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Abstract
Erectile dysfunction (ED) is an important health prob-
lem that has commonly been clinically treated using 
phosphodiesterase type 5 inhibitors (PDE5Is). Howev-
er, PDE5Is are less effective when the structure of the 
cavernous body has been severely injured, and thus 
regeneration is required. Stem cell therapy has been 
investigated as a possible means for regenerating the 
injured cavernous body. Stem cells are classified into 
embryonic stem cells and adult stem cells (ASCs), and 
the intracavernous injection of ASCs has been explored 
as a therapy in animal ED models. Bone marrow-
derived mesenchymal stem cells and adipose tissue-
derived stem cells are major sources of ASCs used for 
the treatment of ED, and accumulated evidence now 
suggests that ASCs are useful in the restoration of 
erectile function and the regeneration of the cavern-
ous body. However, the mechanisms by which ASCs 
recover erectile function remain controversial. Some 
studies indicated that ASCs were differentiated into the 
vascular endothelial cells, vascular smooth muscle cells, 
and nerve cells that originally resided in the cavern-
ous body, whereas other studies have suggested that 
ASCs improved erectile function via  the secretion of 
anti-apoptotic and/or proangiogenic cytokines rather 

than differentiation into other cell types. In this paper, 
we reviewed the characteristics of stem cells used for 
the treatment of ED, and the possible mechanisms by 
which these cells exert their effects. We also discussed 
the problems to be solved before implementation in the 
clinical setting.
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Core tip: Adult stem cells (ASCs) have been used for 
the treatment of erectile dysfunction. Although previous 
studies reported that ASCs differentiated into cells that 
originally resided in the cavernous body, recent stud-
ies indicate that the major, if not all, effects of ASCs on 
erectile function are achieved through the secretion of 
paracrine factors rather than their direct differentiation 
into the cells in the cavernous body. Among various cy-
tokines that ASCs produce, we have recently identified 
adrenomedullin as a candidate peptide that is implicat-
ed in the restoration of erectile function. We introduced 
these data in this review.
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INTRODUCTION
Erectile dysfunction (ED) is a worldwide health problem. 
Although psychogenic factors are a major cause of  ED, 
other factors such as age, diabetes, total prostatectomy 
and radiation in the pelvis also contribute to the occur-
rence of  ED. These factors cause structural changes as 
well as functional abnormalities in the cavernous body, 
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and therefore selective phosphodiesterase type 5 inhibi-
tors (PDE5Is) are not so effective in the treatment of  
these diseases. For the recovery of  erectile function in 
these patients, the regeneration of  the cavernous body 
is necessary. In this regard, much attention has recently 
been placed on gene therapy and stem cell therapy.

Stem cells are defined as being capable of  self-renew-
al and of  differentiation into a variety of  phenotypes[1]. 
There are two categories of  stem cells: embryonic stem 
cells (ESCs) and adult stem cells (ASCs). ESCs were orig-
inally isolated from the inner cell mass of  blastocysts[2]. 
ESCs are pluripotent stem cells that can give rise to the 
three germ layers. However, harvesting ESCs requires the 
destruction of  human embryos and has therefore raised 
ethical concerns. To overcome this limitation, induced 
pluripotent stem (iPS) cells have been produced. Adult 
fibroblasts were reprogrammed by introducing four fac-
tors, Oct3/4, Sox2, c-Myc and Klf4 under ESCs culture 
conditions[3,4]. iPS cells are pluripotent stem cells with 
very similar characteristics to ESCs. Furthermore, many 
groups have now succeeded in reprograming somatic 
cells to create iPS cells by overexpression of  variable sets 
of  several transcription factors in cells without employing 
viruses or vectors[5-7]. Therefore, iPS cells are a promis-
ing option for regenerative medicine in the near future. A 
further option for avoiding the ethical problems of  ESCs 
is the use of  ASCs, which are basically multipotent stem 
cells that reside in various tissues, including the brain, 
skeletal muscle, bone marrow, adipose tissue, and dental 
pulp[8-11]. Besides having the potential to differentiate into 
various cell types, ASCs produce a broad range of  cyto-
kines that exert their effects in a paracrine and/or auto-
crine manner. Among ASCs, bone marrow-derived mes-
enchymal stem cells (BMMSCs) are the most commonly 
studied. BMMSCs reportedly have a potential to differ-
entiate into various cell types including bone, cartilage, 
cardiac muscle, skeletal muscle, vascular endothelial cells 
(VECs) and vascular smooth muscle cells (VSMCs)[12,13]. 
Recently, adipose tissue-derived stem cells (ADSCs) 
have gained much attention because of  the simplicity of  
harvesting hundreds of  grams of  subcutaneous adipose 
tissue without using invasive procedures, whereas painful 
bone marrow aspiration is required to collect just grams 
of  bone marrow. Similar to BMMSCs, ADSCs have the 
potential to differentiate into various cell types[14]. ADSCs 
strongly resemble BMMSCs in that they share similar ex-
pression patterns of  cell surface markers and similar gene 
expression profiles[15,16]. 

TREATMENT OF ED USING ASCs
BMMSCs
Many studies have demonstrated the efficacy of  BMMSCs 
in the treatment of  ED, and their efficacy seems to be re-
liable[17-27]. However, the mechanism by which BMMSCs 
restore erectile function remains controversial. BMMSCs 
were originally believed to home in on damaged tissues 
efficiently and differentiate into various cells at the target 

site. Genetically manipulated BMMSCs were also used ex-
pecting that these cells remain in the tissues and express a 
specific gene over a long period. Bivalacqua et al[17] infect-
ed BMMSCs with an adenovirus expressing endothelial 
nitric oxide synthase (eNOS) and injected these cells into 
the penis of  aged rats. The eNOS-modified BMMSCs 
restored erectile function, with the recovery being as-
sociated with increased eNOS protein expression, NOS 
activity, and cyclic guanosine monophosphate levels. 
Furthermore, the authors demonstrated that the injected 
BMMSCs survived for at least 21 d in the cavernous 
body and expressed markers for VECs and VSMCs. Song 
et al[18] used immortalized human BMMSCs and injected 
them into rat penises, where the cells expressed markers 
for VECs and VSMCs in the cavernous body, although 
the authors did not examine whether erectile function 
was restored or not. Qiu et al[21] injected BMMSCs into 
the penis of  streptozotocin (STZ)-induced diabetic rats 
and found that the BMMSCs injection restored erectile 
function. The authors also demonstrated that injected 
cells remained in the cavernous body for at least 4 wk 
and some expressed markers for VECs and VSMCs. Al-
though the injection of  BMMSCs restored erectile func-
tion in these studies, there are several problems. First, 
these studies did not clearly calculate the percentage of  
injected BMMSCs that remained in the cavernous body 
and obtained markers for VECs and VSMCs, or the per-
centage mentioned in these studies was not sufficient to 
explain the recovery of  erectile function. Second, there 
was a possibility that the injected BMMSCs fused with 
the residing cells in the cavernous body and acquired 
the phenotype of  the residing cells. Terada et al[28] used 
BMMSCs obtained from female transgenic mice express-
ing green fluorescent protein (GFP) and puromycin 
resistance gene. The BMMSCs were cocultured with a 
male embryonic stem cell line and then puromycin was 
added to remove the embryonic stem cells. The remain-
ing cells were GFP positive and puromycin resistant, and 
morphologically similar to embryonic stem cells. These 
cells could be induced to differentiate into cardiac myo-
cytes and neuronal cells, suggesting that embryonic stem 
cell-like pluripotent stem cells were established from 
BMMSCs. However, following DNA ploidy (the number 
of  DNA copies) analysis using fluorescence-activated 
cell sorting, the cells were found to be tetraploid (4n) or 
hexaploid (6n), suggesting that they had developed from 
spontaneous fusion between the BMMSCs and the em-
bryonic stem cells. The possibility of  cell fusion in vivo 
was also reported. Alvarez-Dolado et al[29] used transgenic 
mice that contain the lacZ reporter gene downstream of  
a stop codon flanked by loxP sites (floxed). Therefore, 
the lacZ reporter gene was only expressed when the loxP-
flanked stop codon was excised by Cre recombinase. The 
authors lethally irradiated these mice and intraperitoneally 
injected BMMSCs from mice that ubiquitously express 
Cre recombinase and GFP. If  cells from the donor and 
recipient fused, the Cre enzyme would excise the Lox 
P-flanked stop codon, thereby allowing expression of  
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the lacZ gene. Results revealed that β-gal+ (fused) and 
GFP+ cells were found in the brain, heart, and liver of  
recipients, 2 and 4 mo post-transplantation[29]. Thus, 
BMMSCs potentially fuse with other cell types in vivo and 
it appears that BMMSCs are differentiated into other cell 
types because of  this phenomenon. In contrast, the para-
crine effects of  BMMSCs have been reported. Kendirci 
et al[20] isolated BMMSCs positive for p75 low-affinity 
nerve growth factor receptor using magnetic-activated 
cell sorting, and injected these cells into the penis of  rats 
following bilateral cavernous nerve crush injury. The in-
jection of  these cells restored erectile function[20]. The en-
graftment of  these cells in the cavernous tissue occurred 
very rarely, and the engrafted cells appeared fibroblastic. 
Furthermore, these cells secreted fibroblast growth factor 
2 (FGF2), which suggested that FGF2 might protect the 
cavernous nerve after crush injury. More direct evidence 
of  the paracrine effects of  BMMSCs was reported by 
Yeghiazarians et al[30] who injected BMMSCs extracts into 
infarcted hearts and found that the procedure effectively 
improved cardiac function, suggesting that BMMSCs per 
se were not required for their tissue protective effects. 
Although this scenario is attractive, no cytokines that are 
implicated in the recovery of  erectile function have been 
specifically identified.

ADSCs
The efficacy of  ADSCs in the treatment of  ED seems 
to be reliable from the results of  many previous re-
ports[31-45]. However, the mechanisms by which ADSCs 
restore erectile function remain controversial. Ning et 
al[46] reported that ADSCs could differentiate into VECs. 
ADSCs injected into the penis obtained a marker for 
VECs. FGF2 appeared to be necessary for the differen-
tiation of  ADSCs into VECs in vitro, although the func-
tional role of  FGF2 in the differentiation of  ADSCs into 
VECs in vivo was not studied[46]. Ryu et al[40] demonstrated 
that the injection of  ADSCs into the penis of  STZ-
induced diabetic mice restored erectile function. They 
also found that some injected ADSCs became CD31 
positive, suggesting that these cells differentiated into 
VECs[40]. However, ADSCs injected into the penis disap-
peared within 14 d. Kim et al[43] applied human ADSCs 
and nerve growth factor-incorporated hyaluronic acid-
based hydrogel to the cavernous nerve of  rats following 
bilateral cavernous nerve crush injury. The authors dem-
onstrated that this treatment restored erectile function. 
They also showed that some ADSCs were engrafted into 
the cavernous nerve 4 wk after treatment, suggesting that 
ADSCs could differentiate into nerve tissue[43]. Although 
these studies showed that ADSCs have the ability to dif-
ferentiate into the cells located in the cavernous body, the 
possibility of  cell-cell fusion was not excluded in these 
studies. Alternatively, paracrine effects of  ADSCs have 
been suggested. Several reports suggested the possibility 
of  paracrine effects of  ADSCs because ADSCs did not 
remain in the cavernous body for a long period[32,33]. Al-
bersen et al[31] injected both ADSCs and the lysate of  AD-

SCs into the penis of  rats that were subjected to bilateral 
cavernous nerve crush injury. They demonstrated that 
the injection of  ADSCs lysate significantly restored erec-
tile function[31]. These results suggested that most, if  not 
all, of  the effects of  ADSCs were mediated through their 
production of  cytokines and/or immune modulators, 
although the authors did not identify any molecules that 
are functionally implicated in the restoration of  erectile 
function. Zhang et al[47] reported that ADSCs produced 
chemokine (C-X-C motif) ligand 5 (CXCL5) and that 
CXCL5 was implicated in the neurotrophic effects of  
ADSCs in vitro, although they did not confirm this find-
ing in vivo. We recently reported that adrenomedullin (AM) 
is implicated in ADSCs-induced restoration of  erectile 
function in diabetic rats[36]. AM was originally isolated 
from human pheochromocytoma tissue, and has potent 
vasorelaxant and diuretic effects[48]. In addition, AM is 
also produced by VECs, VSMCs and macrophages[49-51] 
and has the ability to stimulate angiogenesis[52-54]. When 
rat ADSCs were cultured in a medium containing growth 
factors for VECs, ADSCs produced significant amounts 
of  AM (Figure 1A). The injection of  ADSCs into the 
penis of  diabetic rats restored erectile function (Figure1B), 
the morphology of  the cavernous body (Figure 1C), and 
the expression of  vascular endothelial (VE)-cadherin, 
a marker for VECs. However, when the expression of  
AM was knocked down using a small interfering RNA 
for AM, the favorable effects of  ADSCs disappeared 
(Figure 1B and C). Furthermore, when AM was overex-
pressed in the penis using an adenovirus expressing AM, 
erectile function and the morphology of  the cavernous 
body were restored in diabetic rats (Figure 1B and C). We 
also demonstrated that ADSCs produce angiopoietin-1 
(Ang-1) and Ang-1 secreted from ADSCs are implicated 
in ADSCs-induced suppression of  neointimal forma-
tion and stimulation of  reendothelialization in a wire 
injury model of  the rat femoral artery[55]. Furthermore, 
we reported that overexpression of  both AM and Ang-1 
using adenoviruses expressing those proteins restored 
erectile function in diabetic rats to the same level as that 
observed in age-matched positive control rats (Figure 
2)[44]. Therefore, it seems obvious that ADSCs produce 
various cytokines that potentially restore erectile func-
tion. The limitation is that ADSCs do not remain in the 
cavernous body for a long period, usually disappearing 
within a month[32,33,36]. Where do they go? Do they die or 
migrate to other tissues? Several interesting papers have 
been published regarding these points. Lin et al[56] injected 
rat ADSCs and traced their locations after 2 and 7 d. AD-
SCs remained not only in the penis but also in the major 
pelvic ganglia (MPG), spleen and bone marrow. ADSCs 
preferentially remained in the bone marrow and the num-
ber of  ADSCs remaining in the bone marrow was much 
larger than that remaining in the penis. Because ADSCs 
secrete various cytokines, this result suggests that ADSCs 
remaining outside the penis may affect the restoration 
of  erectile function, although the survival of  ADSCs 
for long periods was not examined in the study. Several 
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jected into the penis migrated to the MPG, although AD-
SCs were not engrafted in the nerve tissue. Interestingly, 
the expression of  stromal cell derived factor-1 (SDF-1) 

studies have reported that ADSCs injected into the pe-
nis or placed around the prostate gland migrated to the 
MPG[35,39,45]. Fandel et al[35] demonstrated that ADSCs in-
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Figure 1  Production of adrenomedullin by adipose tissue-derived stem cells, and effects of knockdown and overexpression of adrenomedullin on the 
function and histology of the penis. A: Adipose tissue-derived stem cells produce adrenomedullin especially when they were cultured in a medium containing 
growth factors for vascular endothelial cells (VECs); adipose tissue-derived stem cells (ADSCs) were cultured in endothelial basal medium (EBM: white circles) or 
endothelial growth medium (EGM: black circles) that contains growth factors for VECs. Medium was replaced with serum-free medium and incubated for the indicated 
periods. Adrenomedullin (AM) accumulated in the medium was measured. aP < 0.05 vs 0 h, bP < 0.01 vs 0 h and dP < 0.01 vs EBM culture at each time point (n = 6 
per group); B: Effect of knockdown and overexpression of AM on erectile function. ADSCs were infected with lentivirus expressing negative control siRNA (LV_NCsiRNA) 
that is predicted not to target any known vertebrate gene or lentivirus expressing AM siRNA (LV_AMsiRNA). ADSCs were cultured in EGM for 1 wk, and those 
LV_NCsiRNA-infected ADSCs (EGM_NCsiRNA) and LV_AMsiRNA-infected ADSCs (EGM_AMsiRNA) were injected in the cavernous body of STZ-induced diabetic 
rats. ICP was measured 4 wk after the ADSCs injection. An adenovirus expressing AM (AdAM) or adenovirus expressing green fluorescent protein (AdGFP) was also 
injected into the cavernous body of STZ-induced diabetic rats, and ICP was measured 4 wk after the infection. Nontreated STZ-injected diabetic rats were used as the 
negative control (NC). Bar graphs show ICP/MAP (n = 5 per group). aP < 0.001 vs NC, dP < 0.001 vs EGM_NCsiRNA injection and fP < 0.001 vs AdGFP infection; C: 
Effect of knockdown and overexpression of AM on the morphology of the cavernous body. Experiments were performed in the same way as described in the legend 
for Figure 1B. The cavernous body was stained by the Elastica van Gieson method. The histology of the root portion of the penis (longitudinal section) is shown. Bars 
are 200 μm. Note that the size of trabeculae of the cavernous body is smaller when EGM_AMsiRNA or AdGFP was injected into the penis of diabetic rats, compared 
with when EGM_NCsiRNA or AdAM was injected into the penis. ICP: Intracavernous pressure; STZ: Streptozotocin; MAP: Mean arterial pressure.
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ernous body after adenoviral infection. Elastica van Gieson staining of the cavernous body isolated from age-matched Wistar rats (PC), and STZ-induced diabetic rats 
infected with AdGFP, AdAM, AdAng-1, and AdAM plus AdAng-1. The histology of the root portion of the penis (longitudinal section) is shown. Bars are 300 μm. Note that 
the size of trabeculae of the cavernous body is small when AdGFP is injected into the penis of diabetic rats, and that the size is restored to a similar level as observed in 
the age-matched control group when AdAM and/or AdAng-1 are injected. ICP: Intracavernous pressure; STZ: Streptozotocin; MAP: Mean arterial pressure.

Suzuki E et al . Stem cell therapy for erectile dysfunction



277 November 24, 2014|Volume 3|Issue 3|WJCU|www.wjgnet.com

increased in MPG, suggesting that ADSCs preferentially 
migrated to the site of  SDF-1 production. Qiu et al[39] also 
reported that intracavernously injected ADSCs migrated 
to the MPG, where they remained 17 wk after injection, 
although the number of  ADSCs remaining in the MPG 
was quite low. You et al[45] showed that periprostatic im-
plantation of  ADSCs, but not their intracavernous injec-
tion, resulted in the migration of  ADSCs to MPG. In 
summary, some ADSCs injected into the penis migrated 
to the tissues such as the bone marrow and MPG, and 
these cells may be implicated in the restoration of  erectile 
function. The possible mechanisms by which ADSCs re-
store erectile function are summarized in Figure 3.

Endothelial progenitor cells
Endothelial progenitor cells (EPCs) were originally isolat-
ed from human peripheral blood by Asahara et al[57]. They 
isolated CD34-positive mononuclear blood cells and 
demonstrated that these cells obtained the characteristics 
of  VECs when cultured on fibronectin-coated dishes. 
They also demonstrated that these cells were incorpo-
rated in ischemic tissues in vivo and expressed markers for 
VECs such as CD31 when introduced into the circula-
tion using a hindlimb ischemia model. Furthermore, the 
authors showed that Flk-1-positive mononuclear blood 
cells were also integrated in the capillaries and small arter-
ies when the hindlimb ischemia model was used. These 
cells were designated as EPCs. EPCs are progenitor cells 
whose differentiation potential is restricted to one lineage 
(VECs); therefore, they are not multipotent stem cells. 
Results of  subsequent studies revealed that EPCs express 
three cell surface markers; CD133 (termed originally 
AC133), CD34, and Flk-1[58-60]. Premature EPCs either in 
the bone marrow or immediately after entering into the 
systemic circulation are positive for CD133/CD34/Flk-1. 
However, when EPCs become more mature, they lose 
the expression of  CD133 and begin to express CD31 
and VE-cadherin. An attempt to use EPCs for the treat-
ment of  ED has been reported by Gou et al[61]. They 
transfected EPCs with the vascular endothelial growth 
factor gene and injected the transfected cells into the 

penis of  diabetic rats. The authors found that this treat-
ment restored erectile function and the injected cells 
were integrated into the sites of  neovascularization in 
the cavernous body[61]. However, most researchers in this 
field regard EPCs as a marker for ED rather than a thera-
peutic tool for ED. Factors affecting the number of  cir-
culating EPCs or their functions have been reported. The 
number of  circulating EPCs and their migratory activity 
are reportedly reduced in patients with coronary risk 
factors[62,63]. EPCs isolated from type 2 diabetes patients 
have a decreased capacity for proliferation and the forma-
tion of  capillary tubes in vitro[64]. In contrast, the number 
of  circulating EPCs rapidly increases after limb ischemia 
and acute myocardial infarction[65,66]. Because atheroscle-
rosis and ED share a common feature, i.e., endothelial 
dysfunction, it has been speculated that the dynamics of  
EPCs might change in ED. Indeed, several studies have 
reported that the number of  circulating EPCs decreased 
in ED patients[67-69], suggesting that the decrease in the 
number of  circulating EPCs can predict the presence 
of  ED as well as cardiovascular diseases. Interestingly, 
the number of  circulating EPCs increased when patients 
were administered statins or PDE5Is[70-73] probably via the 
mobilization of  EPCs from the bone marrow. Therefore, 
these drugs may improve erectile function via the mobili-
zation of  EPCs to the cavernous body.

Muscle-derived stem cells
Muscle-derived stem cells (MDSCs) are ASCs that exist 
in skeletal muscle. MDSCs can be obtained from autolo-
gous muscle biopsies and have been used for the treat-
ment of  ED in several studies. Nolazco et al[74] injected 
MDSCs into the penis of  aged rats and found that MD-
SCs differentiated into VSMCs in the cavernous body, 
resulting in the recovery of  erectile function. Woo et al[75] 
used a bilateral cavernous nerve injury model in rats and 
examined the effects of  the injection of  MDSCs into the 
penis on erectile function. They demonstrated that MD-
SCs remained in the cavernous body 4 wk after injection, 
and erectile function was significantly restored. Kovanecz 
et al[76] used a bilateral cavernosal nerve resection model 
of  rats and, following the injection of  MDSCs into the 
cavernous body, found that erectile function was restored 
and α-smooth muscle actin expression was increased. 
The injection of  MDSCs also increased the expression 
of  neural nitric oxide synthase and brain-derived neuro-
trophic factor[76]. In summary, MDSCs seem to be useful 
for the treatment of  ED. However, because harvesting 
MDSCs from the skeletal muscle is relatively more inva-
sive than the collection of  ADSCs, the beneficial char-
acteristics of  MDSCs compared with ADSCs should be 
clarified before introducing them to clinical application.

Umbilical cord blood stem cells 
Umbilical cord blood stem cells (UCBSCs) are an attrac-
tive type of  stem cells in that they are youngest stem cells 
among a variety of  ASCs. Because they are young, they 
have less possibility to have DNA damage than other 
ASCs[77,78]. Bahk et al[79] used human UCBSCs to treat 
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Differentiation
Cell fusion

Paracrine factors
   CXCL5
   Adrenomedullin
   Angiopoietin-1
   FGF2

Migration to:
   MPG
   Bone marrow
   Spleen

Figure 3  Possible mechanisms by which adipose tissue-derived stem 
cells  stimulate the recovery of erectile function. FGF2: Fibroblast growth 
factor 2; MPG: Major pelvic ganglia; ADSCs: Adipose tissue-derived stem cells; 
CXCL5: Chemokine (C-X-C motif) ligand 5.

Suzuki E et al . Stem cell therapy for erectile dysfunction



278 November 24, 2014|Volume 3|Issue 3|WJCU|www.wjgnet.com

diabetic patients with ED, and demonstrated that erec-
tile function was restored and that blood glucose levels 
decreased in these patients, although the mechanisms 
remain unknown. 

Brain-derived stem cells 
Brain-derived stem cells (BDSCs) reportedly have capac-
ity to differentiate into VSMCs[80]. Song et al[81] isolated 
fetal BDSCs from embryonal 12-d rats and injected them 
into the penis. They demonstrated that injected BDSCs 
obtained characteristics of  VSMCs in vivo 6 wk after in-
jection[81], although they did not examine their effect on 
erectile function. Considering the source of  BDSCs, it 
will be difficult to use them in clinical settings.

Neural crest stem cells 
Neural crest stem cells (NCSCs) are the progenitor cells 
of  several cell types that constitute the peripheral nervous 
system, including neurons, Schwann cells, adrenal chro-
maffin cells and smooth muscle cells. Transplantation of  
NCSCs could reportedly induce the regeneration of  con-
nective tissues, VSMCs, skeletal muscle and VECs[82,83]. 
Song et al[84] injected NCSCs into the penis of  rats and 
demonstrated that they obtained markers for VECs and 
VSMCs 2 wk after injection, although their effects on 
erectile function was not analyzed[84]. Clinical application 
of  NCSCs may also be difficult considering the source of  
these cells. 

Treatment of ED using ESCs and iPS cells
Because iPS cells have been created, clinical application of  
pluripotent stem cells will be intensively explored in the 
future. To our knowledge, no studies have been published 
in which iPS cells or iPS cells-derived cells were used to 
treat ED. Bochinski et al[85] used ESCs that had differenti-
ated into the neural cell line, and injected them into the 
MPG or cavernous body using a bilateral cavernous nerve 
injury model. They found that the injection into the both 
MPG and cavernous body restored erectile function. They 
also found that neurofilament staining was recovered in 
the ESCs-injected group[85]. Therefore, ESCs and iPS cells 
may be useful for treatment of  ED. However, these cells 
may not efficiently home and survive for a long period 
under persistent inflammation. For example, in diabetic 
conditions hyperglycemia and adipocytokines induce per-
sistent inflammation in the tissues. Implanted cells may 
not home and survive under these conditions unless such 
an inflammation is sufficiently controlled.

FUTURE DIRECTIONS
As mentioned above, stem cell therapy for ED appears 
to be a promising strategy. However, several problems 
should be solved before moving to clinical application.

Tumorigenesis
It is well known that ESCs and iPS cells easily form tu-
mors, because these cells are pluripotent. Although ASCs 

seem to be less prone to forming tumors, ASCs can form 
malignant tumors when transplanted in vivo[86]. Jeong et 
al[86] injected BMMSCs into the peri-infarct area of  myo-
cardial infaction (MI) model of  mice and hindlimb mus-
cle of  mice with diabetic neuropathy. They found sar-
coma formation in 30% of  hearts in the MI model and 
in 46% of  hindlimbs in the diabetic neuropathy model[86]. 
Therefore, it will be necessary to sufficiently investigate 
the malignant potential of  stem cells prior to their clinical 
use and establish methodology to select “healthy” stem 
cells that will not form tumors.

Fate of injected cells
As described above, some (most) of  stem cells injected 
into the penis do not remain in the penis and migrate to 
other tissues such as the bone marrow and spleen. Little 
is known about the fate of  these cells that have migrated 
to non-diseased organs. Detailed examinations will be 
necessary to detect the fate of  these cells before moving 
to clinical applications.

How to improve homing and survival of stem cells
Most studies suggested that injected stem cells disap-
peared from the penis in one month. It is crucially 
important to explore methods to improve homing and 
survival of  stem cells. It was reported that expression 
of  SDF-1 was increased in the MPG and SDF-1 might 
stimulate migration of  ADSCs to the MPG[35]. Therefore, 
SDF-1 is a candidate that stimulates migration and hom-
ing of  stem cells into injured sites. Intensive studies will 
be necessary to identify molecules that are implicated in 
migration, homing and survival of  stem cells.

Activation and mobilization of endogenous stem cells
It is suggested from EPC study that statins or PDE5Is 
can stimulate mobilization of  EPCs from the bone mar-
row[70-73]. Therefore, it may be possible to activate and/or 
mobilize tissue-residual endogenous stem cells by some 
drugs. If  endogenous stem cells residing in the penis can 
be efficiently activated, it will help to regenerate the cav-
ernous body. This possibility should be examined in the 
future.

Identification of paracrine factors
ASCs produce a variety of  paracrine factors that poten-
tially regenerate the cavernous body. However, paracrine 
factors that are implicated in the regeneration of  the 
cavernous body have not been sufficiently identified. 
Furthermore, it remains unknown what combinations of  
these paracrine factors are most suitable to stimulate the 
regeneration of  the cavernous body. If  these problems 
are solved, administration of  cytokines cocktail may be 
more effective to treat ED than ASCs injection.

CONCLUSION
Stem cells especially ASCs have been used in the treat-
ment of  ED, and stem cell therapy seems to be effective 
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at least in animal modes. Major, if  not all, effects of  ASCs 
on erectile function appear to be achieved by secretion of  
paracrine factors rather than their direct differentiation 
into cells residing in the cavernous body. Before moving 
to clinical application, malignant potential of  stem cells 
should be carefully considered. It is also necessary to ex-
plore methods to improve homing and survival of  stem 
cells.
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