
REVIEW

Obesity in kidney disease: A heavyweight opponent

Raphael Jose Ferreira Felizardo, Marina Burgos da Silva, Cristhiane Favero Aguiar, Niels Olsen Saraiva Câmara

Raphael Jose Ferreira Felizardo, Department of Medicine, Ne-
phrology Division, Federal University of São Paulo, São Paulo  
04039-032, Brazil
Marina Burgos da Silva, Cristhiane Favero Aguiar, Niels 
Olsen Saraiva Câmara, Department of Immunology, Institute 
of Biomedical Sciences, University of São Paulo, São Paulo 
05508-900, Brazil
Author contributions: Felizardo RJF, Burgos-Silva M and 
Aguiar CF contributed equally to this work; Felizardo RJF, 
Burgos-Silva M and Aguiar CF performed research and wrote the 
paper; Câmara NOS analyzed the paper, discussed the topic and 
supervised the publication of this review.
Supported by Fundação de Amparo à Pesquisa do Estado de 
São Paulo (São Paulo Research´s Foundation, FAPESP) and 
Conselho Nacional de Desenvolvimento Científico e Tecnológico 
(CNPq, INCT Complex Fluids and Renal Immunopathology 
Laboratory INSERM/CNPq), No. 12/15205-4, 12/02270-2, 
12/16794-3, 12/23347-3
Correspondence to: Niels Olsen Saraiva Câmara, Professor, 
Department of Immunology, Institute of Biomedical Sciences, 
University of São Paulo, Av. Prof Lineu Prestes, 1730-Cidade 
Universitária, São Paulo 05508-900, 
Brazil. niels@icb.usp.br
Telephone: +55-11-30917388  Fax: +55-11-30917327
Received: March 18, 2014        Revised: April 18, 2014
Accepted: June 10, 2014
Published online: August 6, 2014 

Abstract
Obesity is an important worldwide challenge that must 
be faced in most developed and developing countries 
because of unhealthy nutritional habits. The conse-
quences of obesity and being overweight are observed 
in different organs, but the kidney is one of the most 
affected. Excess adipose tissue causes hemodynamic 
alterations in the kidney that can result in renal dis-
ease. However, obesity is also commonly associated 
with other comorbidities such as chronic inflammation, 
hypertension and diabetes. This association of several 
aggravating factors is still a matter of concern in clini-
cal and basic research because the pathophysiologic 
mechanisms surrounding chronic kidney disease devel-
opment in obese patients remain unclear. This review 

will discuss the consequences of obesity in the context 
of renal injury.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Overweight; Obesity; Kidney disease; Re-
nin-angiotensin system; Diabetes

Core tip: Obesity is unquestionably one of the big-
gest health challenges the modern world will face this 
century. It has vast effects on systemic function includ-
ing cardiovascular disease, metabolic dysfunction and 
chronic inflammation. All of these factors have a great 
impact on kidney function, and current data indicate 
a significant correlation between obesity and kidney 
disease because of irregular immune activation, altered 
renal hemodynamics and metabolic mediator signaling. 
This review focuses on the most recent findings that 
have begun to elucidate the relationship between obe-
sity and its effect on the kidneys.
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INTRODUCTION
Obesity is unquestionably one of  the biggest health chal-
lenges the world population faces this century. Statistics 
indicate that more than 1.4 billion adults over 20 (35%) 
are overweight, with 11% falling into the obesity category 
according to World Health Organization statistics. Al-
though the state of  being obese and overweight has usu-
ally been associated with developed countries and high in-
come, globalization and widespread unhealthy nutritional 
habits have caused these phenomena to reach epidemic 
proportions. As a consequence to the rise in obesity rates, 
comorbidities linked to this disease such as diabetes, car-
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diovascular disease, and cancer have also increased[1].
Adipose tissue has a great impact on metabolic ho-

meostasis and immunological function. The conjunction 
of  the main obesity-related risk factors defines a clinical 
condition termed Metabolic Syndrome. This syndrome 
aggregates a variety of  pathologies, including dyslip-
idemia, thrombosis, low-grade systemic inflammation, 
elevated blood pressure, hyperglycemia and insulin resis-
tance. Adipose tissue possesses an important influence 
over the immune response profile via direct and indirect 
mechanisms through the secretion of  nonesterified fatty 
acids, cytokines and endocrine mediators defined as adi-
pokines. Together, these factors contribute to a systemic 
change in the way the body works, adapts and responds 
to challenges.

Although many studies have associated obesity with 
higher morbidity rates and obesity-related diseases[2], 
some groups argue the contrary. Overweight and obese 
patients reportedly display higher survival, while patients 
with low body mass are at a higher risk of  general mor-
tality and cardiovascular and many non-cardiovascular 
disease incidence, a phenomenon referred to as the 
“obesity paradox”[3,4]. These findings also highlight the 
complex relationship that obesity has with different pa-
thologies and demonstrates that a closer look is needed 
to understand the particular effects of  being obese and 
overweight on the organism. 

OBESITY AND THE KIDNEY
Obesity affects the function of  many organs. The heart is 

one of  the main organs affected by metabolic syndrome, 
and obesity significantly increases the chances of  cardiac 
dysfunction because of  chronic hemodynamic burden, 
which causes dyspnea, edema, ongoing systemic inflam-
mation, metabolic alterations and other related comor-
bidities[5]. Other organs such as the liver are also affected 
by this pathology, with lipid accumulation causing non-
alcoholic fatty liver disease[6]. Lung function is also com-
promised by adipose tissue around the abdomen, rib cage 
and visceral cavity[7]. 

The kidney is also responsive to obesity. Several 
multicenter studies have identified a direct correlation 
between obesity and renal complications (Table 1). Obe-
sity has a multifactorial mechanism and is considered 
an independent factor in chronic kidney disease (CKD) 
development and progression to end-stage renal disease 
(ESRD)[8]. Studies demonstrate that obesity-induced 
hypertension and diabetes are strong determinants of  
CKD. Analyses relating obesity and kidney transplanta-
tion revealed that in 1987, 11.6% of  adults awaiting 
a kidney transplant were obese, and in 2001, obesity 
among adults rose to 25.1%[9]. Concomitantly, body mass 
index (BMI) among patients initiating dialysis increased 
from 25.7 kg/m2 to 27.5 kg/m2 from 1995 to 2002[10]; 
and when compared with normal weight persons (BMI, 
18.5-24.9 kg/m2), there is a directly proportional rela-
tionship between increased BMI and increased CKD and 
ESRD risk[11,12]. A study conducted by Ejerblad et al[13] 
examined the association between degrees of  obesity 
and CKD. After making adjustments for many covari-
ates, the investigators found a 2.8-fold increased risk of  
nephrosclerosis and a 7-fold increased risk of  diabetic 
nephropathy among adults who had a BMI of  35 kg/m2 
or higher compared with a lifetime highest BMI lower 
than 25 kg/m2. In adults with no diabetes or hyperten-
sion, a lifetime highest BMI of  35 kg/m2 or higher was 
associated with a 2-fold increased risk of  CKD. Con-
versely, obese patients had better recovery and benefitted 
from reduced body weight by diminishing proteinuria[14]. 
Obesity was recently demonstrated to accelerate IgA ne-
phropathy progression[15]. In this scenario, obesity could 
be one of  the few preventable risk factors for CKD 
development because it also mediates diabetes and hy-
pertension, which are related to kidney disease progres-
sion[14,16,17].

The occurrence of  obesity during early life is linked 
to low glomerular filtration rates (GFRs), while being 
overweight during adulthood doubles the chances of  
chronic kidney disease[18]. Many researchers have described 
the direct impacts obesity has on the kidneys, which in-
clude hyperfiltration, elevated glomerular tension, and 
podocyte stress[19]. Some researchers have also correlated 
obesity-related inflammation and adipokine deregulation 
to kidney function. The present review will focus on the 
impact of  obesity on kidney function and discuss its influ-
ence on the progression of  kidney disease.

Obesity-induced inflammation
Adipose tissue is known for its roles in lipid storage, ther-
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  Cohort Number of 
patients

Country Result Ref.

  Dialysis patients 1957 Netherlands Higher mortality 
with very high or 
low BMI (< 65 yr)

[157]

  Kidney transplant 1810 Netherlands Higher mortality 
and kidney graft 

failure

[158]

  Native population 1924 Sweden Higher Chronic 
Renal Failure

[13]

  National Health 
  and Nutrition 
  Examination 
  Survey Ⅲ

5659 United States Higher micro-
albuminuria 

with metabolic 
syndrome

[159]

  Hipertension and 
  obesity

4585 Spain Higher risk of re-
nal insufficiency

[160]

  Native population 2585 United States Higher risk of 
kidney disease

[12]

  Native population 5403 Japan Higher risk of 
proteinuria

[161]

  Kidney transplant 51927 United States Lower patient 
and graft surviv-
al. Higher chronic 
graft failure and 

delayed graft 
function

[162]

Table 1  Recent major multicenter studies regarding the im-
pact of obesity and overweight on the incidence of kidney 
disease, renal function prognosis and patient survival



mogenesis and metabolic regulation. However, in recent 
years, focus has been given to its endocrine properties 
such as cytokine and adipokine secretion (Figure 1).

As previously described, obesity and diabetes are 
conditions that present a state of  low-grade inflamma-
tion. Significant evidence supports the concept of  adi-
pose tissue as an immunomodulatory organ. Adipose tis-
sue harbors a considerable amount of  immune cells such 
as macrophages, lymphocytes and eosinophils. In obesity, 
the frequency of  infiltrated cells rises, and they acquire 
a pro-inflammatory profile[20]. Excess free fatty acids 
that are present in obesity activate diverse inflammatory 
pathways involving endoplasmic reticulum stress[21], toll-
like receptor[22,23], inflammasome and nuclear factor-κB 
(NF-kB) signaling activation[24,25]. In parallel, adipose tis-
sue becomes hypoxic with adipocyte hypertrophy, which 
induces a change from aerobic to anaerobic glycolysis 
and lactate production.

With obesity, adipocyte hypertrophy and hypoxia 
induce cell death and resident immune cell activation, 
which in turn promotes inflammatory cell recruitment[26]. 
Macrophages constitute the principal population of  resi-
dent and recruited cells in adipose tissue, which have a 
role in maintaining tissue homeostasis by assisting with 
the clearance of  dead cells and debris. Because of  lipid 
accumulation and adipocyte cell death, non-inflamma-
tory tissue-resident M2 type macrophages and recruited 

monocytes undergo proliferation and macrophage M1 
polarization[27-29]. These cells in turn secrete higher levels 
of  inflammatory cytokines such as TNF-α, IL-6 and 
MCP-1 and lower levels of  anti-inflammatory mediators 
such as arginase 1[28-30]. IL-4-expressing eosinophil counts 
also decrease with obesity, which contributes to inflam-
mation[31]. Furthermore, CD8+ and CD4+ Th1 lympho-
cyte counts also increase while Treg numbers reduce 
with obesity. In accordance, B cell pro-inflammatory im-
munoglobulin G2c (IgG2c) production also participates 
in cell activation[32-35].

Proinflammatory cytokines are also produced by the 
renal parenchyma in response to hyperglycemia as well 
as vasoactive peptides such as angiotensin Ⅱ and endo-
thelin[36]. These molecules activate signaling second mes-
sengers such as protein kinase C, MAP kinase and NF-
κB, which alter the gene expression of  several cytokines 
and growth factors. 

Increased TNF-α levels reduce the expression of  
nephrin and podocin, causing podocytopathy[37]. Similar-
ly, IL-6 promotes adhesion molecule expression, which 
increases oxidative stress[38], and IL-6 receptor blockade 
can inhibit the progression of  proteinuria, renal lipid de-
position and mesangial cell proliferation[39]. An additional 
important growth factor for renal injury is transforming 
growth factor (TGF)-β, which induces podocyte apopto-
sis, extracellular matrix synthesis and mesangial cell pro-
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Figure 1  Main factors involved in obesity-induced inflammation, metabolic stress and hemodynamic disorder that participate in kidney function impairment.  
RAAS: Renin-angiotensin-aldosterone system; ER: Endoplasmic reticulum; TNF-α: Tumor necrosis factor alpha.
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liferation, thus exacerbating the development of  the glo-
merular lesions associated with diabetes and obesity[40].

While many studies demonstrate the effect of  metab-
olism on the immune system, studies have demonstrated 
that the reverse also happens; immune cell activation in 
adipose tissue is a determinant of  obesity-linked meta-
bolic changes such as insulin resistance[41]. For example, 
in response to inflammatory mediators, adipose tissue 
also down regulates glucose transporter GLUT4 expres-
sion, which increases insulin resistance.

Obesity and the adipokine imbalance
In addition to cytokines, adipose tissue is also responsible 
for the production of  many endocrine mediators termed 
adipokines, which regulate inflammation, food consump-
tion and link immune and metabolic functions. Amongst 
these are leptin, adiponectin, visfatin, resistin, intelectin 
and others. These factors are mostly secreted by adipo-
cytes and have imbalanced expression in obesity. Many 
studies have documented the importance of  these cyto-
kines in the regulation of  metabolism and inflammation 
and suggest a role for these cytokines in obesity-related 
metabolic and inflammatory distortion. Although there is 
still much to elucidate regarding the role of  adipokines in 
kidney disease, recent studies now have begun to clarify 
the influence of  these mediators in kidney pathology.

Leptin and kidney disease
Leptin was the first adipokine to be characterized and 
is the best described in the literature. It is secreted by 
different adipose compartments and induces signaling 
through Ob-a to Ob-f  subtype receptor activation, and 
the Ob-Rb receptor is the most important. Its main ac-
tions are on the nervous system and kidneys. Leptin acts 
on the nervous system by stimulating neuropeptides that 
promote satiety and energy consumption. It has been 
suggested that one develops leptin resistance in obesity 
because of  the absence of  many of  its effects despite 
elevated adipokine levels. Hyperleptinemia has also been 
associated with many cardiovascular and immunologic 
dysfunctions[42].

Many reports have linked obesity and leptin to hy-
pertension. Studies indicate that this adipokine activates 
the sympathetic nervous system and may suppress para-
sympathetic nerve activity, which alters baroreflex con-
trol[43,44]. Leptin also increases renal sympathetic nerve 
activity, as demonstrated by studies on ObR deletion in 
the central nervous system[45]. Because the sympathetic 
nervous system contributes to CKD, leptin hypertensive 
actions may promote kidney disease.

Leptin also holds important pro-inflammatory activ-
ity. Its structure resembles other cytokines such as IL-2 
and can stimulate many immune cells. Studies demon-
strate that leptin induces the production of  inflamma-
tory cytokines as IL-6 and TNF-α by monocytes and 
additionally induces chemokine ligands, reactive oxygen 
species production and macrophage and monocyte pro-
liferation[42]. Leptin also polarizes CD4+ lymphocytes 

toward a Th2 profile, which increases the production 
of  inflammatory cytokines such as IL-2 and IFN-γ[42]. 
Therefore, excess leptin, which is characteristic during 
obesity, is an important mediator of  obesity-related im-
mune and metabolic dysfunction. 

Recent studies have also suggested that leptin im-
poses an important action in the kidneys, as this media-
tor localizes mainly to the organ after injection[46]. CKD 
patients demonstrate high leptin levels, as do ESRD 
patients, and hemodialysis fails to lower these values[47,48]. 
The kidneys also express the Ob-Ra and Ob-Rb leptin 
receptor isoforms[49]. In vitro, leptin induces glomeru-
lar endothelial cell proliferation, which is augmented in 
the presence of  angiotensin Ⅱ and increases TGF-β1 
production. Furthermore, leptin infusion into rats in 
vivo also induced proteinuria, glomerular endothelial cell 
proliferation and TGF-β1 production and increased col-
lagen type Ⅳ expression[50]. This adipokine also induced 
type Ⅰ collagen in mesangial cells, confirming data that 
link obesity, glomerulosclerosis and glomerulomegaly, 
which is defined as obesity-related glomerulopathy[51,52].

Adiponectin and kidney disease
Adiponectin is another adipokine with immunomodula-
tory and metabolic actions. It is present in plasma at a 
considerable concentration[53], and its receptors R1, R2 
and T cadherin are expressed by a wide range of  tissues. 
Adiponectin is negatively correlated with hypertension[54]. 
It exerts its metabolic actions by increasing glucose up-
take and fatty acid oxidation and inhibiting gluconeogen-
esis. In addition to improving insulin sensitivity, it also 
possesses potent anti-inflammatory properties[42].

Unlike leptin, low serum adiponectin levels are 
found in obese patients, and its production is reduced 
by hypoxia, inflammatory mediators such as IL-6 and 
oxidative stress[55-57]. Hypoadiponectinemia has been 
linked to diverse complications in obesity. Mice lacking 
adiponectin display increased susceptibility to high-fat 
diet-induced insulin resistance[58]. Moreover, adiponectin 
overexpression in high-fat diet-fed animals caused less 
fat accumulation and reduced adipose tissue macrophage 
infiltration, and it prevented premature death[59].

Recent studies have begun to elucidate the role of  
adiponectin in kidney injury. Current data demonstrate 
that adiponectin is secreted not only by adipocytes but 
also renal tubular cells[60]. Research indicates that plasma 
adiponectin is inversely correlated with albuminuria in 
obese patients[61]. Adiponectin-null mice also develop 
albuminuria and podocyte damage as well as glomerular 
oxidative stress[62]. These mice also display more expres-
sive albuminuria, fibrosis and macrophage infiltration af-
ter 5/6 nephrectomy[63]. Moreover, mice overexpressing 
adiponectin recover more rapidly and exhibit less inter-
stitial fibrosis after podocyte-specific damage[64]. Meta-
bolic syndrome has also been associated with low adipo-
nectin levels and worse prognosis after kidney transplan-
tation[65]. These data are controversial, however, as some 
studies describe a direct link between adiponectin levels 
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and mortality in advanced CKI and kidney transplant pa-
tients[66,67]. While recent work suggests that adiponectin 
causes less intense ischemia-reperfusion kidney injury[68], 
the contrary was observed when exogenous adiponectin 
was administered[69]. Furthermore, kidney function also 
influences adiponectin levels because the kidneys are re-
sponsible for its elimination, and kidney transplantation 
significantly reduces the adiponectin concentration[70].

Resistin and visfatin
Resistin is a recently discovered adipokine with inflamma-
tory properties. Some works suggest that this mediator 
increases insulin resistance, while others fail to find this 
correlation[71,72]. Although in mice, it is expressed mainly 
by adipocytes, in humans it is produced principally by 
macrophages and monocytes. Although there are still 
few data on its impact on renal function, some research 
indicates that serum resistin levels are strongly associated 
with decreased GFRs and inflammatory biomarkers in 
CKD[71].

Adipose tissue and the kidneys also synthesize visfa-
tin, and this is upregulated in type-2 diabetic rats, induc-
ing fibrosis and inflammatory pathway activation[73]. In 
CKD patients, higher visfatin levels also are correlated 
with decreased GFR and endothelial dysfunction[74,75]. 
Furthermore, another study with human plasma deter-
mined that this mediator was also linked to creatinine 
levels, inflammation and endothelial damage in kidney 
recipients, which is negatively related to plasma albumin 
levels[19].

OBESITY AND RAAS IN KIDNEY DISEASE
The pathophysiologic mechanism surrounding CKD de-
velopment in obese patients remains unclear, but many 
events must be linked to ESRD such as altered renal 
hemodynamics, insulin resistance, hyperlipidemia, inflam-
mation and oxidative stress (Figure 1). Hemodynamic 
alterations such as higher renal plasma flow, GFR and 
filtration fraction were linked to obesity when compared 
with the levels in non-obese patients[76,77]. The effect of  
BMI on renal hemodynamics was also proven by another 
work in which GFR and effective renal plasma flow 
(ERPF) were evaluated with a high-sodium diet. Accord-
ing to this study, ERPF and the GFR were statistically in-
creased when individuals were exposed to a high-sodium 
diet and compared to another group that was exposed 
to a low-sodium diet without a change in filtration frac-
tion (FF). However, increased sodium intake-induced 
changes in the GFR and FF were significantly greater in 
people with a BMI ≥ 25 kg/m2[78]. The hemodynamic ef-
fects of  overweight on kidney function and albuminuria 
are enhanced with hypertension, which itself  is a clinical 
complication of  obesity. Chagnac et al[79] demonstrated 
that glomerular hyperfiltration could have a relevant role 
in development of  hypertension in obese patients by 
increasing postglomerular oncotic pressure and proximal 
tubular sodium reabsorption.

As an individual gains weight, renal mass as well as 

the glomerular diameter increases[80]. Podocytes are high-
ly specialized cells that support the glomerular basement 
membrane (GBM) and play an important role in the glo-
merular filtration barrier via their foot processes. With 
glomerular hypertrophy, podocytes must cover a larger 
area by expanding these processes. If  this podocyte en-
largement is not proportional to glomerular hypertrophy, 
this adaptation could cause podocyte detachment and 
consequently a loss selectivity of  serum protein selectiv-
ity[81,82]. Considering that podocytes are cells with limited 
capacity for cell division and replacement, proteinuria 
may be detected as is commonly observed in obese 
patients. Supporting this hypothesis, individuals who re-
duced their body mass also had significant reductions in 
proteinuria[14,83].

Extensive studies demonstrate that a lack of  podo-
cytes covering the GBM results in the formation of  
denuded areas, which trigger matrix deposition resulting 
in glomerulosclerosis in experimental models as well as 
in human biopsies[84-87]. As kidney injury persists, kid-
ney fibrosis becomes an inevitable outcome in which 
epithelial-mesenchymal and endothelial-mesenchymal 
transition events generate matrix-producing fibroblasts 
in the interstitial space that contribute to renal fibrosis. 
Accumulation of  matrix elements caused by the fibrotic 
process progressively alters normal kidney architecture 
by contraction and increased stiffness, resulting in dis-
rupted blood flow supply and nephron function[88,89].

Once a number of  podocytes are injured, a vicious 
cycle starts in which other podocytes also become dam-
aged, accelerating podocyte deterioration and glomeru-
losclerosis[90]. The extensive loss of  glomeruli imposes 
excessive stress on the remaining glomeruli because of  
hemodynamic alterations and glomerular hypertrophy, 
which can subsequently cause further sclerosis of  the re-
maining glomeruli[91]. This could explain the progressive 
spreading of  glomerular damage in later disease stages 
in which patients develop chronic renal failure[90]. The 
approach of  using new agents to avoid podocyte lesions 
in different models of  acute and chronic kidney disease 
resulted in less matrix deposition and consequent glo-
merulosclerosis[92,93].

In obesity, the renin-angiotensin-aldosterone system 
(RAAS) is commonly activated and is one of  the stron-
gest links to renal injury. All of  the major components 
necessary to generate angiotensin Ⅱ (Ang Ⅱ) are found 
in the kidney[94]. The RAAS is a well-known mecha-
nism to regulate blood pressure, fluids and electrolyte 
balance[95], and its activation impairs normal pressure 
natriuresis, increases renal tubular sodium reabsorption, 
and causes volume expansion. Physical compression of  
kidneys by visceral adipose tissue in obesity exacerbates 
these responses and increases blood pressure, leading to 
hypertension in obese subjects.

RAAS effects are obtained when angiotensinogen 
(AGT), the precursor of  bioactive angiotensin peptides, 
is cleaved by both renin and angiotensin converting en-
zyme (ACE) to generate Ang Ⅱ. Ang Ⅱ, which is the 
active peptide and is the main effector of  RAAS, pos-
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sesses a dual role in physiology. Ang Ⅱ helps maintain 
long-term blood pressure and blood volume in the body; 
conversely, it has also been considered a multifunctional 
cytokine that plays a role in cell proliferation, hypertro-
phy, superoxide production, inflammation and extracel-
lular matrix deposition[96]. Ang Ⅱ plays an endocrine 
role, and its participation in the development of  obesity 
was evidenced by several works in which AGT, ang 
Ⅱ and ang Ⅱ receptor-deficient mice were protected 
against high-fat diet-induced obesity[97-99]. 

There are several pathophysiological conditions, 
including hypertensive models, in which Ang Ⅱ, in re-
sponse to increased arterial blood pressure, increases 
efferent glomerular arteriole resistance and induces 
TGF-β production[100]. It also impairs the auto-regulation 
of  afferent arterioles by avoiding vasoconstriction[101]. 
Taken together, Ang Ⅱ directly and indirectly enhances 
capillary filtration pressure and promotes proteinuria, 
which is one of  the most important factors involved 
in renal disease progression. Moreover, Ang Ⅱ is also 
involved in nephrin dephosphorylation during podocyte 
apoptosis[102], which is a protein that is part of  the slit 
diaphragm and binds to the adjacent nephrins of  other 
podocytes. Ang II decreases the synthesis of  negatively 
charged proteoglycans that are present on the glomeru-
lar basement membrane, which impairs the filtration of  
high molecular weight proteins by electrostatic repul-
sion[103].

Human adipose tissue expresses all of  the RAAS 
components, including angiotensin, ACE, renin and 
the AT1 and AT2 receptors. Consequently, the AGT 
produced by adipose tissue contributes significantly to 
circulating AGT levels. In humans and mice, a strong 
relationship has been observed between increased AGT 
gene expression and obesity[104], supporting a role for 
adipose AGT in hypertensive obese patients. Weight re-
duction reduced blood pressure through systemic RAAS 
suppression and decreased AGT, renin and aldosterone 
levels in adipose tissue and plasma[105]. Mice with adipose 
tissue-restricted AGT expression were normotensive, 
whereas when adipose AGT was overexpressed, the 
mice became hypertensive[106]. Ang Ⅱ is also involved in 
adipocyte metabolism by influencing leptin and adipo-
nectin release. Once leptin levels are increased, Ang Ⅱ 
promotes a number of  cellular processes that attenuate 
leptin signaling and contribute to leptin resistance, which 
is common in obesity[107]. Conversely, adiponectin was 
upregulated when RAS was blocked by an ACE inhibitor 
or Ang II receptor blocker, suggesting Ang Ⅱ participa-
tion in the inhibition of  adiponectin release[108].

Not only AGT but also aldosterone levels are in-
creased in obese patients. Aldosterone is a mineralocor-
ticoid hormone that is produced in the adrenal glands 
in response to Ang Ⅱ and a high extracellular potas-
sium concentration, which increases blood pressure via 
sodium retention in the collecting duct. Aldosterone 
is correlated with increased blood pressure[109] and can 
also be produced by adipocytes through pathways that 

are dependent on the Ang Ⅱ-ATI receptor axis and 
calcineurin signaling[110] as well as pathways that are in-
dependent of  Ang Ⅱ, in which adipocytes secrete fac-
tors that may stimulate the adrenal gland and increase 
circulating aldosterone levels, resulting in mineralocor-
ticoid receptor activation and increasing blood pressure 
and hypertension[111]. Aldosterone binds to cytosolic 
mineralocorticoid receptors and promotes cell signaling 
pathways, endothelial dysfunction, inflammation and 
fibrosis independently and in concert with Ang Ⅱ[112]. 
Moreover, Ang Ⅱ activates the mineralocorticoid recep-
tor in the absence of  aldosterone and promotes kidney 
injury[113,114]. Blocking the mineralocorticoid receptors 
with antagonists attenuates obesity-induced hypertension 
and glomerular hyperfiltration[115].

Many clinical trials have been performed to mitigate 
the effects caused by RAAS. Multiple pharmacological 
strategies are used to treat CKD patients to diminish 
proteinuria and blood pressure. These strategies com-
prehend the use of  RAAS-blocking agents alone or 
combined with ACE inhibitors, angiotensin-receptor 
blockers, direct renin inhibitors and mineralocorticoid-
receptor antagonists[116]. The combination of  a phar-
macological therapy with reduced sodium intake was a 
better choice to diminish blood pressure and proteinuria 
than combined therapies[117]. Attempts to antagonize 
aldosterone receptors demonstrated promising results to 
diminish glomerulosclerosis[118]. 

In summary, the obesity-RAAS-hypertension axis is 
closely related to renal disease, as the increased release 
of  adipose tissue derived-RAAS elements into the cir-
culation can alter hemodynamic homeostasis. Increased 
Ang Ⅱ, AGT and aldosterone levels promote increased 
tubular reabsorption, leading to arterial hypertension and 
renal vasodilation. These events contribute to glomerular 
hypertension, which is an important factor in glomerulo-
sclerosis and CKD progression.

OBESITY AND DIABETES IN RENAL 
DISEASE
Obesity is an important risk factor for hypertension and 
type 2 diabetes development, which are the leading causes 
of  end-stage renal disease. The relationship between 
obesity, diabetes and kidney disease is very close because 
obesity and diabetes alter renal function, leading to renal 
disease. These renal alterations in both cases include ana-
tomical, physiological and pathological changes (Figure 1).

Physiological and hemodynamic alterations are 
largely responsible for the subsequent anatomical and 
histopathological modifications. Among the major he-
modynamic changes in obese and/or diabetic patients 
are increased GFR and intraglomerular capillary pres-
sure[119,120]. Such alterations lead to diabetic nephropathy, 
increases in kidney weight and size, increased glomerular 
size, podocyte hypertrophy and mesangial matrix expan-
sion[121].

Diabetes-related renal injuries can be grouped into 
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five stages that comprise the remodeling that occurs 
throughout diabetic nephropathy. These stages are sum-
marized in Table 2.

Although obesity and diabetes per se are responsible 
for renal injury, some other factors usually present in 
these conditions significantly aggravate renal damage 
such as blood pressure, hyperlipidemia, hyperglycemia, 
genetic factors[122] and inflammation. Some of  these con-
ditions are described in the following sections.

Hypertension in diabetes-related kidney disease
Hypertension and diabetes are two important risk factors 
in the development of  kidney diseases, and when they are 
present simultaneously, they aggravate renal injury.

Hypertension-induced kidney damage in obesity 
and diabetes follows a very similar sequence of  events 
including increased renal tubular sodium reabsorption 
as well as RAAS and sympathetic nervous system activa-
tion[123-125]. Such an increase in blood pressure along with 
increased glomerular capillary pressure and GFR are 
main contributors to the initial renal damage in obesity 
and diabetic nephropathy[126].

Given the importance of  hypertension in worsen-
ing renal injury, especially in diabetic nephropathy, many 
studies have been performed to demonstrate the im-
portance of  controlling blood pressure when treating 
diabetic nephropathy, and the recommended blood pres-
sure is less than 130/80 mmHg[127]. Several clinical trials 
have also been developed and have demonstrated renal 
protection when low blood pressure is achieved[128].

Renin-angiotensin system blockade is an important 
treatment for controlling blood pressure and decreasing 
proteinuric kidney disease progression[129-131]. Angioten-
sin Ⅱ-receptor blocker (ARB) therapy helps prevent the 
progression from normoalbuminuric (Albumin-Creati-
nine Ratio < 30 mg/g creatinine) to albuminuric stages 
(ACR 30-100 mg/g creatinine)[132]. Another important 
strategy is combined therapy with ARB and ACE inhibi-
tors, which demonstrates a greater decrease in protein-
uria than monotherapy[133].

Hyperlipidemia in obesity and diabetes
Dyslipidemia is an important component of  metabolic 
syndrome and is often directly related to obesity and 
diabetes. Patients with diabetic nephropathy usually have 

several changes in their lipid profile[134], and the presence 
of  increased blood lipid levels is a risk factor for albu-
minuria[135]. Several studies have demonstrated a correla-
tion between triglyceride and cholesterol levels with renal 
function markers. Ravid and colleagues[136] observed a sig-
nificant and positive correlation between total cholesterol 
and albuminuria in type 2 diabetic patients in a five-year 
cohort. Similarly, Klein et al[137] noted that type 1 diabetic 
patients with elevated total cholesterol and low HDL lev-
els also had higher incidence of  renal failure.

Although these studies demonstrate significant cor-
relations between dyslipidemia and impaired renal func-
tion in diabetic subjects, little is known about the mecha-
nisms by which the increased lipid profile causes kidney 
damage. Studies have demonstrated lipid deposits in the 
glomeruli and in the mesangium of  obese individuals, 
suggesting that these lipids may cause kidney damage 
and lipotoxicity[138]. This glomerular lipotoxicity would 
be because of  renal sterol-regulatory element-binding 
protein (SREBP-1 and 2) expression, whereas lipotoxic-
ity causes tubulointerstitial fibrosis and inflammation in 
the proximal tubule epithelial cells[139]. Furthermore, al-
terations in the coagulation-fibrinolytic system, increased 
atherosclerosis and endothelial cell damage can also 
cause or aggravate diabetic nephropathy[140].

Hence, the importance of  lipid control in the main-
tenance of  kidney function in diabetic patients has been 
postulated[141].

Hyperglycemia in diabetes-related renal injury
Vascular alterations in diabetes are largely due to in-
creased blood glucose levels. Hyperglycemia promotes 
microvascular injury by several mechanisms. The most 
important mechanisms are as follows: increased intracel-
lular advanced glycated end product (AGE) formation; 
interaction between AGEs and their receptors, with 
consequent disruption of  cell signaling and function; 
constant protein kinase C activation[142]; and increased 
hexosamine pathway activity[143]. Renal endothelial and 
mesangial cells are susceptible to such hyperglycemia-
induced changes[144]. Thus, the hyperglycemia-induced 
alterations that occur in the kidney are similar to those 
described above but generate characteristic damage to 
renal cells. Because of  AGE-driven structural changes in 
extracellular matrix proteins, metalloproteinases lose their 
ability to degrade the matrix efficiently, which causes 
basement membrane thickening[145]. In the mesangium, 
AGE-induced changes include increased pericyte apop-
tosis and increased vascular endothelial growth factor 
expression, and these changes in turn cause glomerular 
hyperfiltration[146].

Because hyperglycemia causes severe damage to the 
kidneys and other organs, several studies were developed 
to demonstrate the importance of  glycemic control to 
prevent diabetic nephropathy. One of  these clinical trials, 
the Diabetes Control and Complications Trial, compared 
conventional and intensive insulin therapy in type 1 dia-
betic patients. Over approximately 6.5 years, decreased 
risks for microalbuminuria and overt nephropathy were 

56 August 6, 2014|Volume 3|Issue 3|WJN|www.wjgnet.com

  Stages Features

  1 and 2 Hyperfiltration and renal hypertrophy
  3 Microalbuminuria and hypertension as clinical fea-

tures. As histological features: arteriolar hyalinosis, 
glomerular basement membrane thickening and 
mesangial matrix expansion

  4 (Diabetic Ne
  phropathy)

Proteinuria, nephrotic syndrome and decreased GFR

  5 End-stage renal disease

Table 2  Summary of the most important changes in the kid-
ney during diabetes

Adapted from Amann et al[150]. GFR: Glomerular filtration rate.
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observed with intensive glycemic control[147,148]. The Ac-
tion in Diabetes and Vascular disease: Preterax and Dia-
micron-MR Controlled Evaluation clinical trial, which 
was based on type 2 diabetic patients, also observed a 
reduction in albuminuria and nephropathy progression 
with insulin therapy intensification in late disease[149].

TREATMENTS AND PHARMACOLOGICAL 
INTERVENTION
Most treatments and approaches to reduce kidney injury 
in obese patients focus on managing associated risk fac-
tors such as hypertension, diabetes and hyperlipidemia 
using strategies as nutritional counseling, pharmacological 
interference and in some cases, surgery.

Dietary treatment consists on the change in nutri-
tional habits and lifestyle. Eating smaller portions, in-
creasing water consumption, minimizing salt ingestion 
and practicing physical activities are essential for weight 
reduction. Such practices can prevent and treat obesity 
which in turn reduces the risk of  CKD. However this 
is a measure that brings long-term results. Treatment 
of  patients with severe obesity focuses on reduction of  
proteinuria levels. Currently, several studies point out to 
the combined therapy of  RAS inhibitors (ACE inhibi-
tors and Ang Ⅱ receptor antagonists); low calories and 
low salt diets as presumably the best therapeutic options 
for obese patients with high levels of  proteinuria[117].

Weight loss is also an important factor in this treat-
ment regimen. Surgical intervention to treat obesity is a 
strategic option that can diminish levels of  proteinuria 
in obese patients by mainly reducing hyperfiltration, at-
tenuating obesity-mediated dyslipidemia and insulin re-
sistance, reducing blood pressure and altering adipokine 
levels such as leptin and adiponectin which have direct 
a effect on podocytes, therefore improving kidney func-
tion[14,151,152]. Even modest weight loss has been associ-
ated with a substantial reduction in blood pressure and 
risk of  diabetes[153]. The benefits of  bariatric surgery are 
attributed to sympathetic nervous system suppression, 
decreasing therefore overall renal sympathetic activity 
and reduction on sodium reabsorption[154].

Once patients begin to lose weight, longer-term 
maintenance is difficult and even with continued treat-
ment, patients may regain their normal condition. To 
prevent this, there is a need for adjunctive therapies for 
patients who are not able to lose weight or sustain weight 
loss solely with lifestyle changes[155]. In this scenario, the 
introduction of  pharmacological treatment by the use of, 
for instance, noradrenergic agents, gastrointestinal lipase 
inhibitors and serotonin receptor agonists become an 
alternative and efficient strategy towards weight loss[156].

CONCLUSION
Obesity has great influence on end-stage renal disease, 
and it can be either the cause of  renal alterations and kid-
ney injury or an aggravating factor when other conditions 
such as hypertension and diabetes are established. All of  

these factors represent severe insults to the kidney, re-
sulting in high costs to health systems to manage dialysis 
patients as well as those with post- cardiovascular events. 
Therefore, studies that relate these factors are important 
for developing new strategies to treat obese patients with 
renal disease to reduce patient mortality and improve 
quality of  life.
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