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Abstract
Recent advancements in the field of musculoskeletal 

tissue engineering have raised an increasing interest in the 
regeneration of the anterior cruciate ligament (ACL). It is 
the aim of this article to review the current research efforts 
and highlight promising tissue engineering strategies. The 
four main components of tissue engineering also apply 
in several ACL regeneration research efforts. Scaffolds 
from biological materials, biodegradable polymers and 
composite materials are used. The main cell sources are 
mesenchymal stem cells and ACL fibroblasts. In addition, 
growth factors and mechanical stimuli are applied. So 
far, the regenerated ACL constructs have been tested in 
a few animal studies and the results are encouraging. 
The different strategies, from in vitro  ACL regeneration 
in bioreactor systems to bio-enhanced repair and 
regeneration, are under constant development. We 
expect considerable progress in the near future that will 
result in a realistic option for ACL surgery soon.
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Core tip: This article reviews the current research 
strategies in anterior cruciate ligament tissue engineering 
and highlights the most promising strategies in this field.
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INTRODUCTION
Knee injuries frequently result in ruptured ligaments, 
typically through high-pivoting sporting activities such as 
skiing, football and basketball. In 2005, around 400000 
physician office visits in the United States were related 
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to knee injuries[1]. The worldwide estimation of  young 
sports players that require surgery following a knee injury 
lies between 17%-61%[2]. The anterior cruciate ligament 
(ACL), a main stabilizing structure of  the knee, is one of  
the most commonly injured ligaments. In the United States 
alone, around 350000 reconstructive surgeries of  the ACL 
are performed annually. According to the National Center 
for Health Statistics, the annual costs for the acute care of  
these injuries are around $6 billion[3]. 

Historically, the treatment of  ACL injuries involved 
different strategies, from non-operative care to several 
surgical procedures[4]. Simple primary suturing in the 1970s 
was abandoned due to bad clinical results. Augmented 
ACL repair using natural as well as synthetic grafts leads to 
somewhat improved results. Synthetic grafts were popular 
in the 1980s but resulted in serious complications and 
bad clinical results. From the early 1990s onwards, ACL 
reconstruction with autograft or allograft material has 
become the method of  choice for most surgeons (Figure 
1). Despite the ongoing success of  autografts, problems 
mostly associated with donor site morbidity remain, such 
as anterior knee pain, infrapatellar contracture, tendonitis, 
patellar fracture, muscle weakness and limited graft 
availability[5]. In terms of  allograft material, the risk for 
transmissions of  blood-borne diseases and the delayed 
biological incorporation were mentioned as the main 
disadvantages[6]. In addition, relatively high failure rates 
of  ACL reconstruction, especially in young and active 
patients, have been reported for allografts[7]. An incidence 
of  osteoarthritis as high as 50% within 7-14 years after 
injury and reconstruction of  the ACL is still the main 
drawback of  this surgical strategy. The development of  
osteoarthritis following ACL injury is not fully understood 
and may be caused not only by the limitation of  the 
current grafts, but also by the initial joint trauma and the 
trauma caused by the surgeon. However, this has resulted 
in enormous ongoing research interest in that topic[8,9]. 

The regeneration of  musculoskeletal tissues has 

become increasingly popular in the field of  orthopedic 
research. Typically, structures that are injured or lost 
due to trauma and disease are the ideal candidates to 
be engineered. Tissue engineering as a multidisciplinary 
field includes strategies of  engineering, material science 
and biology, with the aim of  regenerating tissues that 
not only recreate the morphology, but also restore the 
normal function. In the late 1980s, Langer and Vacanti[10] 
first described the classic four basic components that 
are needed in tissue engineering: a structural scaffold, 
a cell source, biological modulators and mechanical 
modulators[10].

The ACL, with its limited healing capacity and the 
consequent need for reconstructive surgery, certainly 
is an appealing but also challenging structure for tissue 
engineering. In contrast to extra-articular ligaments, 
such as the medial collateral ligament, the intra-articular 
location of  the ACL apparently prevents its primary 
healing. The disruption of  the synovial sheath does not 
allow local hematoma formation crucial for the onset of  
the inflammatory response that would stimulate primary 
healing[11]. In addition, the complex three dimensional 
structure of  the ACL, with different tensioning patterns 
throughout the knee path of  motion, contributes to the 
difficulty of  regenerating this ligament in terms of  form 
and function. 

It is the purpose of  this article to review the current 
approaches in tissue-engineering of  the ACL, to provide 
an overview of  the current problems and limitations, 
and to present future directions of  this evolving research 
technology.

SCAFFOLDS FOR ACL REGENERATION
Many different biomaterials have been introduced as a 
potential scaffold for ACL tissue engineering. Ideally, 
the scaffold has to be biocompatible and its mechanical 
properties should mimic the natural ACL as closely as 
possible. It also needs to be biodegradable to enable 
tissue ingrowth, which is crucial for the new ligament 
to form. Biological materials, biodegradable polymers 
and composite materials have all been or still are under 
evaluation for ligament regeneration[11].

Dunn et al[12] and Bellincampi et al[13] developed 
scaffolds made of  collagen fibrils. They showed that 
ACL fibroblasts adhered to these scaffolds and remained 
viable, in vitro as well as in vivo. Unfortunately, after 6 
wk the constructs were completely resorbed. Goulet et 
al[14] reported on the decreasing mechanical strength of  
collagen scaffolds seeded with ACL fibroblasts. Murray 
et al[15] demonstrated that a collagen-glycosaminoglycan 
composite scaffold supported cell growth and the 
expression of  fibroblast markers. Several techniques have 
been explored to improve the mechanical properties 
of  collagen-based scaffolds, including cross linking the 
collagen or a special braid-twist design[16-18]. However, 
despite considerable improvements of  the mechanical 
properties, collagen-based scaffolds thus far have not 
been able to mimic the strength of  the natural ACL.

128 January 18, 2015|Volume 6|Issue 1|WJO|www.wjgnet.com

Nau T et al . Regeneration of the anterior cruciate ligament

Classical approach Tissue engineering approach

Semitendinosus
muscle

Growth factors

Cells

Scaffolds

Figure 1  Comparison of the current clinical strategy in anterior cruciate 
ligament surgery to tissue engineering approaches. The current “golden 
standard” in the clinical routine is the use of autologous tissue grafts such as 
semitendinosus (depicted in the figure) or patellar tendon. In tissue engineering 
approaches, scaffolds alone or in a combined fashion with cells or growth factors 
are used to improve tissue regeneration.



Similar challenges regarding the mechanical strength 
have also been reported for other biological materials, such 
as alginate, chitosan and hyaluronic acid[19-25]. Many different 
composites of  these materials have been explored and it has 
been shown that some of  them may be an interesting option 
in terms of  cell attachment and cell proliferation. However, 
the mechanical insufficiency of  these biological materials 
remains a considerable problem for their routine practical 
use in ligament regeneration. To overcome the mechanical 
weakness, Panas-Perez et al[26] developed a collagen-silk 
composite and concluded that a scaffold with > 25% silk 
provides sufficient mechanical support very close to the 
properties of  the native ACL. 

The use of  silk in ligament scaffolds is not restricted 
to combinations with other biomaterials. In various 
studies, its functionality in diverse tissue engineering 
approaches, especially in the musculoskeletal field, has 
been proven. The properties that make silk an attractive 
candidate as biomaterial are its remarkable strength and 
toughness compared to other natural as well as synthetic 
biomaterials[27-34]. The majority of  studies dealing with 
silk as raw material for scaffold production use fibers 
from cocoons of  the mulberry silkworm Bombyx mori. 
Due to biocompatibility issues, silkworm silk requires 
removal of  the surface protein layer sericin, which can 
elicit adverse immune responses[35,36]. Once sericin is 
removed, the remaining silk fibroin fibers are non-
immunogenic, biocompatible and capable of  promoting 
cell adhesion, growth and, in the case of  progenitor 
cells such as mesenchymal stromal cells (MSCs), 
differentiation. The classical way to remove this protein 
layer is to boil raw silk fibers in alkaline solutions such as 
sodium carbonate. Recently, Teuschl et al[36] successfully 
removed sericin from a compact and highly-ordered 
raw Bombyx mori silk fiber scaffold using borate buffer 
based solutions. The possibility of  removing sericin 
after the textile engineering process eases the production 
of  complex 3D structures in TE applications because 
the gliding properties of  the silk fiber due to the gum-
like sericin assist during textile engineering steps (e.g., 
braiding and weaving). The pioneers in using silk fibers as 
raw material for ACL scaffolds are Altman and Kaplan, 
who demonstrated that the mechanical properties of  
their twisted fiber scaffolds match that of  the native 
human ACL[37]. Moreover, Horan et al[38] demonstrated 
the processability of  silk fibers with a huge number 
of  different textile engineering techniques, enabling 
the generation of  complex hierarchical structures with 
defined properties. Another characteristic that makes silk 
an attractive candidate for ACL tissue engineering is its 
slow rate of  biodegradation (proteolytic degradation). 
Thus, ACL scaffolds made out of  silk fibroin can provide 
the primary stability over an extended period of  time, 
allowing ingrowing cells to rebuild neoligamentous tissue 
without exposing the knee joint to periods of  instability. 
Moreover, the gradual transfer of  stabilizing properties 
from the silk scaffold to the new forming tissue should 

allow a neotissue formation similar to the initial native 
tissue regarding collagen alignment, vascularization, etc.

In the literature, silk-based ligament grafts have been 
tested in animal models in only a few studies[26,39-41]. 
Historically, former ACL studies with synthetic materials 
have shown that the extrapolation of  findings from 
animal data to humans needs large animal studies, like 
goat, sheep or pig models. To the best of  our knowledge, 
only two studies have already tested silk-based ACL grafts 
in large animal studies with encouraging results[42,43]. In 
a pig model, Fan et al[43] demonstrated that their woven 
silk ligament scaffold in conjunction with seeded MSCs 
supported ligament regeneration after the 24 wk post 
implantation period. In conclusion, these very promising 
in vivo studies suggest that ACL scaffolds fabricated from 
silk fibroin have great potential for the translation into 
clinical applications. Moreover, clinical trials of  silk-based 
ACL grafts proving functionality and safety in human 
knees have already been documented[44]. 

Apart from biological materials, synthetic biodegradable 
polymers have been introduced in ligament tissue 
engineering. Petrigliano et al[45] mentioned the advantages 
of  synthetic polymers as proper selection and different 
manufacturing techniques allow for exact adaptation of  the 
mechanical properties, cellular response and degradation 
rate[45]. Lin et al[46] used a scaffold composed of  polyglycolic 
acid coated with polycaprolactone. Buma et al[47] worked 
with a braided polydioxanone scaffold in an in vivo animal 
study but reported an early loss of  mechanical properties. 
Lu et al[48] compared different synthetic braided materials 
and concluded that poly L-lactic acid (PLLA) scaffolds 
had the best results in terms of  mechanical properties 
as well as fibroblast proliferation. Laurencin et al[49] also 
developed a PLLA scaffold in a 3 dimensional braided 
fashion with distinct regions for the bony portions and 
the intra-articular portion of  the construct. The same 
group consequently compared a different PLLA scaffold 
with different manufacturing techniques and demonstrated 
that a braid-twist scaffold had the most favorable viscoelastic 
properties[50,51]. In another study, a polyethylene glycol 
hydrogel was added to the PLLA scaffold which resulted 
in even better viscoelastic performance of  the construct, 
but on the other hand, this also led to a decreased pore 
size of  the scaffold which may negatively influence cell 
proliferation[52]. 

More recently, electrospinning has been used for the 
development of  scaffolds for ligament tissue engineering[53]. 
This technique can be used to produce very thin fibers in 
the nanometer to micron range. This allows for a more exact 
adaptation of  the mechanical properties. Some of  the 
studies using this technique reported better cell proliferation 
and extracellular matrix production[53,54]. However, these 
techniques are under constant investigation and while early in 
vitro studies show interesting results, the overall biological 
and mechanical performance still has to be examined 
further to draw any conclusions for a later clinical use of  
these materials.
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capacity is too restricted to be capable of  healing ruptured 
ligaments. As ACL tissue can only be harvested reasonably 
in diagnostic arthroscopic procedures after ACL rupture, 
other ligament fibroblast sources have been discussed, 
such as the medial collateral ligament[65]. Nevertheless, the 
majority of  studies involving cell therapy approaches in 
ACL tissue engineering uses mesenchymal stromal cells as 
a cell source since they can be obtained much more easily 
in higher numbers and, moreover, MSCs show higher 
proliferation and collagen productions rates compared to 
ligament fibroblasts[66,67]. 

From a cellular view, the knee joint comprises different 
sources of  cells[68] (ligament tissue, synovium, etc.) that have 
been shown to participate during the ligament regeneration 
process, such as the above described ACL fibroblasts or 
MSCs that are natively recruited after ligament ruptures 
or tears. The activation and recruitment of  regenerating 
cells can be augmented mechanically, for instance by the 
surgical procedure (e.g., drilling of  bone holes for the graft 
which gives access to the vasculature of  bone tissue) or 
biochemically, by the use of  growth factors or gene-based 
therapeutic approaches.

GENE-BASED THERAPEUTIC 
APPROACHES AND GROWTH FACTORS
Growth factors can either be directly applied via inserted 
cells (producing these biochemical signal molecules in 

CELL SOURCES FOR ACL 
REGENERATION
Two different types of  cells are mainly regarded as the 
primary choice for ACL regeneration: mesenchymal stem 
cells (MSC) and ACL fibroblasts[55]. 

MSCs are present in almost all tissue types of  the 
body[56,57]. However, for cell therapeutic purposes, bone 
marrow and adipose tissue are regarded as the main feasible 
sources to isolate MSCs[58,59]. The potential of  MSCs to 
differentiate into various mesenchymal lineages, including 
fibroblastic, osteogenic, chondrogenic and myogenic, was 
proven in numerous studies. Furthermore, MSCs have 
already been effectively applied to enhance repair in different 
musculoskeletal tissues, in particular in bone and ligaments 
(Figure 2)[40,60-62]. 

The use of  ACL fibroblasts involves the risk of  local 
infection in the knee during biopsy harvesting. From the 
view that the seeded cells should rebuild the ligament tissue 
by deposition of  extracellular matrix, the appropriate cell 
type would be ACL fibroblasts since they are the native cell 
type in intact ligament tissue. Therefore, they are used as 
control cells for cell behavior such as protein expression, 
especially in in vitro studies. Interestingly, different studies 
have demonstrated that the ACL tissue contains populations 
of  cells sharing MSC characteristics, such as clusters of  
differentiation markers or multipotency[63,64]. Although 
stem cells are present in the ACL tissue, their regenerative 

MSC; e.g. , derived from adipose tissue

Lipoaspirate Collagenase digestion

+ Superior growth capacity
+ Tissue harvest not from knee joint, eliminating risk of local infection

Isolated ASCs

- Variation in differentiation capacity

ACLFs; anterior cruciate ligament fibroblasts

Ligamentous tissue Primary explant culture Outgrown cells

+ Already differentiated - Limited proliferation capacity, long
expansion cultures needed

Figure 2  Overview of the main cell types used for anterior cruciate ligament tissue engineering approaches. Two different types of cells are mainly regarded as the 
primary choice for anterior cruciate ligament (ACL) regeneration: mesenchymal stem cells (MSC) and ACL fibroblasts. Since MSCs can be isolated from adipose tissue (in 
our studies in cooperation with the Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria) or bone aspirates, their harvest is less delicate than cells isolated 
from ligamentous tissue. Further advantages of MSCs over ACL fibroblasts are their superior growth capacity and capability of differentiating into the appropriate cell types. 
Nevertheless, due to their origin, ACL fibroblasts would be the accurate cell type to build up neoligamentous tissue. ASCs: Adipose derived stem cells.
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situ), via local delivery of  growth factors or via gene-based 
therapeutic approaches where vehicles are encoding the 
chosen growth factor.

The most frequently used factors belong to proteins 
that directly affect the deposition of  extracellular matrix 
proteins, such as the bone morphogenetic proteins (BMPs) 
or the degradation of  ECM components assisting in 
remodeling impaired tissue. BMPs belong to the TGF-β 
superfamily. Their most prominent characteristic is to 
induce the differentiation of  MSCs into the chondrogenic 
and osteogenic lineage. A special class of  the BMPs, the 
growth and differentiation factors (GDF) 5/6 and 7, has 
been shown to be able to ectopically induce neotendon/
ligament formation in vivo[69]. Furthermore, Aspenberg et 
al[70] (1999) demonstrated the enhanced regenerative effect 
of  GDF 5 and 6 in an Achilles tendon rat model[70]. 
Interestingly, from a mechanistic point of  view, the 
effects of  GDFs depend on the mechanical loading of  
the injection site. Forslund et al[71] (2002) showed that the 
injection of  GDF 6 in unloaded Achilles tendon defects 
led to the induction of  bone formation[71], which in contrast 
was not observable in control groups of  loaded tendons. 
This clearly indicates the interaction of  the effect of  growth 
factors and mechanical stimulation.

Other factors that have also been used to enhance the 
repair of  tendon/ligament structures but are not directly 
associated with ECM turnover are insulin-like growth 
factor 1 (IGF1)[72,73], vascular endothelial growth factor 
(VEGF)[74], epidermal growth factor (EGF)[75] and platelet 
derived growth factor (PDGF)[76-79]. For instance, VEGF 
is well known to be a powerful stimulator of  angiogenesis 
and the main function of  IGF1 is mainly attributed to 
an anti-inflammatory effect[80] since functional analysis 
revealed a decreased recovery time but no biomechanical 
improvement in an Achilles tendon injury model.

An autologous and already clinically applied approach 
to augment tendon and ligament healing with growth 
factors is the use of  platelet-rich plasma (PRP). PRP 
is obtained by plasma separation and constituents of  
platelets, blood proteins such as fibrin and a mixture of  
diverse growth factors (PDGF, VEGF, TGF-b, IGF, 
etc.) involved in general healing processes. Beside its 
autologous nature, another advantage generally attributed 
to PRP is its combination of  growth factors in native 
proportions[81,82]. This feature of  PRP is noteworthy as 
various studies have proven the synergistic effects of  
different growth factor combinations. Although beneficial 
effects of  PRP have been demonstrated in cell culture 
studies as well as in in vivo models on tendon/ligament 
regeneration, the effectiveness of  PRP in clinical use is 
still debated due to varying outcomes[81,83-87]. In a review 
by Yuan et al[87], these variances were mainly attributed to 
non-optimized treatment protocols.

Another strategy to trigger the healing capacity is to 
deliver therapeutic genes, either in vivo with vehicles or 
ex vivo in cells which are subsequently implanted. Wei 
et al[74] demonstrated that autologous graft remodeling 
in an ACL rabbit model can be enhanced by local 
administration of  TGFβ -1/VEGF165 gene-transduced 

bone MSCs, leading to superior mechanical properties 
compared to solely TGFβ -1 gene transduced cells. In 
another very promising study by Hoffmann et al[88], 
MSCs were genetically modified to coexpress Smad8 and 
BMP2. These genetically modified MSCs enhanced the 
regeneration of  the Achilles tendon in a mouse model. 
Taken together, the co-expression of  growth factors is 
more efficient and potent than single gene therapeutic 
approaches.

MECHANICAL STIMULATION IN ACL 
REGENERATION
Mechanical stimuli and dynamic loading are necessary 
for ligaments to maintain their strength. In a number of  
studies, Woo et al[89] demonstrated that immobilization 
leads to weakened mechanical properties of  ligaments[89-91]. 
From a mechanistic point of  view, it is known that cells 
react to mechanical stimuli via integrin-mediated focal 
adhesions and cytoskeleton deformation[92-94]. Altman et 
al[95,96] demonstrated that mechanical stimuli are able to 
influence stem cell differentiation as well as the production 
of  extracellular matrix (ECM). Mechanical strain resulted 
in the differentiation of  MSCs into fibroblast-like cells, as 
seen by the upregulation of  ligament markers tenascin-C, 
collagen types Ⅰ and Ⅲ, and the formation of  collagen 
fibers[95,97]. Petrigliano et al[98] showed that uniaxial cyclic 
strain of  a three-dimensional polymer scaffold seeded 
with MSCs resulted in upregulated tenascin-C, collagen 
type Ⅰ and Ⅲ. Berry et al[99] reported on the proliferative 
effect of  uniaxial strain on young fibroblasts. Park et 
al[100] demonstrated that 8% cyclical strain in ligament 
fibroblasts leads to higher cell proliferation and collagen 
production compared to a 4% strain and unloaded 
controls. In their review, Leong et al[11] mentioned that 
despite the known fact that mechanical stimuli play an 
important role in ligament tissue engineering, the timing, 
direction and magnitude of  the stimuli as well as the cell 
type can all be of  significant influence on the cellular 
response. As an example, they discussed a study by Moreau 
et al[101] in which MSCs were stimulated immediately 
after seeding and showed an inhibited expression of  
collagen Ⅰ and Ⅱ. In contrast, the opposite effect was 
observed when the mechanical loading was applied at the 
peak of  MSC proliferation. Leong et al[11] mentioned that 
in case of  ACL tissue engineering, additional investigation 
is required to elucidate the mechanotransduction pathways 
that are necessary for tissue formation and maintenance. 
They also stated that, to date, it is not known if  any 
mechanical stimulation is required prior to implantation of  
tissue engineered ACL constructs.

FUTURE DIRECTIONS IN ACL 
REGENERATION
In a recent questionnaire study by Rathbone et al[102], 300 
orthopedic surgeons were asked if  they would consider 
a tissue engineered ACL if  it were an available option. 
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Eight-six percent answered positively if  the construct 
demonstrates biological and mechanical success. For 63%, 
improved patient satisfaction was important and 76% of  
the participants mentioned that a tissue engineered ACL 
would be superior to any of  the currently used autograft 
materials. It was also clearly stated that a fully load-bearing 
construct for implantation is needed and that several ACL 
tissue engineering strategies should address this need 
for mechanical integrity. This seems to be of  crucial 
importance as the presently used ACL reconstruction 
techniques with autograft or allograft material provide an 
immediate load bearing environment. It seems obvious 
that, until the results of  any regenerated ACL can 
compare with the current relatively successful autograft 
methods, patients are likely to prefer the autograft. As 
most surgeons do not require immobilization after 
reconstructive surgery, immobilization is likely to be 
unacceptable.  

Another important aspect that will need consideration 
is the timing of  the tissue engineering process and 
consequent implantation. In recent studies, our group 
focused on the mechanical stimulation of  silk grafts 
with a custom-made bioreactor system[103] in order 
to increase the maturity of  cell-loaded grafts prior to 
implantation (Figure 3). In accordance with a study by 
Altman et al[95], we triggered MSCs to produce layers of  
ECM on silk-based grafts. Our hypothesis is that the 
applied mechanical stimulation triggers the MSCs into 
ligamentous cells which in conjunction with the cells’ 
own secreted ECM leads to more functionality of  the 
cell/scaffold construct and therefore will superiorly fulfil 
its tasks once it is implanted. 

Future studies using a combination of  in vitro 
bioreactor engineering with consequent in vivo implantation 

are certainly needed to get a clearer picture of  this complex 
topic. On the other hand, engineering mechanically 
appropriate scaffolds that are implantable at any time also 
seems to be a good option. Future research efforts may 
also demonstrate which cell type seeded on these scaffolds 
is the ideal candidate for direct in vivo implantation in this 
case. Furthermore, there is also some interest in exploring 
the regenerative potential of  solely implanted scaffolds 
that would recruit in vivo cells, provided there is the 
appropriate mechanical and physiological environment. 
Just recently, Murray et al[104] proposed the strategy of  
repair and regeneration. Here, tissue engineering efforts 
are undertaken to overcome the obstacles to native ACL 
healing. This group proposed a bio-enhanced ACL repair 
technique that uses a collagen scaffold saturated with 
platelet-rich plasma. In a number of  animal studies, they 
demonstrated improved mechanical and biological healing 
of  the ACL[84,105-107]. In a recent randomized large animal 
trial, bio-enhanced ACL repair had equal results compared 
with ACL reconstruction. It was also shown that the 
knees treated with enhanced ACL repair had a lower 
rate of  osteoarthritis in contrast to those treated with 
ACL reconstruction which developed osteoarthritis in 
80% after one year[108]. Despite these interesting findings, 
it may be problematic to draw direct conclusions as 
osteoarthritis is not common a year after ACL injury in 
humans.

CONCLUSION
There is a growing research interest in the tissue engineering 
of  the ACL and the clinical need seems obvious. Different 
strategies from in vitro engineering of  ACL grafts to bio-
enhanced repair and regeneration are followed. For the 

One day after seeding Ten days - bioreactor

Figure 3  Adipose-derived stem cells cultured on silk-based 
ligament grafts (A) produce sheets of extracellular matrix 
proteins (C) under mechanical stimulation via a custom-made 
bioreactor system (B: design and construction in cooperation 
with the Technical University of Vienna, Institute of Materials 
Science and Technology). A: The silk-based anterior cruciate 
ligament (ACL) scaffold is produced of Bombyx mori silk fibers in 
a wire-rope design; B: The scaffold is seeded with ASCs for 24 h 
and then transferred into bioreactor and cultured under linear and 
rotational displacement for 10 d. The mechanically stimulated ACL 
scaffolds show sheets of extracellular matrix. The arrow in the 
bottom panel indicates an artefact of scanning electron microscopy 
preparation. In this area, the covering extracellular matrix sheet 
has been flushed away due to too intense flushing, allowing the 
view to the underlying silk fibers.
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surgical community, any type of  engineered ACL may 
be a future option provided that it is easy to implant, 
does allow for at least the same aggressive rehabilitation 
protocol as currently used and will lead to better patient 
satisfaction and outcome.
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