYMES OF THE 
RESPIRATORY CHAIN WITHIN THE 
OUTER SEGMENTS
Panfoli et al[52-54] were the first authors who published the 
discovery that the outer segments discs harbour ectopic 
enzymes of  the respiratory chain. The activity of  these 
enzymes was in a range comparable to that of  the respi-
ratory enzymes in mitochondria. Panfoli et al[52-54] could 
also confirm the high proton gradient between outer and 
inner compartment of  the discs. This is an important 
analogy because, e.g., rods possess a double space encir-
cled by membranes like the mitochondria do. Regarding 
the highly energy consuming process of  phototransduc-
tion and the rapid increase of  energy demand in light and 
dark cycles. Calzia et al[55] argue that it would be doubtful 
that ATP and phosphocreatine can diffuse from the in-
ner segment (mitochondria!) to the outer third of  the 
outer segments (only these are active in the rhodopsin 
cycle) with a proper timing[56]. Overall the O2 consump-
tion of  the outer segments is three-fold greater than the 
inner retina[57]. The above mentioned paper of  the Panfoli 
group[55] show even evidences that parts of  the respira-
tory complexes come from mitochondrial membranes 
fused with the newly formed membranes of  the outer 
segment discs. 

Interestingly, we could show in our recent paper us-
ing a mouse explant model[58] that dyes that mark double 
membranes separating high proton gradients (like it was 
thought to be exclusively the case in mitochondria) and 
thus stain exclusively mitochondria, mark the outer seg-
ment of  photoreceptors, too[58]. 

In this paper, we have also studied the ROS produc-
tion (localisation and amount) in photoreceptors of  
retinal explants after blue light. We were surprised that 
the same amounts or even more of  ROS were produced 
in the outer segments compared to the inner segments. 
Possibly, this ROS production in the outer segments is 
due to the newly found respiratory complex activity (see 
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above) or alternatively also due to NOX[59]-this is still to 
determine. 

In the light of  the present results, the energy deliv-
ery for the process of  constant disc renewal should be 
therefore the predominant function of  the inner seg-
ment mitochondria because shedding of  outer segment 
membrane discs is prone to interference by blue light and 
ROS and this function requires a vast amount of  energy 
(see above). The results of  our recent study also suggest 
that not only the respiratory complexes of  the mitochon-
dria in the inner segment but also of  the outer segments 
should be responsible for this very high oxygen con-
sumption seen in the outer retina[58]. Impairment of  the 
metabolic machinery (e.g., lower pH) means also an inef-
ficient photo transduction, which could be demonstrated 
by Calzia et al[60].

On the other hand, the high vulnerability of  the outer 
segments to ROS damage could also lead morphologi-
cally to disorganisation of  the photoreceptor outer seg-
ments[61]. In this regard we could demonstrate in a previ-
ous paper[61] that, indeed, after blue light and enhanced 
ROS production the alignment of  the outer segments 
and the disc arrangement is disturbed, long before the 
photoreceptors go into degeneration and apoptosis. This 
finding corroborates a hypothesis of  Eckmiller[62] that 
explains why this disturbed alignment of  photoreceptors 
and other retinal cells along the visual pathway are re-
sponsible for the distortions of  the central visual field in 
early AMD[63] patients.

CONCLUSION
The review of  the literature and the new results of  the 
Panfoli group and of  our group show how complex the 
pathogenesis is during the early stages of  AMD. This also 
suggests that clinicians should look especially to the mac-
ular photoreceptors, to the alignment of  outer segments 
with more refined methods. What is also needed is the 
development of  high resolution functional imaging of  
the metabolic state in the different retinal layers because 
only the very late stages of  AMD can be monitored and 
treated till now. Such refined imaging methods would also 
allow monitoring of  the impact of  dietary[63] and life style 
changes on the progression of  early AMD.
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