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Abstract 

Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma. Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde (AcCHO) and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signalling pathways and deranges the transcriptional control of several genes leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. AcCHO is the well-known toxic for the liver and alters lipid homeostasis decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding proteins activities via an AMP-activated protein kinase (AMPK) dependent mechanism. AMPK activation by ROS modulates autophagy that has an important role in removing lipid droplets. AcCHO and aldehydes generated from lipoperoxidation induce collagen synthesis by their ability to form protein adducts that activate TGF-(-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSC). Furthermore, activation of innate and adaptive immunity in response of ethanol metabolism plays a key role in the development and progression of ALD. In fact, AcCHO contributes to alter the intestinal barrier and promote LPS translocation by disrupting tight and adherent junctions in human colonic mucosa. AcCHO and LPS induce Kupffer cell to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSC and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell-mediated adaptive immunity by impairing proteasome function in macrophage and dendritic cells and consequently alters allogenic antigen presentation. Finally, AcCHO and ROS have a role in alcohol-related carcinogenesis since they can form DNA adducts that are prone to mutagenesis, they interfere with methylation, synthesis and repair of DNA, thereby increasing hepatocellular carcinoma susceptibility.  
© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The goal of this article is to review the mechanisms of alcohol-mediated toxicity in parenchymal and non-parenchymal cells of the liver. Specifically, we highlight the effect of oxidative-ethanol metabolites such as acetaldehyde and reactive oxidative species in the development of fat accumulation, fibrosis and deranged immune response.  
Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J Gastroenterol 2014; In press
INTRODUCTION
Alcoholic liver disease (ALD) is one of the major cause of morbidity and mortality worldwide and its clinical spectrum includes steatosis, fibrosis, alcoholic hepatitis (AH), cirrhosis, and hepatocellular carcinoma (HCC)[1]. Multiple factors (sex, obesity and genetic) are involved in the progression of ALD but how these aspects influence the clinical outcome remain unclear. More than 90% of heavy drinkers develop fatty accumulation but only 30% of alcoholics develop severe forms of ALD. Ethanol and the products of its metabolism have toxic effects on the liver and in the last decades, significant progress has been made in understanding the molecular mechanisms by which ethanol oxidative metabolism contributes to the pathogenesis of ALD
 ADDIN EN.CITE 
[2]
. Ethanol oxidation to acetate is a two-step process carried out by the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). These enzymes use NAD+ as a cofactor (Figure 1).

ADH first oxidize ethanol to acetaldehyde (AcCHO) which is then further oxidize to acetate by ALDH. In humans, there are at least 8 iso-enzymes of ADH and 4 iso-enzymes of ALDH. ADH is a family of cytosolic enzymes mainly present in the liver but also in the gastrointestinal tract, kidney, nasal mucosa, testis and uterus. They are classified into five classes (ADH1 to ADH5) that differ for structural and kinetic characteristics. ADH1 plays the major role in the metabolism of ethanol in the liver
 ADDIN EN.CITE 
[3-7]
. Because of its electrophilic nature, AcCHO
 ADDIN EN.CITE 
[8]
 can bind and forms covalent chemical adducts with proteins, lipids, and DNA
 ADDIN EN.CITE 
[9-13]
. These adducts are broadly pathogenic because they alter cell homeostasis changing protein structure
 ADDIN EN.CITE 
[11,12,14,15]
 and promoting DNA damage and mutation.
ADH and ALDH reactions lead to an accumulation of NADH and the consequent reduction of NAD+/NADH ratio that has a significant effect on important biochemical pathways such as glycolysis, citric acid cycle, fatty acid oxidation and glucogenesis. NADH is mainly reoxidized to NAD+ by the mitochondrial electron transfer chain
 ADDIN EN.CITE 
[16,17]
. During the electrons transfer to oxygen different reactive oxygen species (ROS) such as superoxide anion (O2-∙), hydrogen peroxide (H2O2); and the hydroxyl radical (OH.) are formed[16]. These species are unstable and rapidly react with additional electrons and protons. Although most of these ROS are converted to water before they can damage cells[18], a small proportion can generate toxic effects as lipid peroxidation, enzymes inactivation, DNA mutations, and destruction of cell membranes
 ADDIN EN.CITE 
[19-21]
.
Another metabolic system involved in ethanol metabolism is the microsomal ethanol oxidizing system (MEOS) constituted by the cytochrome P450 enzymes. These proteins are a superfamily of heme enzymes involved in oxidation of numerous endogenous substrate such as steroids, fatty acid and xenobiotics[22]. They catalyze many different reactions as monooxigenation, peroxidation, dealkilation, epoxidation, and dehalogenation in order to convert different chemical molecules in more polar metabolites to be excreted. An ethanol inducible form of P-450[23], catalyzes ethanol oxidation at rates much higher than other P-450 enzymes. In physiological conditions only a small portion of ethanol, about 10%, is oxidized to acetaldehyde by CYP2E1[24] but during chronic alcohol abuse there is an induction of the microsomal system
 ADDIN EN.CITE 
[25,26]
, and an increase of CYP2E1 protein expression. The increase of CYP2E1 during chronic ethanol intake is correlated to a decrease of proteasomal degradation, which increases CYP2E1 protein stability
 ADDIN EN.CITE 
[27,28]
. Multiple factors such as insulin, acetone, leptin, adiponectin and cytokines regulate CYP2E1 mRNA and protein expression[29] and CYP2E1 expression levels depends on nutritional and metabolic condition. For example, genetic obese mice or high-fat diet fed rats have high levels of CYP2E1
 ADDIN EN.CITE 
[30,31]
. Furthermore, increased CYP2E1
 ADDIN EN.CITE 

[32]
 is found in diabetics probably due to insulin post transcriptional modulation
 ADDIN EN.CITE 

[33,34]
. CYP2E1 catalyzes the oxidation of ethanol to acetaldehyde and it could catalyze the oxidation of the latter to acetate [35] but this reaction is disadvantageous in the presence of ethanol[36]. The catalytic reaction of CYP2E1 generates a significant amounts of ROS, such as O2-∙, H2O2, hydroxyl radical OH. and the hydroxyethyl radical (HER)
 ADDIN EN.CITE 
[29,37]
. H2O2 can react with metal ions to produce highly reactive hydroxyl radicals
 ADDIN EN.CITE 
[37,38]
 and determine a broad range of adverse biological responses
 ADDIN EN.CITE 
[37,39]
. Lipid peroxidation is probably the most important reaction involved in the alcohol-induced liver damage
 ADDIN EN.CITE 
[40,41]
 by the formation of toxic aldehydes, including malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), that similarly to acetaldehyde are able to react with DNA to form exocyclic DNA adducts. DNA adducts such as N2-ethyldeoxyguanosine (N2-Et-dG)
 ADDIN EN.CITE 
[40]
 and 1,N(2)-propano-2’-deoxyguanosine (PdG) are detectable in livers of alcohol-exposed mice, and in alcohol-associated cancers
 ADDIN EN.CITE 
[42]
 in humans. They generate DNA-protein and DNA inter-strand cross-links[12] and produce replication errors and mutations in oncogenes or onco-suppressor genes[43] with genotoxic, mutagenic and carcinogen effects[43]. Aldehydes generated by ethanol metabolism can also cross-react to form hybrid adducts. For example, malondialdehyde/acetaldehyde hybrid adducts (MAA) potentiate carcinogenic effect of single adduct
 ADDIN EN.CITE 
[10,44,45]
, thereby perpetuating their genotoxic effects. Auto-antibodies against MMA were significantly elevated in sera of chronic alcohol-exposed animals [46] and in patients with ALD and the titres correlated with the severity of liver damage 
 ADDIN EN.CITE 
[11, 47, 48]
 and progression of liver fibrosis. Interestingly, adducts accumulate in perivenous regions both in alcohol-fed rat
 ADDIN EN.CITE 
[49,50]
 and in liver of alcoholics
 ADDIN EN.CITE 
[51,52]
 livers, overlapping with the distribution of fatty accumulation. 
Peroxisomal catalase is an additional metabolic pathway involved in ethanol oxidation. Catalase is a heme-containig enzyme that normally catalyzes the removal of H2O2 but it can catalyzes the oxidation of alcohol to acetaldehyde. This pathway is not significant in the liver, but seems to be important in the brain, in fact acetaldehyde produced from catalase-dependent oxidation of ethanol seem to play a role in tolerance and alcohol addiction interfering with catecholamines neurotransmission
 ADDIN EN.CITE 
[53-55]
. 
MECHANISMS OF ALCOHOLIC FATTY LIVER
The earliest response of the liver to alcohol abuse is characterized by lipid accumulation in hepatocytes that is a reversible condition but can progress to inflammation and fibrosis. The mechanism of triglycerides and fatty acids accumulation in the liver during alcohol consumption involved regulatory pathways that control lipid synthesis, oxidation and very-low density lipoprotein exportation. Short term studies on isolated hepatocytes or perfused liver have shown that ethanol reduced the rate of (-oxidation and stimulated fatty acid uptake[56]. The increased production of reducing equivalents (NADH) from ethanol oxidation by ADH is believed to cause a shift in the cytosolic NADH/NAD+ ratio, which in turn increased NADH/NAD+ ratio in the mitochondria. Because many of the enzymes of fatty acid oxidation are pyridine nucleotide-dependent, their activities are inhibited by NADH, resulting in reduced ability to oxidize fatty acids
 ADDIN EN.CITE 
[57,58]
. Although generation of reducing equivalents by ADH is sufficient to cause lipid accumulation[59] ,the finding that fat infiltration in the liver persists despite normalization of NADH/NAD+ ratio and that antioxidants prevent it in rat chronically fed alcohol suggest that additional mechanisms are involved
 ADDIN EN.CITE 
[60]
 (Figure 2). The role of PPAR receptors in the Fatty Liver Disease (FLD) has been highly investigated in the last decade. These receptors are members of steroid/retinoid nuclear receptor superfamily of trancription factors
 ADDIN EN.CITE 
[61,62]
. PPAR( regulates transcription of genes involved in the esterification and export of fatty acids and oxidizing them in the mitochondria, peroxisomes, and microsomes. 
PPAR-null mice fed with Lieber-DeCarli diet exhibited hepatomegaly, macrovesicular steatosis, hepatocyte apoptosis, and hepatic fibrosis, all aspects resembling the pathological features of ALD[62], and suggesting that inhibition of PPAR( trancriptional activity might be implicated in fat accumulation. Ethanol metabolism, by way of AcCHO, interferes with the transcriptional activity of PPAR( in hepatoma cells[62]. This effect is accompanied by a reduction in the ability of this receptor to bind its DNA consensus sequence reflecting a possible covalent modification by AcCHO or changes in its phosphorylation state. Accordingly, chronic ethanol feeding in mice inhibited PPAR( DNA binding activity and decreased PPAR( target genes
 ADDIN EN.CITE 
[63,64]
. In mouse models of alcohol-induced liver disease treatment with PPAR( ligands such as WY14, 643 and clofibrate, restores receptor activity and significantly ameliorates fat accumulation and necroinflammation
 ADDIN EN.CITE 
[63,64]
. In addition, ethanol can also inhibit PPAR-α via up-regulation of CYP2E1–derived oxidative stress
 ADDIN EN.CITE 
[65]
.
Sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors strictly correlated with PPARs and they control a set of enzymes involved in the synthesis of fatty acids and triglycerides. AcCHO produced from ethanol methabolism enhanced the levels of SREBP-1 in hepatoma cells
 ADDIN EN.CITE 
[66]
 and SREBP-1 protein levels are increased in animal models of alcohol-induce hepatic fat accumulation


[66,67] ADDIN EN.CITE . The role of SREBP-1 in alcoholic steatosis has been confirmed by several studies that couple the levels of this transcription factor with the ability to promote alcoholic fat accumulation by TNFα[68] , circadian gene Per-1
 ADDIN EN.CITE 
[69]
, early growth response 1 (Egr-1)[70], epinephrine[71] and ER stress response
 ADDIN EN.CITE 
[72]
. Interestingly, in response to acute and chronic ethanol exposure mitogen-activated protein kinase family members including JNKs (c-Jun amino N-terminal protein kinase) are activated and JNK inhibitors blunt steatosis reducing oxidative stress and blocking SREBP-1 expression in hepatoma cells[73]. Furthermore, recent studies demonstrate that PI3K/AKT pathway activation is involved in acute ethanol-induced fatty liver in mice and specifically inhibits the phosphorylation and degradation of SREBP-1
 ADDIN EN.CITE 
[74]
. SREBP-1 is also modulated by AMP-activated protein kinase (AMPK). AMPK is a key player in the regulation of cellular energy homoeostasis by limiting anabolic pathways (to prevent further ATP consumption) and by facilitating catabolic pathways (to increase ATP generation). AMPK is a metabolic sensor by phosphorylation of enzymes involved in lipid metabolism. Chronic ethanol exposure inhibits AMPK activity in cultured rat hepatocytes through the inhibition of PKC-( (protein kinase C () and LKB1 (Liver kinase B1) phosphorylation[75] and impaired AMPK activity was shown in hepatocytes isolated from rats fed with ethanol
 ADDIN EN.CITE 
[76]
. This inhibition plays a key role in the development of steatosis by the activation of hepatic lipogenesis, cholesterol synthesis and glucose production in parallel with the decrease of fatty acid oxidation
 ADDIN EN.CITE 
[74]
. In rat hepatoma cells overexpression of a constitutive active form of AMPK blocked the effect of ethanol, on the contrary, dominant negative form augmented the effect through regulating SREBP-1
 ADDIN EN.CITE 
[77]
. Interestingly, recent data demonstrated that Lipin-1, a Mg2+ phosphatidate phosphatase involved in the biosynthesis of triacylglycerol and in the transcriptional regulation of lipid homeostasis, is up-regulated by ethanol through inhibition of AMPK and activation of SREBP-1[78]. Increased intracellular concentrations of ROS may represent a general mechanism for the enhancement of AMPK-mediated cellular adaptation, including the maintenance of redox homeostasis. AMPK activation by ROS can promote cell survival by inducing autophagy, mitochondrial biogenesis and expression of genes involved in antioxidant defense. Autophagy is a genetically programmed, evolutionarily conserved process of cellular catabolism that serves to maintain a balance among protein synthesis, degradation, and recycling. Autophagy implies degradation of damage organelles and cellular protein in order to promote cell survival[79].The mammalian target of rapamycin (mTOR) is a key regulator of autophagy. During deprivation of nutrients or other cause of cellular stress there is the inhibition of mTOR/rapamycin pathway and a consequent autophagy activation in hepatocytes
 ADDIN EN.CITE 
[80,81]
. There are contrasting data regarding the effect of ethanol metabolism on autophagy. Long-term alcohol consumption inhibits autophagy
 ADDIN EN.CITE 
[82]
 but recent study showed that ethanol metabolism up-regulates autophagy in cultured hepatoma cells
 ADDIN EN.CITE 
[83]
. Short-term ethanol exposure activates autophagy by generating acetaldehyde and ROS and inhibiting mTOR. These data indicate that acute ethanol activation of autophagy could have a compensatory role that prevents development of steatosis during the early stages of alcoholic liver injury[84]. Beyond mTOR, there are several other pathways involved in the induction of autophagy. Recently, Ni and colleagues demonstrated that in vivo and in vitro acute ethanol treatment activates nuclear translocation of FoxO3a and expression of FoxO3a target genes. The authors suggest that the ethanol activation of FoxO3a could be mediated by Akt activation. In primary hepatocytes expression of a dominant negative form of FoxO3a inhibited ethanol-induced autophagy-related genes and improved ethanol-induced cell death sauggesting that FoxO3a is a key factor in regulating ethanol-induced autophagy and cell survival
 ADDIN EN.CITE 
[85,86]
. In addition, SIRT-1, the NAD+ dependent protein deacetylase is indicated as a crossroad between autophagy and the transcriptional regulation of lipid metabolism. In rat hepatoma cells expressing alcohol-metabolizing enzymes, ethanol reduces SIRT-1 expression and impairs the SIRT-1 induced deacetylation of SERBP-1 leading to an increase of fatty acids synthesis[87]. In addition the findings that the master regulator of autophagy mTOR complex 1 (mTORC1) regulates SERBP-1 by controlling the nuclear entry of lipin-1
 ADDIN EN.CITE 
[88]
 and that Adiponectin protects liver cells from ethanol-induced apoptosis via induction of autophagy
 ADDIN EN.CITE 
[89,90]
, indicate that ethanol metabolism may affect different metabolic targets of a complex transcriptional network that control hepatic lipid homeostasis. Recent intriguing data correlate ethanol-induced fat accumulation with the hypoxia-inducible factors (HIFs). HIFs are the master regulators of oxygen homeostasis and regulates the expression of many genes involved in glycolysis, glucose transport, and synthesis of inflammatory and proangiogenic cytokines
 ADDIN EN.CITE 
[89-91]
. The HIF-1α protein is rapidly degraded under normoxic conditions whereas hypoxia enhances HIF-1α levels by inhibiting its degradation
 ADDIN EN.CITE 
[92-94]
. HIF-1 has been implicated in many models of liver injury[95] and it has been reported that feeding mice for 4 wk with the Lieber–DeCarli diet increased HIF-1α mRNA, protein, and DNA-binding activity in the liver. In addiction mice lacking HIF-1α in hepatocytes have a reduced hepatic steatosis and hypertriglyceridemia
 ADDIN EN.CITE 
[96]
. Conversely, Nishiyama et al[97] with a similar molecular technology found that activation of HIF-1α suppresses ethanol-induced fatty liver. These discordant results between the two studies is difficult to explain although recently data in methionine and choline-deficient diet model showed that up regulation of HIF-1α correlated with steatotic infiltration and activation of Wnt/β-catenin signalling pathway
 ADDIN EN.CITE 
[98]
. Furthermore, the link between HIF-1 expression and the anti-lipogenic IL-6-STAT3 signaling
 ADDIN EN.CITE 
[99-101]
 suggests that further studies are needed to clarify the role of hypoxia and HIF pathway in alcoholic fatty liver. 
MECHANISM OF ALCOHOL-INDUCED FIBROGENESIS 
Hepatic fibrosis is a major histological feature associated with the progression of chronic liver disease to cirrhosis; it is characterized by increased deposition of components of the extracellular matrix (ECM), in particular fibrillar collagens type I and type III
 ADDIN EN.CITE 
[102,103]
. This process is associated with an upheaval of hepatic architecture, decreased number of endothelial cell fenestrations and portal hypertension. The key event in hepatic fibrogenesis is hepatic stellate cells (HSC) activation. HSC are one of the major sources of ECM in the liver and they have been identified as the precursor cell type mainly responsible for the development of liver fibrosis.  Following liver injury, HSC undergo an activation process that leads to the loss of the typical star-shape fat-storing phenotype and acquisition of myofibroblast-like phenotype consisting by increased cell proliferation, enhanced cytokine expression and synthesis of ECM components
 ADDIN EN.CITE 
[104,105]
. AcCHO is one of the main mediators of alcohol-induced fibrogenesis in the liver
 ADDIN EN.CITE 
[106,107]
. Early studies have shown that acetaldehyde can stimulate synthesis of fibrillar-forming collagens and structural glycoproteins of ECM in hepatic stellate cells (HSCs)
 ADDIN EN.CITE 
[108]
. In addition acetaldehyde promotes ECM remodelling by up-regulation of the interstitial collagenase MMP-2 and down-regulation of the fibrillary collagenase MMP-1, thus resulting in the substitution of the normal ECM components with a sclerotic matrix
 ADDIN EN.CITE 
[109,110]
. In human HSCs, acetaldehyde directly induces the transcription of the α1(I) and α2(I) procollagen genes by a protein kinase C (PKC)-dependent pathway, which is involved in a rapid activation of AP-1 transcription factors
 ADDIN EN.CITE 
[111]
 (Figure 3). In human HSC PKC phosphorylates p70s6k by a mechanism that involves both ERK1/2 and PI3K, and all these pathways lead to collagen α2(I) gene expression[112]. Both collagen α1(I) and α2(I) promoters have an AcCHO-responsive element (AcRE) that includes binding sites for different transcription factors including AP-1 and Sp1. AP-1 activation was postulated to be involved in the AcCHO-induced expression of the basic transcription element binding protein (BTEB), which is able to transactivate the rat α1(I) collagen promoter
 ADDIN EN.CITE 
[113,114]
. In addition, AcCHO modulates collagen α1(I) expression with a mechanism involving members of the C/EBP family of transcription factors. AcCHO increases DNA binding and transcriptional activity of C/EBPβ
 ADDIN EN.CITE 
[115,116]
 with a mechanism that requires H2O2 production
 ADDIN EN.CITE 
[117]
. Similarly, AcCHO exerts its pro-fibrogenic action, by the inhibition of the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activity in HSCs[118]. PPARγ is a member of the nuclear receptor superfamily of ligand-dependent transcription factors that is predominantly expressed in adipose tissue, where it has been shown to have a key role in adipogenesis and in regulation of insulin resistance
 ADDIN EN.CITE 
[117]
. AcCHO inhibits PPARγ trancriptional activity in a H2O2-dependent phosphorylation of the receptor
 ADDIN EN.CITE 
[119-121]
. AcCHO stimulates H2O2 production that induces a signal transduction cascade that involves cAbl, PKC( and ERK1/2. AcCHO does not induce collagen synthesis in quiescent HSCs
 ADDIN EN.CITE 
[122]
 and it was not able to modulate PPARγ phosphorylation in these cells. The molecular events involved in the unresponsiveness of quiescent HSCs to fibrogenic stimuli[64] including AcCHO remain speculative. 

A different mechanism of AcCHO-induced fibrogenesis involved TGF-(/SMAD signalling. AcCHO increases the secretion of transforming growth factor b1 (TGFβ1) and induces TGFβ type II receptor expression in HSC
 ADDIN EN.CITE 
[123]
. Interestingly, in cultured human HSC it has been shown that acetaldehyde up-regulates Collagen (1(I) mRNA expression via two distinct mechanisms
 ADDIN EN.CITE 
[115,124]
. An early TGF-(-independent response occurs within three hours of acetaldehyde administration in human HSCs and selectively is correlated to Smad3 phosphorylation[107]. On the contrary, longer AcCHO incubation induces a TGF-β-dependent late-phase response
 ADDIN EN.CITE 
[125]
 characterized by an induction of latent TGFβ1 secretion as well as Type II TGF-β receptor expression[126]. Recently , acetaldehyde was shown to modulate β-catenin signaling[126] by a mechanism that inactivates nucleoredoxin (NXN) and release dishevelled (DVL) from NXN/ DVL complex, leading to the inactivation of GSK3B, and thereby blocks β-catenin phosphorylation and degradation. Thus, the stabilized β-catenin translocates to the nucleus where it up-regulates fibrogenic genes
 ADDIN EN.CITE 
[44,51,127,128]
. It is still unclear whether the profibrogenic effects of acetaldehyde are mediated by its ability to form protein adducts. However elevated levels of acetaldehyde–protein adducts correlate with the progression of liver fibrosis both in alcoholic patient and animal experimental models 
 ADDIN EN.CITE 
[129]
. Furthermore neutrophil-derived ROS are able to induce lipid peroxidation and MDA/HNE protein-adducts in HSCs resulting in increased collagen synthesis
 ADDIN EN.CITE 
[130]
.

The role of ROS and lipid peroxidation in hepatic fibrogenesis is well documented in cellular and animal model. Cytochrome P450 2E1-dependent generation of ROS increases collagen I protein synthesis in a co-cultures system of hepatocytes and HSC[131] . 
Recent work has shown that CYP2E1 activity correlates with ethanol-induced liver injury, lipid peroxidation and collagen deposition[132]. CYP2E1 deletion effectively blocks ethanol-mediated lipid peroxidation and reduced liver injury as shown in CYP2E−/− mice
 ADDIN EN.CITE 
[133]
. In contrast, transgenic mice overexpressing CYP2E1
 ADDIN EN.CITE 
[134]
 enhance oxidant stress and hepatic fibrogenesis. Recently it has been shown that that protein levels of HIF-1α and its downstream targets were elevated in the ethanol-fed CYP2E1-knock-in (KI ) mice compared to the Wild-type (WT) and CYP2E1 knockout (KO) mice suggesting that CYP2E1 plays a role in ethanol-induced hypoxia. Angiogenesis is coupled with fibrogenesis during liver injury and HIF-1α contributes to CYP2E1-dependent collagen deposition and ECM remodeling. Recent studies highlights the role of osteopontin (OPN) in ALD and its correlation with hepatic fibrogenesis. OPN is a multifunctional protein, involved in different pathological conditions and it is associated with inflammation, autoimmunity, angiogenesis, fibrosis and cancer progression in various tissues. The osteopontin levels in the liver are correlated with fibrosis in patients with alcoholic liver disease[135]. OPN is pro-fibrogenic by promoting HSC activation and ECM deposition in vitro and in vivo. Opn−/− mice have a significant delay in fibrosis resolution and a decreased expression of inflammatory cytokines[136]. Hepatic expression and serum levels of OPN were markedly increased in AH, compared to normal livers and other types of chronic liver diseases, and correlats with disease severity and short-term survival. Recent data show that osteopontin binds LPS and protect from early alcohol-induced liver injury by blocking the TNFα effects in the liver[137]. Furthermore OPN was reported to be a downstream effector of Hedgehog pathway, which modulates fibrosis and is involved in peculiar aspect of hepatic carcinogenesis[138].

ETHANOL OXIDATION AND ACTIVATION OF INNATE AND ADAPTIVE IMMUNITY 
Innate immunity have a central role in the pathogenesis of ALD and in the last decades significant progress has been made in understanding the molecular mechanism contributing to the alcohol dependent activation of innate immunity and inflammation. Several evidences indicates that alcohol consumption causes enteric dysbiosis and bacterial overgrowth
 ADDIN EN.CITE 
[139, 140]
 that leads to a significant increase of gut permeability and consequent high levels of lipopolysaccharide (LPS) in the portal circulation
 ADDIN EN.CITE 
[141-143]
. AcCHO contributes to alter intestinal barrier and to promote endotoxin translocation by disrupting tight and adherens junctions in human colonic mucosa
 ADDIN EN.CITE 
[144]
 via increasing tyrosine phosphorylation of occludin and E-cadherin. The mechanism of AcCHO-induced alteration of gut permeability remains unclear although acute ethanol exposure up-regulates miRNA-212 in enterocytes and this is correlated with zonula occludens-1 protein down regulation
 ADDIN EN.CITE 
[145-150]
. LPS interacts with the Toll-like receptor-4 (TLR4) to activate the MyD88 dependent and independent (TRIF/IRF-3) signaling pathways and induces Kupffer cells to release ROS and an array of proinflammatory cytokines and chemokines including IL-1(, tumor necrosis factor α (TNF- α), IL-6, IL-8, macrophage chemotactic protein 1 (MCP-1), and RANTES[151]. In addition ROS produced by Kupffer cell in response to endotoxin induces hepatic expression of TLR4
 ADDIN EN.CITE 
[152,153]
, enhance the transduction of TLR4-mediated signals through NF-kB, and activate MAPK pathways
 ADDIN EN.CITE 
[154-157]
. Several data indicate TLR4 is the main player in development and progression of ALD. TLR4 is also express in HSC and endothelial cells (SEC) and regulates alcohol-induced proangiogenic and profibrogeic responses[158]
Kupffer cell activation contributes to intrahepatic recruitment and activation of granulocytes
 ADDIN EN.CITE 
[159-161]
. AcCHO and LPS
 ADDIN EN.CITE 
[162-164]
 stimulate parenchymal and non-parenchymal cells to produce IL-8, CXCL1 (Gro-() and IL-17 that directly or indirectly contribute to neutrophils infiltration and to the severity of AH
 ADDIN EN.CITE 
[165-167]
. An alternative pathway that contribute to the expression of inflammatory cytokines is the complement system. Ethanol oxidation activates C1q, C3 and C5 components that in turn stimulate Kupffer cells to produce TNF-
 ADDIN EN.CITE 
[168]
 .

A recent study indicate that IL-1β has an important role in alcohol-induced steatohepatitis. IL-1β is a potent proinflammatory cytokine whose levels are increased in patients with ALD and correlated with oxidative stress. IL-1β maturation is dependent on caspase 1 in the multiprotein complex named inflammosome. In vivo intervention with a recombinant IL-1β receptor antagonist ameliorates inflammosome-dependent alcoholic steatohepatitis in mice suggesting a potential role of IL-1 inhibition in the treatment of ALD
 ADDIN EN.CITE 
[169-171]
. 

On the contrary convincing data demonstrated that activation of innate immunity also induced elevation of anti-inflammatory and hepatoprotective cytokines such as IL-10 and IL-6. These cytokines activate STAT3 in hepatocytes, Kupffer and endothelial cells preventing alcohol-induced liver injury and inflammation
 ADDIN EN.CITE 
[172]
. As a matter of fact the effect of ethanol oxidative metabolism on STAT3 in the liver is complex. STAT3 is a cell survival signal and protect against hepatocellular damage. STAT3 in the liver is significantly impaired in chronic alcoholic patients compared with other different liver diseases such as chronic hepatitis C and autoimmune disease. Furthermore ethanol oxidation is correlated with suppression of NK cells function in the liver. NK cells have important antifibrotic function in chronic liver disease and several studies indicated that during liver injury there is an elevated expression of NK cells ligands. An active crosstalk between HSC and NK cells via TRAIL-TRAIL receptor interactions and a consequent production of IFN-( results in NK cell cytotoxicity of HSC, thereby limiting hepatic fibrogenesis[173]. Oxidative stress in chronic ethanol consumption induces increased levels of TGF-( and reduces INF-( signaling blocking NK cell killing of activated HSC
 ADDIN EN.CITE 
[174]
 (Figure 4). Cell mediated adaptive immunity is another important aspect of host defense which can be altered by alcohol and its metabolites. The mechanisms by which alcohol triggers adaptive immunity are still incompletely characterized. Chronic alcohol ingestion can interfere with antigen presentation that is required to activate T and B cells and can impairs dendritic cell differentiation
 ADDIN EN.CITE 
[175-178]
. Patients with AH have increased levels of circulating antibodies against modified protein adducts with HER and lipid peroxidation derived aldehydes, justifying the activation of the adaptive immune response
 ADDIN EN.CITE 
[179,180]
. Anti-HER and anti MDA antibodies have been detected in chronically ethanol-fed rats as well as in alcohol abusers and they are associated with detection of peripheral blood CD4+ T cell that are responsive to these adducts. The cytokines released by activated CD4+ T-cells can then further stimulate Kuppfer cell activation contributing to parenchymal injury, hepatic inflammation, and fibrogenesis. 

In addition ethanol oxidation impairs proteasome function in macrophages through impairment of INF-( signalling, suppression of chymotrypsin-like proteasome activity and the consequent composition of the immunoproteasome subunit LMP7. The proteasome suppression can alter the processing of antigenic proteins and in turn affect the presentation of these antigens to cells of adaptive immunity[181]. Furthermore altered antigen presentation was also shown in dendritic cells where ethanol inhibits exogenous and allogeneic antigen presentation and affects the formation of peptide-MHCII complexes, as well as altering costimulatory molecule expression on the cell surface
 ADDIN EN.CITE 
[182]
. In addition chronic ethanol consumption downregulates the number of F4/80+ cells expressing MHC-I and -II. Interestingly, elimination of TLR4 abolishes the effects of ethanol on the adaptive inflammatory response in macrophages suggesting that alterations in TLR4 function might modulate interaction between innate and adaptive immune responses in ALD
 ADDIN EN.CITE 
[183]
. 
ALCOHOL AND HEPATOCARCINOGENESIS
Alcohol consumption is a risk factor for epithelial cancers including hepatocellular carcinoma (HCC). Although DNA-adducts with aldehydes generates from ethanol oxidation are involved in mutagenesis and carcinogenesis[184], cirrhosis is the principal risk factor for HCC. The mechanisms that contribute to development of HCC in patients with cirrhosis, are complex and include telomere shortening, activation of pathways that promote tumor cell survival, proliferation, loss of cell cycle checkpoints, and activation of oncogenes
 ADDIN EN.CITE 
[185,186]
. 
In addition, the immunosuppressive effects of alcohol
 ADDIN EN.CITE 
[185,186]
 contribute to the development of HCC in patients with ALD
 ADDIN EN.CITE 
[187-189]
. Recently interesting data about epigenetic regulation in ALD have been published. Epigenetic alterations by alcohol include histone modifications such as changes in acetylation, phosphorylation, hypomethylation of DNA, and alterations of different miRNAs. Deregulation of the miRNA biogenesis has been found in non-viral HCC subtypes and ethanol oxidation influences the expression of miR-217, miR-155 and miR-212[190]. These modifications can be induced by oxidative stress that results in an altered recruitment of transcriptional machinery and abnormal gene expression. Epigenetic mechanisms play an extensive role in the development of liver cancer contributing to the reversion of normal liver cells into progenitor and stem cells. In the alcohol-preferring rat model, heavy alcohol ingestion amplified age related hepatocarcinogenesis but did not cause appreciable liver inflammation or fibrosis. In these animals alcohol exposure activated the Hedgehog pathway and induced related procarcinogenic processes such as deregulated progenitor expansion, and epithelial-mesenchymal transition
 ADDIN EN.CITE 
[190,191]
. In addition, in vivo and in vitro alcohol exposure induce chromosomal aberration and induce mitotic targets such as Cyclin B, Aurora Kinase A, and phosphorylation of gamma-tubulin[191]. 
THERAPEUTIC OPTIONS
Alcohol cessation is the mainstay of therapy for patients with all stages of ALD, however different drugs that target specific pathways have been proposed for ALD treatment. Oxidative stress plays a central role in the pathogenesis of ALD, and several pre-clinical and clinical trials with anti-oxidant agents have been performed. N-acetylcysteine (NAC), S-Adenosyl methionine (SAMe), Silybum marianum (Cardus marianum L.), vitamin E have been tested either in combination with glucocorticoids or as a monotherapy. NAC and SAMe failed to demonstrate any benefit in the outcome of ALD
 ADDIN EN.CITE 
[192,193]
 but may offer additional incremental benefit when combined with prednisolone
 ADDIN EN.CITE 
[194]
. Silybum marianum or Milk Thistle (MT) is the most well researched plant in the treatment of liver disease and has been used to treat alcoholic liver disease and acute and chronic viral hepatitis. In baboons, the active principle called silymarin, administered for 3 years, retarded the development of alcohol-induced hepatic fibrosis[195]. The major mechanism of its hepatoprotective activity is the inhibition of hepatic NF-kB activation. In addition, silymarin has antifibrotic activity in rodents and inhibits the expression of pro-collagen-1(I) and TIMP-1 via down-regulation of TGF-β1 mRNA
 ADDIN EN.CITE 
[196]
. Silymarin acts as antioxidant, it reduces free radical production and lipid peroxidation and markedly increases the expression of superoxide dismutase in lymphocytes of patients with alcoholic cirrhosis
 ADDIN EN.CITE 
[197,198]
. Furthermore, silymarin also showed antiinflammatory and antiangiogenic effects[199]. However, clinical trials, have not been very encouraging. In a double blind comparative study of 106 patients with histological alcoholic hepatitis, MT shows no evident positive effects on liver biopsy
 ADDIN EN.CITE 
[200]
. The Corchrane does not recommend the use of MT for acute or chronic alcoholic liver injury and stimulates to conduct new controlled randomized clinical trials[201].
Studies with other antioxidant as vitamin E and propylthiouracil, have likewise been disappointing
 ADDIN EN.CITE 
[194,202-204]
 while animal data on Isoorientin
 ADDIN EN.CITE 
[205]
 and Notoginseng
 ADDIN EN.CITE 
[206]
 are encouraging but further studies are needed.

Deregulation of PPARs transcriptional activity during alcohol consumption suggests a possible role of PPAR agonists for ALD treatment. In alcohol-treated mice, the PPAR-γ agonists, rosiglitazone and pioglitazone, increase circulating levels of adiponectin and expression of its receptors in the liver that is associated with SIRT1-AMPK signaling activation. This pathway correlates with the enhanced expression of fatty acid oxidation enzymes and reduction of alcohol-induced stetosis
 ADDIN EN.CITE 
[207-213]
. In addition, PPARγ agonists have anti-inflammatory effects reducing cytokine expression such as TNFα, IL-6 and MCP-1 in alcohol-fed mice
 ADDIN EN.CITE 
[207]
.

The altered intestinal micro flora during chronic alcohol consumption has been recently focused as therapeutic target in ALD. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria. Oral administration of Lactobacillus rhamnosus GG (LGG) attenuates the established alcohol-induced hepatic steatosis and liver injury in mouse models of ALD
 ADDIN EN.CITE 
[208]
. Probiotics create an anti-inflammatory milieu, decrease production of proinflammatory bacterial products and improve barrier integrity leading to a decrease of endotoxin release. These protective effects are correlated with the prevention of alcohol-induced oxidative stress, suppression of CYP2E1 expression, inactivation of TLR4, and inhibition of p38 MAP kinase phosphorylation, that leads to a significant decrease of NFκB activation and TNFα production
 ADDIN EN.CITE 
[209]
. Results from a placebo-controlled trial have recently showed that the no-absorbable antibiotic Rifaximin, modifies the gut microbiota, and protects alcoholic patients from hepatic encephalopathy
 ADDIN EN.CITE 
[210, 211]
. Similar results were pointed out with TLR4 antagonists that have been recently studied as therapeutic agents for the treatment of chronic liver diseases, including ALD[212]. 

Anti-inflammatory therapy remains the most attractive approach for ALD. Glucocorticoid therapy was first demonstrated to be beneficial in the treatment of patients with severe AH in 1978[213]. Steroids ameliorate liver inflammation and systemic inflammatory responses, however, this treatment inhibits liver regeneration and does not promote liver repair in patients with ALD, which may contribute to the lack of long-term survival benefit in patients with severe alcoholic hepatitis. On the contrary, Anti-TNFα therapy has demonstrated positive effects in animal models of alcoholic liver injury. Patients with severe AH have high concentration of TNFα[214] and the serum levels of this cytokine predict short
 ADDIN EN.CITE 
[215]
 and long-term survival
 ADDIN EN.CITE 
[216]
. In rats with experimental alcoholic steatohepatitis, infliximab, an anti-TNFα mouse/human chimeric antibody, acts as an effective hepatoprotector, anti-inflammatory agent, and significantly improve hepatic inflammation
 ADDIN EN.CITE 
[217]
. However, randomized double-blinded placebo-controlled trial in patients with AH, using Etanercept, a p75-soluble TNF receptor, failed for the high mortality rate
 ADDIN EN.CITE 
[218]
. In severe AH, single dose infliximab is associated with an improvement in survival, but infection remains the main complication and large randomized controlled trials are needed before that this anti-TNFα can be recommended for AH
 ADDIN EN.CITE 
[219]
. A moderate effect on TNFα levels was also demonstrated using Pentoxifylline, a nonselective phosphor-di-esterase inhibitor
 ADDIN EN.CITE 
[220-222]
 that exerts antifibrogenic action via a down regulation of TGFβ1 expression
 ADDIN EN.CITE 
[223]
. 

Interesting data about the protective role of Interleukin-22 (IL-22) in ALD are recently published. IL-22 is a member of the interleukin 10 (IL-10)-like cytokine family that is produced by Th17 cells and natural killer cells. IL-22 has an important role in controlling bacterial infection, homeostasis, and tissue repair
 ADDIN EN.CITE 
[224,225]
. The biological effect of IL-22 are mediated through binding to IL-22 receptors and a consequent activation of the STAT3 signaling pathway[224]. IL-22 protects against liver injury
 ADDIN EN.CITE 
[226-231]
, reduces fat accumulation and collagen deposition 
 ADDIN EN.CITE 
[231-234]
 and promotes liver regeneration
 ADDIN EN.CITE 
[235,236]
 in rodent models of ALD. The antifibrotic properties of IL-22 depend on the significant increase of STAT-mediated HSC senescence as demonstrated by the increase of β-galactosidase-positive HSC in IL-22 treated animals[237]. Data showing elevated IL-22 expression in ALD patients suggest that IL-22 administration might be an ideal therapy for alcoholic liver injury
 ADDIN EN.CITE 
[238]
. 
Inhibition of hepatocyte apoptosis was recently suggested as alternative and attractive approach to reduce liver inflammation during alcohol consumption. The pan-caspase inhibitor Emricasan was found to suppress hepatocyte apoptosis, inhibit pro-inflamatory caspases and prevent fibrogenesis in murine models of ethanol- liver injury
 ADDIN EN.CITE 
[239]
. 
Many other chemokines (e.g., CXCL5, CXCL6, CXCL4) and cytokines (e.g., IL-1, IL-8, osteopontin) are markedly up-regulated in AH and are implicated in the hepatic neutrophils infiltration
 ADDIN EN.CITE 
[162-164]
. Reagents that target CXC chemokines are currently under investigation in different stage of ALD.
CONCLUSION
Chronic alcohol consumption is a major cause of advance liver disease worldwide. In this review, we have highlighted the role of alcohol abuse in liver disease by examining ethanol metabolism. Both acetaldehyde and ROS act directly on the transcriptional network that regulates lipid metabolism and fibrogenic response during liver injury. These toxics alter the intestinal permeability and consequently increase LPS that leads to the activation of innate and adaptive immunity. LPS activation of TRL4 stimulates Kupffer cells to release ROS and cytokine that attract neutrophils, inhibits NK function and also alter allogenic antigen presentation. In addition, acetaldehyde and ROS promote a chronic inflammatory state that has a direct role in the development of HCC. Furthermore, lipid peroxidation products and the formation of protein and DNA adducts interfere with methylation, synthesis and repair of DNA and promote mutagenesis. The founding of specific pathways involved in ethanol-induced liver damage selects new therapeutic agents such as thiazolidinediones, anti-TNF molecules and IL-22 that have shown promising effects in basic and translational research studies. Future efforts should be directed to test the new therapeutic approaches in controlled clinical trials in patients with moderate and severe ALD.  
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Figure 1 Alcohol metabolism. ADH is the main cytosolic enzyme that converts alcohol to acetaldehyde. The inducible microsomal enzyme also forms acetaldehyde. The toxic metabolite acetaldehyde is then further oxidized to acetate by the mitochondrial ALDH. ADH: alcohol dehydrogenase; ALDH: Aldehyde dehydrogenase; CYP2E1: Cytochrome P450 2E1; NAD+: Nicotinamide adenine dinucleotide; NADH: Nicotinamide adenine dinucleotide reduced.
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Figure 2 Molecular Mechanisms of alcoholic fatty liver. Alcohol consumption via multiple pathways increases the expression of SREB-1 and down regulates PPAR-, promoting fatty acid synthesis and impairing β-oxidation, thus resulting in fatty acid accumulation. Long-term ethanol consumption promotes fatty acid accumulation through decreased autophagy, while short-term ethanol exposure promotes autophagy and degradation of lipid droplets. AMPK: AMP-activated protein kinase; Egr-1:Early growth response 1; FoxO3a: Forkhead box O3a; HIFs: Hypoxia-inducible factors; IL-6-STAT3: Interleukin 6-signal transducer and activator of transcription 3-hypoxia induced factor; JNKs: c-Jun amino N-terminal protein kinase; LKB1: Liver kinase B1; mTOR: Mammalian target of rapamycin; PKC-δ: Protein kinase C δ; SREBPs: Sterol regulatory element-binding proteins; TNFα: Tumor necrosis factor alpha; PI3K:Phosphoinositide 3-kinase; mTORC1: mTOR complex 1; SIRT1: Sirtuin-1; Wnt/β-catenin: Wingless and INT-1/β-catenin signaling.
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Figure 3 Molecular mechanisms of alcoholic fibrosis. Acetaldehyde causes increased synthesis of collagen and ECM components through the activation of TGFβ/Smad3 signaling pathway. The microsomal metabolism of ethanol leads to protein adducts formation that up-regulate collagen synthesis. AP-1: Activator protein 1; BTEB: Basic transcription element binding protein; C/EBPβ: CCAAT/enhancer-binding protein beta; HIF1α:Hypoxia-inducible factor 1-alpha; HNE and 4-hydroxynonenal; MDA: Malondialdehyde; MMP-1: Matrix metalloproteinase-1; MMP-2: Matrix metalloproteinase-2; OPN: Osteopontin; PPARγ: Peroxisome proliferator-activated receptor γ; SMAD-3: Mothers against decapentaplegic homolog 3; SP1:specificity protein 1; TGFβ1:transforming growth factor b1; TNFα: Tumor necrosis factor α. 
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Figure 4 Alcohol and Innate Immunity response. Both alcohol and acetaldehyde increase the intestinal permeability and lipopolysaccharide (LPS) level in the portal circulation. LPS binds to TLR4 (Toll-like receptor 4) and induces the pro-inflammatory phenotype of Kupffer cells. Acetaldehyde and LPS also stimulate parenchymal and non-parenchymal cells to produce pro-inflammtory cytokines and chemokines. The Innate Immunity system also release anti-inflammatory and hepatoprotective cytokines that activate STAT3 signaling in liver cells. CXCL1: Chemokine (C-X-C motif) ligand 1; C1q,c3,c5: Complement components; INF-(: Interferon gamma; IL-6: Interleuchina 6; IL-8: Interleuchina 8; IL-17: Interleuchina 17; CR: Complement receptor; MCP-1: Macrophage chemotactic protein 1; MYD88: Myeloid differentiation primary response gene (88); RANTES: Chemokine (C-C motif) ligand 5; STAT3: Signal transducer and activator of transcription 3; TRIF/IRF-3: Toll/IL-1 receptor (TIR) domain-containing adapter-inducing IFN-β interferon regulatory factors-3.
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