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Abstract 
This short review examines the most recent functional 
studies of the topographic organization of the human 
corpus callosum, the main interhemispheric commis-
sure. After a brief description of its anatomy, develop-
ment, microstructure, and function, it examines and dis-
cusses the latest findings obtained using diffusion tensor 
imaging (DTI) and tractography (DTT) and functional 
magnetic resonance imaging (fMRI), three recently de-
veloped imaging techniques that have significantly ex-
panded and refined our knowledge of the commissure. 
While DTI and DTT have been providing insights into its 
microstructure, integrity and level of myelination, fMRI 
has been the key technique in documenting the activa-
tion of white matter fibers, particularly in the corpus cal-
losum. By combining DTT and fMRI it has been possible 
to describe the trajectory of the callosal fibers intercon-
necting the primary olfactory, gustatory, motor, somatic 
sensory, auditory and visual cortices at sites where the 
activation elicited by peripheral stimulation was detected 

by fMRI. These studies have demonstrated the presence 
of callosal fiber tracts that cross the commissure at the 
level of the genu, body, and splenium, at sites showing 
fMRI activation. Altogether such findings lend further 
support to the notion that the corpus callosum displays 
a functional topographic organization that can be ex-
plored with fMRI.
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Core tip: A combined approach using diffusion tensor 
imaging and tractography, two recently developed im-
aging techniques, and functional magnetic resonance 
imaging (fMRI) has enabled detection of fMRI activation 
evoked by specific sensory or motor tasks in the corpus 
callosum, and reconstruction of the trajectory of the 
commissural fibers interconnecting primary cortical ar-
eas activated by the same tasks. These findings confirm 
that the corpus callosum has a functional topographic 
organization and that fMRI may be used to explore it.
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INTRODUCTION
The principal interhemispheric commissure is the cor-
pus callosum (CC). It arises in the brain of  placental 
mammals[1] as an elongated midline structure composed 
of  200-800 million horizontal interconnecting homo-
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topical and heterotopical cortical areas[2]. The mature 
CC contains myelinated (70%) and unmyelinated fibers 
(30%), glial cells (astrocytes and oligodendrocytes), and 
neurons[3-7]. The human CC has been divided into five 
anatomical regions, which include from front to back the 
genu, the rostrum, the body or trunk-often subdivided 
into anterior, middle and posterior body-the isthmus, 
and the splenium (Figure 1). Since there are no clear 
borders between regions, a variety of  methods based 
principally on geometric criteria have been proposed to 
define subregions[8-11]. The different callosal regions have 
different fiber compositions: large diameter fibers have 
been described in the posterior part of  the splenium and 
in the body[1,12], where interhemispheric sensory fibers 
cross the commissure and exchange information at high 
speed, whereas small fibers mainly connecting association 
cortical areas are found in the rostrum, genu and anterior 
body[1,12]. Recently, different protein expression profiles 
have also been described in the three main CC regions, 
the genu, body and splenium[13]. In particular, the expres-
sion of  proteins related to glucose metabolism and anti-
oxidant activity seems to be lower in the genu and body 
compared with the splenium[13].

MORPHOLOGICAL STRUCTURE OF THE 
CORPUS CALLOSUM
The anterior half  of  the human CC (genu, rostrum and 

body) contains fibers interconnecting frontal association 
cortical areas. The isthmus mostly contains primary mo-
tor, somatosensory, and auditory fibers. In the splenium 
primary visual and association temporo-occipital and pa-
rietal commissural fibers are mixed, forming a single seg-
ment with the hippocampal commissure through which 
parahippocampal fibers cross[14]. 

Large diameter fibers (3-5 μm) are densest in the 
isthmus (connecting motor, somatosensory, and audi-
tory cortices) and in the posterior splenium (connecting 
visual cortices), whereas small fibers (< 0.4 μm) are more 
numerous in the genu and anterior splenium (connecting 
high-order prefrontal and temporo-parietal associative ar-
eas). The largest fibers in the human CC interconnect the 
primary auditory cortices[12,14]. 

Neurons giving rise to callosal fibers lie in cortical lay-
ers Ⅲ, Ⅴ and Ⅵ. The vast majority of  these fibers release 
excitatory amino acids [glutamate (Glu) and/or aspartate] 
as neurotransmitters[15]; however, a small proportion of  
callosal neurons in cat and rat have been shown to release 
the inhibitory neurotransmitter GABA[16-18].

DEVELOPMENT OF THE CORPUS 
CALLOSUM
The CC is a recent phylogenetic acquisition of  placental 
mammals, developing by fusion of  the interhemispheric 
midline fibers with specialized midline glial cells guiding 
callosal fibers to the contralateral side[14]. It originates 
from the glial sling, above and rostral to the anterior and 
hippocampal commissures: it thus forms from the fusion 
of  two separate segments. The anterior, sling-derived cal-
losum (containing fibers connecting frontal associative 
and possibly primary sensory-motor areas of  the two 
hemispheres) and the hippocampal commissure-associ-
ated splenium (containing fibers arising in the parieto-
temporo-occipital cortex and directed to the opposite 
hemisphere) probably fuse just anterior to the hippocam-
pal commissure[14].

The different origin of  the anterior and posterior 
CC portions seems to correlate with different functional 
properties, and the respective resection gives rise to dif-
ferent effects, since patients with surgical resection of  the 
splenium show disconnection syndrome[19] whereas those 
with resection of  the anterior CC do not[20].

The CC grows in size by the increase of  the con-
nectivity and the tangential growth of  the cortex. In the 
womb and in the early postnatal period it mainly grows 
by fiber addition, whereas later increases are due to the 
development of  myelin, which offsets pruning of  callosal 
fibers; fiber myelination becomes significant at about 6 
mo of  postnatal life in the splenium and at about 8 mo 
in the genu. Myelination is believed to proceed from pos-
terior to anterior[21,22], reflecting the fact that myelination 
of  primary cortical areas (somatic sensory, motor, audi-
tory, visual) connected through the isthmus and splenium 
predates the myelination of  the body, genu, and rostrum, 
which are related to the more anterior associative areas.

Fabri M et al . Functional map of human corpus callosum
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Figure 1  Subdivisions of the human corpus callosum. Midsagittal magnetic 
resonance image of the corpus callosum (above) and its seven anatomical 
regions according to Witelson[8]. Region 1: Rostrum; 2: Genu; 3: Anterior mid-
body; 4: Central midbody; 5: Posterior midbody; 6: Isthmus; 7: Splenium. Both 
images are oriented in the Talairach space, where the origin of X, Y and Z axes 
coincides with the anterior commissure (coordinates 0, 0, 0).



FUNCTION OF THE CORPUS CALLOSUM
The function of  the CC has been investigated for centu-
ries. The earliest studies date to the 16th century. Believed 
for many centuries to be the “seat of  the soul”[23], it took 
until the 18th century for Franz Joseph Gall and Johann 
Spurzheim, dissecting alcohol-fixed brains, to describe 
bundles of  axons passing through the callosal white mat-
ter (WM) and connecting the two hemispheres[24]. Its 
known functions include: interhemispheric exchange of  
information, integration of  inputs reaching one or both 
hemispheres, facilitation of  some cortical activities, and 
inhibition of  cortical functions[25,26]. It has recently been 
shown that the size of  the human CC positively cor-
relates with intelligence (Einstein’s CC was thicker than 
normal[27]) and that its integrity is essential for cognitive 
performances; thus CC resection and microstructural or 
developmental alterations are often associated with cog-
nitive decline.

The earliest hypotheses on the function of  the human 
CC came from studies of  split-brain patients, subjects 
whose CC was partially or completely resected to prevent 
the diffusion of  epileptic seizures[28]. Patients with total 
or partial resection involving the posterior CC suffered 
from disconnection syndrome[19,29,30], whereas in those 
with partial anterior resection the disconnection could be 
evidenced only by specific tests[20,31].

These investigations were followed and paralleled 
by animal studies including neuroanatomical tracing, 
cytological and microstructural analyses, and electro-
physiological recordings. Neuropsychological and clinical 
studies of  patients with total or partial surgical resection 
of  the CC performed to treat drug-resistant epilepsy or 
remove intracallosal cysts or tumors provided further in-
sights into its function.

TOPOGRAPHY OF THE CORPUS 
CALLOSUM
Ever since electrophysiological recordings demonstrated 
somatic sensory receptive fields in the anterior cat 
CC[32,33] and visual inputs to the splenium[34,35], the CC has 
been hypothesized to be topographically organized. Later 
electrophysiological[36] and neuroanatomical findings[37,38] 
obtained after injection of  neural tracers or ablation 
of  selected cortical areas in non-human primates; find-
ings from post-mortem investigations[39]; and studies of  
patients with surgical resection or callosal lesions[28,40-42] 
provided further support for the notion. This organiza-
tion appears to give rise to modality-specific regions[43] in 
which anterior callosal axons transfer motor information 
between the frontal lobes and somatic sensory, auditory, 
and visual information is integrated by posterior fibers 
linking parietal, temporal and occipital lobes and crossing 
through the posterior midbody, isthmus and splenium, 
respectively.

Further support for the notion of  a topographic or-
ganization of  the CC came from the study of  subjects 

with callosal resection. Functional magnetic resonance 
imaging (fMRI) was applied by our group to investigate 
callosotomy patients[44-46] and demonstrated that touch 
information transfer between the hemispheres may be 
accomplished by axons crossing at the level of  the pos-
terior CC. A more recent study of  non-epileptic patients 
with resection of  different portions of  the anterior CC[40] 
contributed additional evidence by showing that motor 
coordination transfer occurs at the level of  the middle 
portion of  the genu and somesthetic information is 
through the anterior CC. Examination of  further sensory 
modalities provided evidence that transfer of  visual[47,48] 
and auditory information[49,50] between the hemispheres 
takes place in the splenium.

The recent MRI-associated techniques, including 
fMRI, volumetric based morphometry, diffusion tensor 
imaging (DTI) and diffusion tensor tractography (DTT), 
are new, powerful methods to investigate the human 
brain in vivo. Data collected with DTI and fMRI are re-
viewed below after a brief  survey of  the bases of  these 
techniques.

BRIEF OVERVIEW OF THE PRINCIPLES 
OF DTI
DTI is an MRI-based method enabling in vivo quantifica-
tion of  the microscopic diffusion properties of  water in 
tissues[51]. It allows generation of  quantitative maps of  
diffusion indices and through them assessment of  brain 
WM tissue structure and integrity. The underlying prin-
ciple of  DTI is the random motion of  water molecules 
(Brownian motion), which can be characterized by the 
diffusion coefficient, D, and is influenced by other factors 
including molecular weight and viscosity. Water diffuses 
freely in all directions (isotropic diffusion). In gray matter 
(GM) water diffusion is similarly isotropic, but it is hin-
dered by cellular structures, whereas diffusion in WM is 
hindered by the presence of  highly ordered axonal struc-
tures. The latter conditions result in preferential diffusion 
parallel to WM tracts, i.e., the route of  least resistance, 
rather than perpendicular to them. This motion was not-
ed in early experiments and designated anisotropic diffu-
sion[52,53]. Myelination of  the axons has long been held to 
be the main obstruction to water diffusion in WM, and 
to be responsible for anisotropy; however later evidence 
suggested that axon membranes as well as other factors 
including organization of  neurofilaments and microtu-
bules also play a role[54]. Measures of  anisotropy include 
relative anisotropy, volume ratio and the most commonly 
cited fractional anisotropy (FA). These rotationally in-
variant indices reflect the degree of  anisotropy in the 
diffusion tensor and are normalized to values between 0 
(isotropic) and 1 (highly anisotropic).

In an extensive paper, Yap et al[55] reviewed several 
investigations documenting WM changes in subjects 
of  different ages using DTI. In particular they showed 
that maximum FA is reached in the anterior and middle 
portions of  the CC around 20 years of  age and in the 
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of  DTI and DTT techniques has thus been confirmed to 
be in line with the one described in previous studies. Fi-
bers connecting prefrontal cortical areas have been seen 
to cross through the anterior part of  the CC; those con-
necting premotor and motor cortical areas crossed at the 
level of  the central callosal body[9,25,79-81]; the fibers con-
necting parietal cortical areas crossed through the posteri-
or callosal body; and those from occipital areas crossed at 
the level of  the splenium (see also[82,83]). Another hypoth-
esis that has been confirmed is the topographic organiza-
tion of  the CC as emerging from previous neuroanatomi-
cal (axonal degeneration and tract-tracing) animal studies 
and human lesion and post-mortem investigations. 

Slight differences have been demonstrated between 
human and monkey topographic organization in relation 
to the much greater expansion of  the human frontal cor-
tex.

FUNCTIONAL MAGNETIC RESONANCE 
IMAGING STUDIES
Functional MRI allows to study the intact brain non in-
vasively. It is a functional neuroimaging approach based 
on MRI technology that measures brain activity by de-
tecting associated changes in blood flow, based on the 
well-established notion that neuronal activation in an 
area of  the brain is accompanied by a local increase in 
blood flow. The blood-oxygen-level dependent (BOLD) 
effect, or response, is a method based on the different 
ratio of  oxygenated to deoxygenated hemoglobin in 
blood. Given that the two forms of  the molecule have 
different magnetic behaviors, the change of  their relative 
concentration, due to an increase in blood flow evoked 
by increased neural activity, generates a magnetic-electric 
signal that is detected by the equipment, highlighting the 
areas of  the brain that are active at any given time. 

It has long been believed that the BOLD effect is 
mainly due to the metabolic activity associated with syn-
aptic rather than spiking activity, and therefore it could 
be evoked only in GM[84]. However, data from the newer 
imaging techniques suggest that a hemodynamic response 
can also be evoked in WM, particularly in the CC. These 
findings were at first observations sporadically recorded 
during interhemispheric transfer tasks performed by 
subjects within the magnet[85-88], or during activities not 
involving specific interhemispheric transfer tasks, such as  
voluntary swallowing[89]. Moreover a BOLD signal was 
elicited in isthmus and splenium (posterior CC) by a task 
based on the interhemispheric transfer and integration 
of  visuo-motor information, where crossing of  the CC is 
needed for a behavioral response to be elicited (“crossed 
condition”[88]). The above mentioned functional studies 
are summarized in Table 1.

A number of  studies have documented that infor-
mation transfer between premotor and prefrontal areas 
involves the anterior CC, and transfer between parietal, 
occipital and temporal regions involves the posterior 

splenium around 50 years; in older subjects FA decreases 
and does so more slowly in the splenium[55,56]. FA is usu-
ally slightly lower in the anterior and middle portions of  
the CC (regions 1-4 described respectively as prefrontal, 
premotor, precentral and postcentral by Pandya and 
Seltzer[38]), where it ranges from 0.5 to 0.7, and higher in 
the splenium (posterior parietal and temporo-occipital 
regions, respectively, regions 5 and 6 of  Pandya and Selt-
zer[38]), where it ranges from 0.6 to 0.8[56-59]. 

DTI thus enables exploration of  the microstructural 
organization of  the CC by measuring FA, which has re-
cently been shown to correlate positively with conduction 
velocity and may therefore be considered as an index of  
myelination or axon diameter[60]. Reductions in FA have 
been implicated in numerous neuropsychiatric and neu-
rological conditions including alcoholism[61], schizophre-
nia[62], traumatic brain injury[63], multiple sclerosis[64-66], and 
Wallerian degeneration[67]. It has recently been suggested 
that acquisition factors such as b-value and voxel size can 
affect the quantification of  DTI parameters (i.e., FA and 
mean diffusivity, MD)[68]. For this reason extreme caution 
is required when comparing data obtained using different 
acquisition factors. 

Interestingly, DTI techniques also evidenced plastic 
changes occurring in fiber bundles in relation to devel-
opment or training and resulting in an FA increase after 
training, thus demonstrating that the technique is not 
solely an anatomical tool[69-71].

A further application of  diffusion tensor data is 
exploration of  the distribution of  WM fibers in the 
brain, known as DTT or fiber tracking. In deterministic 
tractography fibers typically originate from seed points- 
which are entered automatically or manually to examine a 
specific area or the whole brain-and propagate along the 
direction of  the principal eigenvector (e1). Additional pa-
rameters or constraints include maximum tract curvature 
and a stopping criterion for the tracking, such as achieve-
ment of  a minimum FA threshold[51,72]. In probabilistic 
tractography a multitude of  fibers, typically thousands, 
are generated from each seed point or voxel. Each fiber 
propagates in an individual manner: DTT takes into ac-
count both e1 direction and change. Tractography is 
used, for example, to highlight fiber tracts in patients 
requiring brain surgery[73], to investigate WM reductions 
related to cognitive impairment[74], cerebellar damage[75], 
specific cortical brain changes[76], longitudinal changes[77] 
and intrinsic connectivity[78] in multiple sclerosis. DTT 
also evidenced increased FA in specific fiber bundles af-
ter training in given tasks[69-71].

Over the past three decades these new imaging tech-
niques have enabled confirmation or rejection of  earlier 
hypotheses about the functions of  the CC and provided 
new insights. In non-human primates and other mam-
mals they have also allowed to verify and correlate data 
obtained by classic neuroanatomical techniques with DTI 
findings, and results of  electrophysiological recordings 
with fMRI activation. 

The callosal topography resulting from the application 
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CC[81,90-92]. A recent systematic study by our group[93,94] 
examined the BOLD effect evoked in the CC by simple 
sensory stimuli or by the performance of  motor tasks 
activating the cortical areas which in healthy control sub-
jects harbor the representation of  motor activation and 
of  gustatory, olfactory, auditory, visual and tactile sensi-
tivity. The study was directed at establishing whether (1) a 
BOLD signal was able to be evoked in CC fibers; and (2) 
the foci related to motor tasks and sensory stimuli agreed 
with the notion of  a topographic organization. The study 
did detect consistent activation foci in discrete regions 
of  the CC: anterior (olfactory and gustatory stimulation), 
central (motor tasks), central-posterior (touch stimula-
tion), isthmus (auditory stimulation) and splenium (visual 
stimulation) (Figure 2). It also confirmed the existence of  
a topographic organization of  the CC from a functional 
point of  view, demonstrating that it may be investigated 
using fMRI. In recent years the peripheral sensory stimu-
lation protocols applied in the earlier studies[94] were 
administered to partial callosotomy patients[95]. The test 
results were assessed to determine whether the extant CC 
portions displayed a BOLD signal, to provide additional 
evidence for the concept of  a functional map in the CC. 
In the same study DTI test data were also obtained in 
callosotomy and control subjects, to determine whether 
tracts seeded from cortical areas activated by specific sen-
sory stimuli co-localized with CC activation (Figure 3).

CELLULAR BASIS OF THE VASCULAR 
RESPONSE IN THE CORPUS CALLOSUM
The neurovascular interactions inducing hemodynamic 
changes during increased cortical activity is the basis of  
functional neuroimaging with PET and fMRI[96-98]. The 
BOLD signal reflects the hemodynamic responses related 
to neuronal activity[98,99]. The exact mechanism underlying 
the BOLD effect is still debated. Hemodynamic changes 
have been seen to be induced by motor and visuomotor 
tasks and peripheral stimulation[85-89,100] and, recently, by 
simple sensory tasks[94]. Energy-dependent processes oc-
cur in the WM, too, given that ATP-dependent Na+-K+ 
ion pumps mediate the conduction of  axonal action po-

tentials at the nodes of  Ranvier, restoring ion gradients in 
neuron membranes[99,101]. Actually, the block of  voltage-
dependent Na+ channels inhibits the responses to fore-
paw somatosensory stimulation that can be detected by 
fMRI[102]. Moreover, spiking activity and fMRI activation 
are also correlated based on recent data[103-105]. Various 
hypotheses have been advanced to explain the BOLD ef-
fect seen in WM: vessel dilation by astrocytes[106,107] aimed 
at meeting the increased energy demand related to the 
increased neural activation; an increase in extracellular K+ 

in relation to heightened brain cell activity; or an increase 
in cytoplasmic Ca2+[99,106,108]. Astrocytes and capillaries 
are both found in the CC[109], and since the conduction 
of  action potentials by CC axons requires energy, the 
mechanism is probably also active in CC fibers. Accord-
ing to LeBihan (2009, personal communication) the heat 
produced by the augmented axonal metabolism would by 
itself  be able to induce dilation of  CC microvessels. 

Another hypothesis, recently advanced by Barbaresi et 
al[3], explains the BOLD effect seen in specific CC regions 
with the presence of  NADPH-d+/NOS-immunoposi-
tive intracallosal neurons, whose depolarization may re-
sult in increased blood flow. The depolarization may oc-
cur in two ways: (1) through activation of  specific cortical 
regions by peripheral stimulation, resulting in depolariza-
tion of  intracallosal neurons containing nitric oxide (NO), 
whose dendrites reach the activated overlying cerebral 
cortex; NO could thus be released from neuronal pro-
cesses associated with callosal vessels; this mechanism has 
been hypothesized to occur in the cerebral cortex, since 
inhibition of  the NO-producing enzyme NO synthase 
attenuates the increase in blood flow associated with neu-
ronal activity[110-112]; and (2) alternatively, increased cortical 
activity may cause release of  more Glu along callosal fi-
bers[113,114] belonging to glutamatergic cortical neurons[15], 
possibly exciting NO-producing intracallosal neurons[115] 
through NMDA receptors[116,117]; the interaction of  Glu 
with NMDA receptors could therefore elicit a BOLD re-
sponse in the CC similar to other central nervous system 
regions where application of  NMDA receptor antago-
nists attenuates blood flow responses[118-123].

However, a concomitant role of  astrocytes in neu-
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Table 1  Summary of studies evidencing activation of the corpus callosum in humans

Ref. Year Task CC localization Technique Subjects

Mosier et al[89] 2001 Swallowing Anterior fMRI Healthy controls
Tettamanti et al[85] 2003 Visuomotor Anterior fMRI Healthy controls
Omura et al[86] 2004 Visuomotor transfer Anterior fMRI Healthy controls
Weber et al[87] 2005 Visuomotor Anterior fMRI Healthy controls
Mazerolle et al[88] 2008 Visual transfer Posterior fMRI Healthy controls
Mazerolle et al[126] 2010 Visual transfer Posterior fMRI and DTI Healthy controls
Fabri et al[94] 2011 Tactile, gustatory, visual Different regions according peripheral stimuli fMRI Healthy controls
Fabri et al[59] 2013 Tactile, gustatory, visual, auditory Different regions according peripheral stimuli fMRI and DTI Healthy control and 

Callosotomized patients
Polonara et al[95] 2014 Tactile, gustatory, visual, auditory Different regions according peripheral stimuli fMRI and DTI Callosotomized patients

A more extensive review of the studies reporting the activation in the CC can be found in Gawryluk et al[138], 2014. DTI: Diffusion tensor imaging; fMRI: 
Functional magnetic resonance imaging; CC: Corpus callosum.
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rovascular coupling[112] in the CC cannot be ruled out. 
Current findings show that glial cells lack NO-producing 
enzymes[3]; therefore Glu released from callosal axons 

could induce release from astrocytes of  vasoactive agents 
other than NO, such as cyclo-oxygenase (COX) products, 
whose inhibition significantly reduces vasodilation[108,124].

FINAL REMARKS
As mentioned above, sensory and motor stimulation 
evokes activation in various areas of  the CC[94]. Two main 
observations have emerged from this brief  review: the 
first is that activation foci have rarely been detected in the 
middle-anterior area; the second is that foci have been 
elicited in the posterior CC, i.e., the splenium, by different 
sensory stimuli. 

Functional activation in the middle-anterior area has 
sometimes been described in conditions where sub-
jects performed interhemispheric transfer tasks involv-
ing crossed and uncrossed conditions[85-87,125,126], which 
entailed a choice underpinned by a mental operation. 
Anterior callosal activation has been interpreted as the 
transfer of  a premotor program leading to motor output. 
Results of  recent behavioral and functional research sug-
gest that activation of  the anterior midbody is actually 
involved in the integration of  cortical areas recruited in 
abstract mental operations. Miller et al[127] found that cal-
losotomy patients subjected to resection of  the anterior 
CC were unable to provide moral judgments based on 
a hypothetical situation; when the same patients were 
shown a gesture performed by a model standing in front 
of  them and were asked to imitate it, they were unable to 
do so using an anatomical perspective[128]. When during 
an fMRI session healthy subjects were asked to imitate 
mentally a series of  intransitive gestures with the limb 
used by the model in performing them, callosal activation 
was detected in the anterior midbody[129]. Altogether these 
data suggest that the anterior callosal midbody is involved 
in mental operations enabling individuals to relate them-
selves to other subjects, thus also allowing social interac-
tion. The hypothesis is supported by microstructural DTI 
data showing that this regions has a reduced FA value 
in autistic and psychotic patients, indicating an impaired 
connectivity that in these patients is paralleled by poor or 
absent social competences.

As mentioned above, activation foci in the posterior 
region of  the CC, the splenium, have sometimes been 
elicited in some controls and patients by taste and by 
touch stimulation to the hand, in addition to the specific 
foci seen in all subjects at more anterior sites. Since these 
foci do not seem to be accidental, they are likely evoked 
by peripheral stimulation. The foci elicited by gustatory 
and touch stimuli to the hand in the splenium might 
reflect higher-order association area activation: e.g., pos-
terior parietal cortex (touch); temporal cortex (taste and 
touch), since these cortical regions are interconnected by 
nerve fibers that cross the splenium[10,11]. Activation of  
the splenium may explain the good performance in the 
transfer of  touch information obtained by partial cal-
losotomy patients, in whom only this callosal region is 
extant[31,42,130-134]. Other findings from neuropsychological 

900 December 28, 2014|Volume 6|Issue 12|WJR|www.wjgnet.com

4, 29, 11

2, 13, 15

-3, 0, 25

0, -16, 22

0, -31, 10

5, -36, 17

-1, 42, 12

Figure 2  Blood-oxygen-level dependent effect within the corpus callosum 
and interhemispheric fibers. Blood-oxygen-level dependent effect evoked 
in the CC by different kind of peripheral sensory stimulation (left) and CC sites 
where fibers interconnecting the cortical areas activated cross the CC (right). 
A and B: Focus evoked by olfactory stimulation and callosal fibers connecting 
primary olfactory cortices, respectively; C and D: The same for gustatory stimuli 
and areas; E and F: Motor task and motor cortex; G and H: Hand tactile stimu-
lus and somatosensory cortex; I and L: Auditory stimuli and cortex; M and N: 
Visual stimuli and cortex. Authors’ original data. CC: Corpus callosum.
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investigations of  callosotomy patients[134,135] point to a 
role for the splenium in transferring taste information. 
The recruitment of  the splenium in the transfer of  infor-
mation other than visual information could be related to 
the large role of  the visual representation of  the external 
environment characteristic of  humans, where different 
sensory experiences tend to be associated with a visual 
component. Its flexibility sets the splenium apart from 
more anterior callosal regions, and parallels other differ-
ences stemming from the development[14], fiber composi-
tion[12] and chemical specificity of  this region[136]. These 
morpho-functional observations are also in line with the 

fact that patients where this part of  the CC is extant do 
not exhibit disconnection syndromes[19,28], and also sug-
gest that the splenium might subserve most of  the inter-
hemispheric connectivity and the plasticity required for 
functional recovery after callosotomy or other insults.

The next step in this line of  research should be the 
direct demonstration that functionally activated regions 
displaying a BOLD response correspond with the site 
where interhemispheric fibers interconnecting sensory or 
motor cortical areas involved in processing the peripheral 
stimuli applied cross through the commissure.

Another important issue to be addressed with the 
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newer techniques, like diffusion fMRI[137], is whether the 
anterior and posterior portions of  the CC have different 
roles.

CONCLUSION
This review provides a brief  outline of  key notions and 
examines recent DTI studies of  the topographic orga-
nization of  the CC in healthy subjects and in patients 
with different extents of  callosal resection examined 
by fMRI during administration of  peripheral sensory 
stimuli. These studies have documented a BOLD re-
sponse in various portions of  the commissure; they have 
demonstrated that it can be induced by peripheral stimuli 
and motor tasks; and have shown CC activation foci are 
found at discrete sites in relation to the sensory stimula-
tion applied and the motor tasks performed. The result-
ing functional topographic map agrees with earlier find-
ings. Additional fMRI and DTI data are clearly needed if  
we are to gain further insights into the callosal activation 
map and establish or rule out that functionally activated 
CC areas displaying a BOLD response correspond with 
sites where callosal fibers, interconnecting sensory or mo-
tor cortical areas involved in processing specific stimuli, 
cross through the commissure. The organization of  the 
callosal fibers relaying information regarding different 
sub-modalities or areas of  the sensory periphery also de-
serves further investigation. 
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