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Abstract 

This short review examines the most recent functional studies of the topographic organization of the human corpus callosum, the main interhemispheric commissure. After a brief description of its anatomy, development, microstructure, and function, it examines and discusses the latest findings obtained using diffusion tensor imaging (DTI) and tractography (DTT) and functional magnetic resonance imaging (fMRI), three recently developed imaging techniques that have significantly expanded and refined our knowledge of the commissure. While DTI and DTT have been providing insights into its microstructure, integrity and level of myelination, fMRI has been the key technique in documenting the activation of white matter fibers, particularly in the corpus callosum. By combining DTT and fMRI it has been possible to describe the trajectory of the callosal fibers interconnecting the primary olfactory, gustatory, motor, somatic sensory, auditory and visual cortices at sites where the activation elicited by peripheral stimulation was detected by fMRI. These studies have demonstrated the presence of callosal fiber tracts that cross the commissure at the level of the genu, body, and splenium, at sites showing fMRI activation. Altogether such findings lend further support to the notion that the corpus callosum displays a functional topographic organization that can be explored with fMRI.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: A combined approach using diffusion tensor imaging and tractography, two recently developed imaging techniques, and functional magnetic resonance imaging (fMRI) has enabled detection of fMRI activation evoked by specific sensory or motor tasks in the corpus callosum, and reconstruction of the trajectory of the commissural fibers interconnecting primary cortical areas activated by the same tasks. These findings confirm that the corpus callosum has a functional topographic organization and that fMRI may be used to explore it.
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INTRODUCTION
The principal interhemispheric commissure is the corpus callosum (CC). It arises in the brain of placental mammals[1] as an elongated midline structure composed of 200-800 million horizontal interconnecting homotopical and heterotopical cortical areas[2]. The mature CC contains myelinated (70%) and unmyelinated fibers (30%), glial cells (astrocytes and oligodendrocytes), and neurons[3-7]. The human CC has been divided into five anatomical regions, which include from front to back the genu, the rostrum, the body or trunk-often subdivided into anterior, middle and posterior body-the isthmus, and the splenium (Figure 1). Since there are no clear borders between regions, a variety of methods based principally on geometric criteria have been proposed to define subregions[8-11]. The different callosal regions have different fiber compositions: large diameter fibers have been described in the posterior part of the splenium and in the body[1,12], where interhemispheric sensory fibers cross the commissure and exchange information at high speed, whereas small fibers mainly connecting association cortical areas are found in the rostrum, genu and anterior body[1,12]. Recently, different protein expression profiles have also been described in the three main CC regions, the genu, body and splenium[13]. In particular, the expression of proteins related to glucose metabolism and antioxidant activity seems to be lower in the genu and body compared with the splenium[13].

MORPHOLOGICAL STRUCTURE OF THE CORPUS CALLOSUM

The anterior half of the human CC (genu, rostrum and body) contains fibers interconnecting frontal association cortical areas. The isthmus mostly contains primary motor, somatosensory, and auditory fibers. In the splenium primary visual and association temporo-occipital and parietal commissural fibers are mixed, forming a single segment with the hippocampal commissure through which parahippocampal fibers cross[14]. 

Large diameter fibers (3-5 m) are densest in the isthmus (connecting motor, somatosensory, and auditory cortices) and in the posterior splenium (connecting visual cortices), whereas small fibers (< 0.4 m) are more numerous in the genu and anterior splenium (connecting high-order prefrontal and temporo-parietal associative areas). The largest fibers in the human CC interconnect the primary auditory cortices[12,14]. 

Neurons giving rise to callosal fibers lie in cortical layers Ⅲ, Ⅴ and Ⅵ. The vast majority of these fibers release excitatory amino acids [glutamate (Glu) and/or aspartate] as neurotransmitters[15]; however, a small proportion of callosal neurons in cat and rat have been shown to release the inhibitory neurotransmitter GABA[16-18].

DEVELOPMENT OF THE CORPUS CALLOSUM

The CC is a recent phylogenetic acquisition of placental mammals, developing by fusion of the interhemispheric midline fibers with specialized midline glial cells guiding callosal fibers to the contralateral side[14]. It originates from the glial sling, above and rostral to the anterior and hippocampal commissures: it thus forms from the fusion of two separate segments. The anterior, sling-derived callosum (containing fibers connecting frontal associative and possibly primary sensory-motor areas of the two hemispheres) and the hippocampal commissure-associated splenium (containing fibers arising in the parieto-temporo-occipital cortex and directed to the opposite hemisphere) probably fuse just anterior to the hippocampal commissure[14].

The different origin of the anterior and posterior CC portions seems to correlate with different functional properties, and the respective resection gives rise to different effects, since patients with surgical resection of the splenium show disconnection syndrome[19] whereas those with resection of the anterior CC do not[20].

The CC grows in size by the increase of the connectivity and the tangential growth of the cortex. In the womb and in the early postnatal period it mainly grows by fiber addition, whereas later increases are due to the development of myelin, which offsets pruning of callosal fibers; fiber myelination becomes significant at about 6 mo of postnatal life in the splenium and at about 8 mo in the genu. Myelination is believed to proceed from posterior to anterior[21,22], reflecting the fact that myelination of primary cortical areas (somatic sensory, motor, auditory, visual) connected through the isthmus and splenium predates the myelination of the body, genu, and rostrum, which are related to the more anterior associative areas.

FUNCTION OF THE CORPUS CALLOSUM

The function of the CC has been investigated for centuries. The earliest studies date to the 16th century. Believed for many centuries to be the “seat of the soul”[23], it took until the 18th century for Franz Joseph Gall and Johann Spurzheim, dissecting alcohol-fixed brains, to describe bundles of axons passing through the callosal white matter (WM) and connecting the two hemispheres[24]. Its known functions include: interhemispheric exchange of information, integration of inputs reaching one or both hemispheres, facilitation of some cortical activities, and inhibition of cortical functions[25,26]. It has recently been shown that the size of the human CC positively correlates with intelligence (Einstein’s CC was thicker than normal[27]) and that its integrity is essential for cognitive performances; thus CC resection and microstructural or developmental alterations are often associated with cognitive decline.

The earliest hypotheses on the function of the human CC came from studies of split-brain patients, subjects whose CC was partially or completely resected to prevent the diffusion of epileptic seizures[28]. Patients with total or partial resection involving the posterior CC suffered from disconnection syndrome[19,29,30], whereas in those with partial anterior resection the disconnection could be evidenced only by specific tests[20,31].

These investigations were followed and paralleled by animal studies including neuroanatomical tracing, cytological and microstructural analyses, and electrophysiological recordings. Neuropsychological and clinical studies of patients with total or partial surgical resection of the CC performed to treat drug-resistant epilepsy or remove intracallosal cysts or tumors provided further insights into its function.

TOPOGRAPHY OF THE CORPUS CALLOSUM

Ever since electrophysiological recordings demonstrated somatic sensory receptive fields in the anterior cat CC[32,33] and visual inputs to the splenium[34,35], the CC has been hypothesized to be topographically organized. Later electrophysiological[36] and neuroanatomical findings[37,38] obtained after injection of neural tracers or ablation of selected cortical areas in non-human primates; findings from post-mortem investigations[39]; and studies of patients with surgical resection or callosal lesions[28,40-42] provided further support for the notion. This organization appears to give rise to modality-specific regions[43] in which anterior callosal axons transfer motor information between the frontal lobes and somatic sensory, auditory, and visual information is integrated by posterior fibers linking parietal, temporal and occipital lobes and crossing through the posterior midbody, isthmus and splenium, respectively.

Further support for the notion of a topographic organization of the CC came from the study of subjects with callosal resection. Functional magnetic resonance imaging (fMRI) was applied by our group to investigate callosotomy patients[44-46] and demonstrated that touch information transfer between the hemispheres may be accomplished by axons crossing at the level of the posterior CC. A more recent study of non-epileptic patients with resection of different portions of the anterior CC[40] contributed additional evidence by showing that motor coordination transfer occurs at the level of the middle portion of the genu and somesthetic information is through the anterior CC. Examination of further sensory modalities provided evidence that transfer of visual[47,48] and auditory information[49,50] between the hemispheres takes place in the splenium.

The recent MRI-associated techniques, including fMRI, volumetric based morphometry, diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT), are new, powerful methods to investigate the human brain in vivo. Data collected with DTI and fMRI are reviewed below after a brief survey of the bases of these techniques.

BRIEF OVERVIEW OF THE PRINCIPLES OF DTI

DTI is an MRI-based method enabling in vivo quantification of the microscopic diffusion properties of water in tissues[51]. It allows generation of quantitative maps of diffusion indices and through them assessment of brain WM tissue structure and integrity. The underlying principle of DTI is the random motion of water molecules (Brownian motion), which can be characterized by the diffusion coefficient, D, and is influenced by other factors including molecular weight and viscosity. Water diffuses freely in all directions (isotropic diffusion). In gray matter (GM) water diffusion is similarly isotropic, but it is hindered by cellular structures, whereas diffusion in WM is hindered by the presence of highly ordered axonal structures. The latter conditions result in preferential diffusion parallel to WM tracts, i.e., the route of least resistance, rather than perpendicular to them. This motion was noted in early experiments and designated anisotropic diffusion[52,53]. Myelination of the axons has long been held to be the main obstruction to water diffusion in WM, and to be responsible for anisotropy; however later evidence suggested that axon membranes as well as other factors including organization of neurofilaments and microtubules also play a role[54]. Measures of anisotropy include relative anisotropy, volume ratio and the most commonly cited fractional anisotropy (FA). These rotationally invariant indices reflect the degree of anisotropy in the diffusion tensor and are normalized to values between 0 (isotropic) and 1 (highly anisotropic).

In an extensive paper, Yap et al[55] reviewed several investigations documenting WM changes in subjects of different ages using DTI. In particular they showed that maximum FA is reached in the anterior and middle portions of the CC around 20 years of age and in the splenium around 50 years; in older subjects FA decreases and does so more slowly in the splenium[55,56]. FA is usually slightly lower in the anterior and middle portions of the CC (regions 1-4 described respectively as prefrontal, premotor, precentral and postcentral by Pandya and Seltzer[38]), where it ranges from 0.5 to 0.7, and higher in the splenium (posterior parietal and temporo-occipital regions, respectively, regions 5 and 6 of Pandya and Seltzer[38]), where it ranges from 0.6 to 0.8[56-59]. 

DTI thus enables exploration of the microstructural organization of the CC by measuring FA, which has recently been shown to correlate positively with conduction velocity and may therefore be considered as an index of myelination or axon diameter[60]. Reductions in FA have been implicated in numerous neuropsychiatric and neurological conditions including alcoholism[61], schizophrenia[62], traumatic brain injury[63], multiple sclerosis[64-66], and Wallerian degeneration[67]. It has recently been suggested that acquisition factors such as b-value and voxel size can affect the quantification of DTI parameters (i.e., FA and mean diffusivity, MD)[68]. For this reason extreme caution is required when comparing data obtained using different acquisition factors. 

Interestingly, DTI techniques also evidenced plastic changes occurring in fiber bundles in relation to development or training and resulting in an FA increase after training, thus demonstrating that the technique is not solely an anatomical tool[69-71].

A further application of diffusion tensor data is exploration of the distribution of WM fibers in the brain, known as DTT or fiber tracking. In deterministic tractography fibers typically originate from seed points- which are entered automatically or manually to examine a specific area or the whole brain-and propagate along the direction of the principal eigenvector (e1). Additional parameters or constraints include maximum tract curvature and a stopping criterion for the tracking, such as achievement of a minimum FA threshold[51,72]. In probabilistic tractography a multitude of fibers, typically thousands, are generated from each seed point or voxel. Each fiber propagates in an individual manner: DTT takes into account both e1 direction and change. Tractography is used, for example, to highlight fiber tracts in patients requiring brain surgery[73], to investigate WM reductions related to cognitive impairment[74], cerebellar damage[75], specific cortical brain changes[76], longitudinal changes[77] and intrinsic connectivity[78] in multiple sclerosis. DTT also evidenced increased FA in specific fiber bundles after training in given tasks[69-71].

Over the past three decades these new imaging techniques have enabled confirmation or rejection of earlier hypotheses about the functions of the CC and provided new insights. In non-human primates and other mammals they have also allowed to verify and correlate data obtained by classic neuroanatomical techniques with DTI findings, and results of electrophysiological recordings with fMRI activation. 

The callosal topography resulting from the application of DTI and DTT techniques has thus been confirmed to be in line with the one described in previous studies. Fibers connecting prefrontal cortical areas have been seen to cross through the anterior part of the CC; those connecting premotor and motor cortical areas crossed at the level of the central callosal body[9,25,79-81]; the fibers connecting parietal cortical areas crossed through the posterior callosal body; and those from occipital areas crossed at the level of the splenium (see also[82,83]). Another hypothesis that has been confirmed is the topographic organization of the CC as emerging from previous neuroanatomical (axonal degeneration and tract-tracing) animal studies and human lesion and post-mortem investigations. 

Slight differences have been demonstrated between human and monkey topographic organization in relation to the much greater expansion of the human frontal cortex.

FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDIES

Functional MRI allows to study the intact brain non invasively. It is a functional neuroimaging approach based on MRI technology that measures brain activity by detecting associated changes in blood flow, based on the well-established notion that neuronal activation in an area of the brain is accompanied by a local increase in blood flow. The blood-oxygen-level dependent (BOLD) effect, or response, is a method based on the different ratio of oxygenated to deoxygenated hemoglobin in blood. Given that the two forms of the molecule have different magnetic behaviors, the change of their relative concentration, due to an increase in blood flow evoked by increased neural activity, generates a magnetic-electric signal that is detected by the equipment, highlighting the areas of the brain that are active at any given time. 

It has long been believed that the BOLD effect is mainly due to the metabolic activity associated with synaptic rather than spiking activity, and therefore it could be evoked only in GM[84]. However, data from the newer imaging techniques suggest that a hemodynamic response can also be evoked in WM, particularly in the CC. These findings were at first observations sporadically recorded during interhemispheric transfer tasks performed by subjects within the magnet[85-88], or during activities not involving specific interhemispheric transfer tasks, such as  voluntary swallowing[89]. Moreover a BOLD signal was elicited in isthmus and splenium (posterior CC) by a task based on the interhemispheric transfer and integration of visuo-motor information, where crossing of the CC is needed for a behavioral response to be elicited (“crossed condition”[88]). The above mentioned functional studies are summarized in Table 1.

A number of studies have documented that information transfer between premotor and prefrontal areas involves the anterior CC, and transfer between parietal, occipital and temporal regions involves the posterior CC[81,90-92]. A recent systematic study by our group[93,94] examined the BOLD effect evoked in the CC by simple sensory stimuli or by the performance of motor tasks activating the cortical areas which in healthy control subjects harbor the representation of motor activation and of gustatory, olfactory, auditory, visual and tactile sensitivity. The study was directed at establishing whether (1) a BOLD signal was able to be evoked in CC fibers; and (2) the foci related to motor tasks and sensory stimuli agreed with the notion of a topographic organization. The study did detect consistent activation foci in discrete regions of the CC: anterior (olfactory and gustatory stimulation), central (motor tasks), central-posterior (touch stimulation), isthmus (auditory stimulation) and splenium (visual stimulation) (Figure 2). It also confirmed the existence of a topographic organization of the CC from a functional point of view, demonstrating that it may be investigated using fMRI. In recent years the peripheral sensory stimulation protocols applied in the earlier studies[94] were administered to partial callosotomy patients[95]. The test results were assessed to determine whether the extant CC portions displayed a BOLD signal, to provide additional evidence for the concept of a functional map in the CC. In the same study DTI test data were also obtained in callosotomy and control subjects, to determine whether tracts seeded from cortical areas activated by specific sensory stimuli co-localized with CC activation (Figure 3).

CELLULAR BASIS OF THE VASCULAR RESPONSE IN THE CORPUS CALLOSUM

The neurovascular interactions inducing hemodynamic changes during increased cortical activity is the basis of functional neuroimaging with PET and fMRI[96-98]. The BOLD signal reflects the hemodynamic responses related to neuronal activity[98,99]. The exact mechanism underlying the BOLD effect is still debated. Hemodynamic changes have been seen to be induced by motor and visuomotor tasks and peripheral stimulation[85-89,100] and, recently, by simple sensory tasks[94]. Energy-dependent processes occur in the WM, too, given that ATP-dependent Na+-K+ ion pumps mediate the conduction of axonal action potentials at the nodes of Ranvier, restoring ion gradients in neuron membranes[99,101]. Actually, the block of voltage-dependent Na+ channels inhibits the responses to forepaw somatosensory stimulation that can be detected by fMRI[102]. Moreover, spiking activity and fMRI activation are also correlated based on recent data[103-105]. Various hypotheses have been advanced to explain the BOLD effect seen in WM: vessel dilation by astrocytes[106,107] aimed at meeting the increased energy demand related to the increased neural activation; an increase in extracellular K+ in relation to heightened brain cell activity; or an increase in cytoplasmic Ca2+[99,106,108]. Astrocytes and capillaries are both found in the CC[109], and since the conduction of action potentials by CC axons requires energy, the mechanism is probably also active in CC fibers. According to LeBihan (2009, personal communication) the heat produced by the augmented axonal metabolism would by itself be able to induce dilation of CC microvessels. 
Another hypothesis, recently advanced by Barbaresi et al[3], explains the BOLD effect seen in specific CC regions with the presence of NADPH-d+/NOS-immunopositive intracallosal neurons, whose depolarization may result in increased blood flow. The depolarization may occur in two ways: (1) through activation of specific cortical regions by peripheral stimulation, resulting in depolarization of intracallosal neurons containing nitric oxide (NO), whose dendrites reach the activated overlying cerebral cortex; NO could thus be released from neuronal processes associated with callosal vessels; this mechanism has been hypothesized to occur in the cerebral cortex, since inhibition of the NO-producing enzyme NO synthase attenuates the increase in blood flow associated with neuronal activity[110-112]; and (2) alternatively, increased cortical activity may cause release of more Glu along callosal fibers[113,114] belonging to glutamatergic cortical neurons[15], possibly exciting NO-producing intracallosal neurons[115] through NMDA receptors[116,117]; the interaction of Glu with NMDA receptors could therefore elicit a BOLD response in the CC similar to other central nervous system regions where application of NMDA receptor antagonists attenuates blood flow responses[118-123].

However, a concomitant role of astrocytes in neurovascular coupling[112] in the CC cannot be ruled out. Current findings show that glial cells lack NO-producing enzymes[3]; therefore Glu released from callosal axons could induce release from astrocytes of vasoactive agents other than NO, such as cyclo-oxygenase (COX) products, whose inhibition significantly reduces vasodilation[108,124].

FINAL REMARKS

As mentioned above, sensory and motor stimulation evokes activation in various areas of the CC[94]. Two main observations have emerged from this brief review: the first is that activation foci have rarely been detected in the middle-anterior area; the second is that foci have been elicited in the posterior CC, i.e., the splenium, by different sensory stimuli. 

Functional activation in the middle-anterior area has sometimes been described in conditions where subjects performed interhemispheric transfer tasks involving crossed and uncrossed conditions[85-87,125,126], which entailed a choice underpinned by a mental operation. Anterior callosal activation has been interpreted as the transfer of a premotor program leading to motor output. Results of recent behavioral and functional research suggest that activation of the anterior midbody is actually involved in the integration of cortical areas recruited in abstract mental operations. Miller et al[127] found that callosotomy patients subjected to resection of the anterior CC were unable to provide moral judgments based on a hypothetical situation; when the same patients were shown a gesture performed by a model standing in front of them and were asked to imitate it, they were unable to do so using an anatomical perspective[128]. When during an fMRI session healthy subjects were asked to imitate mentally a series of intransitive gestures with the limb used by the model in performing them, callosal activation was detected in the anterior midbody[129]. Altogether these data suggest that the anterior callosal midbody is involved in mental operations enabling individuals to relate themselves to other subjects, thus also allowing social interaction. The hypothesis is supported by microstructural DTI data showing that this regions has a reduced FA value in autistic and psychotic patients, indicating an impaired connectivity that in these patients is paralleled by poor or absent social competences.

As mentioned above, activation foci in the posterior region of the CC, the splenium, have sometimes been elicited in some controls and patients by taste and by touch stimulation to the hand, in addition to the specific foci seen in all subjects at more anterior sites. Since these foci do not seem to be accidental, they are likely evoked by peripheral stimulation. The foci elicited by gustatory and touch stimuli to the hand in the splenium might reflect higher-order association area activation: e.g., posterior parietal cortex (touch); temporal cortex (taste and touch), since these cortical regions are interconnected by nerve fibers that cross the splenium[10,11]. Activation of the splenium may explain the good performance in the transfer of touch information obtained by partial callosotomy patients, in whom only this callosal region is extant[31,42,130-134]. Other findings from neuropsychological investigations of callosotomy patients[134,135] point to a role for the splenium in transferring taste information. The recruitment of the splenium in the transfer of information other than visual information could be related to the large role of the visual representation of the external environment characteristic of humans, where different sensory experiences tend to be associated with a visual component. Its flexibility sets the splenium apart from more anterior callosal regions, and parallels other differences stemming from the development[14], fiber composition[12] and chemical specificity of this region[136]. These morpho-functional observations are also in line with the fact that patients where this part of the CC is extant do not exhibit disconnection syndromes[19,28], and also suggest that the splenium might subserve most of the interhemispheric connectivity and the plasticity required for functional recovery after callosotomy or other insults.

The next step in this line of research should be the direct demonstration that functionally activated regions displaying a BOLD response correspond with the site where interhemispheric fibers interconnecting sensory or motor cortical areas involved in processing the peripheral stimuli applied cross through the commissure.

Another important issue to be addressed with the newer techniques, like diffusion fMRI[137], is whether the anterior and posterior portions of the CC have different roles.

CONCLUSION

This review provides a brief outline of key notions and examines recent DTI studies of the topographic organization of the CC in healthy subjects and in patients with different extents of callosal resection examined by fMRI during administration of peripheral sensory stimuli. These studies have documented a BOLD response in various portions of the commissure; they have demonstrated that it can be induced by peripheral stimuli and motor tasks; and have shown CC activation foci are found at discrete sites in relation to the sensory stimulation applied and the motor tasks performed. The resulting functional topographic map agrees with earlier findings. Additional fMRI and DTI data are clearly needed if we are to gain further insights into the callosal activation map and establish or rule out that functionally activated CC areas displaying a BOLD response correspond with sites where callosal fibers, interconnecting sensory or motor cortical areas involved in processing specific stimuli, cross through the commissure. The organization of the callosal fibers relaying information regarding different sub-modalities or areas of the sensory periphery also deserves further investigation. 

ACKNOWLEDGMENTS 

The researches by our group reported here have been carried out with the collaboration of the late Professor Tullio Manzoni and Professor Ugo Salvolini, who provided invaluable help and criticisms, of Doctor Giulia Mascioli, who contributed to fMRI data analysis, and of Doctors Aldo Paggi and Nicoletta Foschi, who were responsible for patient care. We gratefully acknowledge their contributions. The authors are also grateful to Dr. Silvia Modena (Word Design; www.silviamodena.com) for the language revision, and to the technical staff of the Radiology Institute for assistance in scan sessions and data transfer. 
REFERENCES 

1
Aboitiz F, Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 2003; 36: 409-420 [PMID: 12700818 DOI: 10.1590/S0100-879X2003000400002]

2
Innocenti GM. General organization of callosal connections in the cerebral cortex. In: Jones EG, Peters A, editors. Cerebral Cortex. New York: Plenum Press, 1986; 5: 291-353

3
Barbaresi P, Fabri M, Mensà E. Characterization of NO-producing neurons in the rat corpus callosum. Brain Behav 2014; 4: 317-336 [PMID: 24944862 DOI: 10.1002/brb3.218]

4
Rockland KS, Nayyar N. Association of type I neurons positive for NADPH-diaphorase with blood vessels in the adult monkey corpus callosum. Front Neural Circuits 2012; 6: 4 [PMID: 22363265 DOI: 10.3389/fncir.2012.00004]

5
Malobabić S, Bogdanović D, Drekić D. On the neurons with dendrites intermingling with the fibers of the human corpus callosum: a Golgi picture. Gegenbaurs Morphol Jahrb 1984; 130: 557-564 [PMID: 6208078]

6
Revishchin AV, Okhotin VE, Korochkin LI, Pavlova GV. A new population of calretinin-positive cells, presumptively neurons, with polymorphous spines in the mouse forebrain. Neurosci Behav Physiol 2010; 40: 541-552 [PMID: 20464508 DOI: 10.1007/s11055-010-9295-3]

7
Riederer BM, Berbel P, Innocenti GM. Neurons in the corpus callosum of the cat during postnatal development. Eur J Neurosci 2004; 19: 2039-2046 [PMID: 15090031 DOI: 10.1111/j.1460-9568.2004.03305.x]

8
Witelson SF. Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 1989; 112 (Pt 3): 799-835 [PMID: 2731030 DOI: 10.1093/brain/112.3.799]

9
Hofer S, Frahm J. Topography of the human corpus callosum revisited--comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 2006; 32: 989-994 [PMID: 16854598 DOI: 10.1016/j.neuroimage.2006.05.044]

10
Hofer S, Merboldt KD, Tammer R, Frahm J. Rhesus monkey and human share a similar topography of the corpus callosum as revealed by diffusion tensor MRI in vivo. Cereb Cortex 2008; 18: 1079-1084 [PMID: 17709556 DOI: 10.1093/cercor/bhm141]

11
Chao YP, Cho KH, Yeh CH, Chou KH, Chen JH, Lin CP. Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Hum Brain Mapp 2009; 30: 3172-3187 [PMID: 19241418 DOI: 10.1002/hbm.20739]

12
Aboitiz F, Scheibel AB, Fisher RS, Zaidel E. Fiber composition of the human corpus callosum. Brain Res 1992; 598: 143-153 [PMID: 1486477 DOI: 10.1016/0006-8993(92)90179-D]

13
Kashem MA, Sarker R, Des Etages H, Machaalani R, King N, McGregor IS, Matsumoto I. Comparative proteomics in the corpus callosal sub-regions of postmortem human brain. Neurochem Int 2009; 55: 483-490 [PMID: 19433127 DOI: 10.1016/j.neuint.2009.04.017]

14
Raybaud C. The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation. Neuroradiology 2010; 52: 447-477 [PMID: 20422408 DOI: 10.1007/s00234-010-0696-3]

15
Barbaresi P, Fabri M, Conti F, Manzoni T. D-[3H]aspartate retrograde labelling of callosal and association neurones of somatosensory areas I and II of cats. J Comp Neurol 1987; 263: 159-178 [PMID: 3667974 DOI: 10.1002/cne.902630202]

16
Gonchar YA, Johnson PB, Weinberg RJ. GABA-immunopositive neurons in rat neocortex with contralateral projections to S-I. Brain Res 1995; 697: 27-34 [PMID: 8593589 DOI: 10.1016/0006-8993(95)00746-D]

17
Fabri M, Manzoni T. Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas. Neuroscience 2004; 123: 557-566 [PMID: 14698762]

18
Higo S, Akashi K, Sakimura K, Tamamaki N. Subtypes of GABAergic neurons project axons in the neocortex. Front Neuroanat 2009; 3: 25 [PMID: 19915725 DOI: 10.3389/neuro.05.025.2009]

19
Berlucchi G. Visual interhemispheric communication and callosal connections of the occipital lobes. Cortex 2014; 56: 1-13 [PMID: 23489777 DOI: 10.1016/j.cortex.2013.02.001]

20
Berlucchi G. Frontal callosal disconnection syndromes. Cortex 2012; 48: 36-45 [PMID: 21663900 DOI: 10.1016/j.cortex.2011.04.008]

21
Deoni SC, Mercure E, Blasi A, Gasston D, Thomson A, Johnson M, Williams SC, Murphy DG. Mapping infant brain myelination with magnetic resonance imaging. J Neurosci 2011; 31: 784-791 [PMID: 21228187 DOI: 10.1523/JNEUROSCI.2106-10.2011]

22
Provenzale JM, Isaacson J, Chen S. Progression of corpus callosum diffusion-tensor imaging values during a period of signal changes consistent with myelination. AJR Am J Roentgenol 2012; 198: 1403-1408 [PMID: 22623555 DOI: 10.2214/AJR.11.7849]

23
Manzoni T. The cerebral ventricles, the animal spirits and the dawn of brain localization of function. Arch Ital Biol 1998; 136: 103-152 [PMID: 9492949]

24
Manzoni T. Fibre associative e commisurali. In Corteccia Cerebrale e funzioni cognitive. Ventitré secoli di storia. Cap.5-5. Roma (Italy): Carocci editore, 2011: 230-232

25
Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S, Klein JC, Steinmetz H, Ziemann U. Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 2007; 27: 12132-12138 [PMID: 17989279 DOI: 10.1523/JNEUROSCI.2320-07.2007]

26
Koch G, Cercignani M, Bonnì S, Giacobbe V, Bucchi G, Versace V, Caltagirone C, Bozzali M. Asymmetry of parietal interhemispheric connections in humans. J Neurosci 2011; 31: 8967-8975 [PMID: 21677180 DOI: 10.1523/JNEUROSCI.6567-10.2011]

27
Men W, Falk D, Sun T, Chen W, Li J, Yin D, Zang L, Fan M. The corpus callosum of Albert Einstein’s brain: another clue to his high intelligence? Brain 2014; 137: e268 [PMID: 24065724 DOI: 10.1093/brain/awt252]

28
Gazzaniga MS. Forty-five years of split-brain research and still going strong. Nat Rev Neurosci 2005; 6: 653-659 [PMID: 16062172 DOI: 10.1038/nrn1723]

29
Geschwind N. Disconnexion syndromes in animals and man. I. Brain 1965; 88: 237-294 [PMID: 5318481 DOI: 10.1093/brain/88.3.585]

30
Geschwind N. Disconnexion syndromes in animals and man. II. Brain 1965; 88: 585-644 [PMID: 5318824]

31
Gordon HW, Bogen JE, Sperry RW. Absence of deconnexion syndrome in two patients with partial section of the neocommissures. Brain 1971; 94: 327-336 [PMID: 4998967 DOI: 10.1093/brain/94.2.327]

32
Innocenti GM, Manzoni T, Spidalieri G. Cutaneous receptive fields of single fibers of the corpus callosum. Brain Res 1972; 40: 507-512 [PMID: 5027175 DOI: 10.1016/0006-8993(72)90153-9]

33
Innocenti GM, Manzoni T, Spidalieri G. Patterns of the somesthetic messages transferred through the corpus callosum. Exp Brain Res 1974; 19: 447-466 [PMID: 4853559 DOI: 10.1007/BF00236110]

34
Berlucchi G, Gazzaniga MS, Rizzolatti G. Microelectrode analysis of transfer of visual information by the corpus callosum. Arch Ital Biol 1967; 105: 583-596 [PMID: 5585725]

35
Hubel DH, Wiesel TN. Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. J Neurophysiol 1967; 30: 1561-1573 [PMID: 6066454]

36
Guillemot JP, Richer L, Prevost L, Ptito M, Lepore F. Receptive field properties of somatosensory callosal fibres in the monkey. Brain Res 1987; 402: 293-302 [PMID: 3828797 DOI: 10.1016/0006-8993(87)90036-9]

37
Pandya DN, Karol EA, Heilbronn D. The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res 1971; 32: 31-43 [PMID: 5000193 DOI: 10.1016/0006-8993(71)90153-3]

38
Pandya DN, Seltzer B. 1986. The topography of commissural fibers. In: Leporé F, Ptito M and Jasper HH, editors. Two Hemispheres-One Brain: Functions of the Corpus Callosum. New York: Alan Liss, 1986: 47-73

39
de Lacoste MC, Kirkpatrick JB, Ross ED. Topography of the human corpus callosum. J Neuropathol Exp Neurol 1985; 44: 578-591 [PMID: 4056827 DOI: 10.1097/00005072-198511000-00004]

40
Caillé S, Sauerwein HC, Schiavetto A, Villemure JG, Lassonde M. Sensory and motor interhemispheric integration after section of different portions of the anterior corpus callosum in nonepileptic patients. Neurosurgery 2005; 57: 50-59; discussion 50-59 [PMID: 15987540 DOI: 10.1227/01.NEU.0000163089.31657.08]

41
Berlucchi G. Some effects of cortical and callosal damage on conscious and unconscious processing of visual information and other sensory inputs. Prog Brain Res 2004; 144: 79-93 [PMID: 14650841 DOI: 10.1016/S0079-6123(03)14405-6]

42
Fabri M, Del Pesce M, Paggi A, Polonara G, Bartolini M, Salvolini U, Manzoni T. Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information. Brain Res Cogn Brain Res 2005; 24: 73-80 [PMID: 15922160 DOI: 10.1016/j.cogbrainres.2004.12.003]

43
Funnell MG, Corballis PM, Gazzaniga MS. Cortical and subcortical interhemispheric interactions following partial and complete callosotomy. Arch Neurol 2000; 57: 185-189 [PMID: 10681075 DOI: 10.1001/archneur.57.2.185]

44
Fabri M, Polonara G, Quattrini A, Salvolini U, Del Pesce M, Manzoni T. Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients. Eur J Neurosci 1999; 11: 3983-3994 [PMID: 10583487 DOI: 10.1046/j.1460-9568.1999.00829.x]

45
Fabri M, Polonara G, Del Pesce M, Quattrini A, Salvolini U, Manzoni T. Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient. J Cogn Neurosci 2001; 13: 1071-1079 [PMID: 11784445 DOI: 10.1162/089892901753294365]

46
Fabri M, Polonara G, Salvolini U, Manzoni T. Bilateral cortical representation of the trunk midline in human first somatic sensory area. Hum Brain Mapp 2005; 25: 287-296 [PMID: 15827999 DOI: 10.1002/hbm.20099]

47
Gazzaniga MS, Freedman H. Observations on visual processes after posterior callosal section. Neurology 1973; 23: 1126-1130 [PMID: 4795425 DOI: 10.1212/WNL.23.10.1126]

48
Clarke S, Maeder P, Meuli R, Staub F, Bellmann A, Regli L, de Tribolet N, Assal G. Interhemispheric transfer of visual motion information after a posterior callosal lesion: a neuropsychological and fMRI study. Exp Brain Res 2000; 132: 127-133 [PMID: 10836642 DOI: 10.1007/s002219900327]

49
Sugishita M, Otomo K, Yamazaki K, Shimizu H, Yoshioka M, Shinohara A. Dichotic listening in patients with partial section of the corpus callosum. Brain 1995; 118 (Pt 2): 417-427 [PMID: 7735883 DOI: 10.1093/brain/118.2.417]

50
Pollmann S, Maertens M, von Cramon DY, Lepsien J, Hugdahl K. Dichotic listening in patients with splenial and nonsplenial callosal lesions. Neuropsychology 2002; 16: 56-64 [PMID: 11858226 DOI: 10.1037/0894-4105.16.1.56]

51
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66: 259-267 [PMID: 8130344 DOI: 10.1016/S0006-3495(94)80775-1]

52
Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Tsuruda J, Norman D. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990; 176: 439-445 [PMID: 2367658 DOI: 10.1148/radiology.176.2.2367658]

53
Thomsen C, Henriksen O, Ring P. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging. Acta Radiol 1987; 28: 353-361 [PMID: 2958045 DOI: 10.3109/02841858709177362]

54
Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 2002; 15: 435-455 [PMID: 12489094 DOI: 10.1002/nbm.782]

55
Yap QJ, Teh I, Fusar-Poli P, Sum MY, Kuswanto C, Sim K. Tracking cerebral white matter changes across the lifespan: insights from diffusion tensor imaging studies. J Neural Transm 2013; 120: 1369-1395 [PMID: 23328950 DOI: 10.1007/s00702-013-0971-7]

56
Sullivan EV, Rohlfing T, Pfefferbaum A. Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking. Dev Neuropsychol 2010; 35: 233-256 [PMID: 20446131 DOI: 10.1080/87565641003689556]

57
Polonara G, Fabri M, Mascioli G, Paggi A, Manzoni T, Salvolini U. Interhemispheric connectivity in patients with callosal resection described and quantified using diffusion tensor imaging. 32nd Eur Soc NeuroRadiol Ann Meeting. Italy: Genoa, 2007: 20-23 

58
Pizzini FB, Polonara G, Mascioli G, Beltramello A, Foroni R, Paggi A, Salvolini U, Tassinari G, Fabri M. Diffusion tensor tracking of callosal fibers several years after callosotomy. Brain Res 2010; 1312: 10-17 [PMID: 19931228 DOI: 10.1016/j.brainres.2009.11.030]

59
Fabri M, Polonara G. Functional topography of human corpus callosum: an FMRI mapping study. Neural Plast 2013; 2013: 251308 [PMID: 23476810 DOI: 10.1155/2013/251308]

60
Caminiti R, Carducci F, Piervincenzi C, Battaglia-Mayer A, Confalone G, Visco-Comandini F, Pantano P, Innocenti GM. Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: comparing data from histology and magnetic resonance imaging diffusion tractography. J Neurosci 2013; 33: 14501-14511 [PMID: 24005301 DOI: 10.1523/JNEUROSCI.0761-13.2013]

61
Pfefferbaum A, Sullivan EV, Hedehus M, Lim KO, Adalsteinsson E, Moseley M. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med 2000; 44: 259-268 [PMID: 10918325 DOI: 10.1002/1522-2594(200008)44: 2<259: : AID-MRM13>3.0.CO; 2-6]

62
Steel RM, Bastin ME, McConnell S, Marshall I, Cunningham-Owens DG, Lawrie SM, Johnstone EC, Best JJ. Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) in schizophrenic subjects and normal controls. Psychiatry Res 2001; 106: 161-170 [PMID: 11382538 DOI: 10.1016/S0925-4927(01)00080-4]

63
Werring DJ, Clark CA, Barker GJ, Miller DH, Parker GJ, Brammer MJ, Bullmore ET, Giampietro VP, Thompson AJ. The structural and functional mechanisms of motor recovery: complementary use of diffusion tensor and functional magnetic resonance imaging in a traumatic injury of the internal capsule. J Neurol Neurosurg Psychiatry 1998; 65: 863-869 [PMID: 9854962 DOI: 10.1136/jnnp.65.6.863]

64
Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 2001; 56: 304-311 [PMID: 11171893 DOI: 10.1212/WNL.56.3.304]

65
Yu HJ, Christodoulou C, Bhise V, Greenblatt D, Patel Y, Serafin D, Maletic-Savatic M, Krupp LB, Wagshul ME. Multiple white matter tract abnormalities underlie cognitive impairment in RRMS. Neuroimage 2012; 59: 3713-3722 [PMID: 22062194 DOI: 10.1016/j.neuroimage.2011.10.053]

66
Hannoun S, Bagory M, Durand-Dubief F, Ibarrola D, Comte JC, Confavreux C, Cotton F, Sappey-Marinier D. Correlation of diffusion and metabolic alterations in different clinical forms of multiple sclerosis. PLoS One 2012; 7: e32525 [PMID: 22479330 DOI: 10.1371/journal.pone.0032525]

67
Igarashi H, Katayama Y, Tsuganezawa T, Yamamuro M, Terashi A, Owan C. Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain: application to assess Wallerian degeneration. Intern Med 1998; 37: 662-668 [PMID: 9745851 DOI: 10.2169/internalmedicine.37.662]

68
Papinutto ND, Maule F, Jovicich J. Reproducibility and biases in high field brain diffusion MRI: An evaluation of acquisition and analysis variables. Magn Reson Imaging 2013; 31: 827-839 [PMID: 23623031 DOI: 10.1016/j.mri.2013.03.004]

69
Ditye T, Kanai R, Bahrami B, Muggleton NG, Rees G, Walsh V. Rapid changes in brain structure predict improvements induced by perceptual learning. Neuroimage 2013; 81: 205-212 [PMID: 23702411 DOI: 10.1016/j.neuroimage.2013.05.058]

70
Hofstetter S, Tavor I, Tzur Moryosef S, Assaf Y. Short-term learning induces white matter plasticity in the fornix. J Neurosci 2013; 33: 12844-12850 [PMID: 23904619 DOI: 10.1523/JNEUROSCI.4520-12.2013]

71
Tavor I, Hofstetter S, Assaf Y. Micro-structural assessment of short term plasticity dynamics. Neuroimage 2013; 81: 1-7 [PMID: 23702416 DOI: 10.1016/j.neuroimage.2013.05.050]

72
Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 1999; 42: 1123-1127 [PMID: 10571934 DOI: 10.1002/(SICI)1522-2594(199912)42: 6<1123: : AID-MRM17>3.0.CO; 2-H]

73
Holodny AI, Schwartz TH, Ollenschleger M, Liu WC, Schulder M. Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg 2001; 95: 1082 [PMID: 11765829 DOI: 10.3171/jns.2001.95.6.1082]

74
Mesaros S, Rocca MA, Kacar K, Kostic J, Copetti M, Stosic-Opincal T, Preziosa P, Sala S, Riccitelli G, Horsfield MA, Drulovic J, Comi G, Filippi M. Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis. Neurology 2012; 78: 969-975 [PMID: 22377806 DOI: 10.1212/WNL.0b013e31824d5859]

75
Anderson VM, Wheeler-Kingshott CA, Abdel-Aziz K, Miller DH, Toosy A, Thompson AJ, Ciccarelli O. A comprehensive assessment of cerebellar damage in multiple sclerosis using diffusion tractography and volumetric analysis. Mult Scler 2011; 17: 1079-1087 [PMID: 21511688 DOI: 10.1177/1352458511403528]

76
Gorgoraptis N, Wheeler-Kingshott CA, Jenkins TM, Altmann DR, Miller DH, Thompson AJ, Ciccarelli O. Combining tractography and cortical measures to test system-specific hypotheses in multiple sclerosis. Mult Scler 2010; 16: 555-565 [PMID: 20215478 DOI: 10.1177/1352458510362440]

77
Harrison DM, Caffo BS, Shiee N, Farrell JA, Bazin PL, Farrell SK, Ratchford JN, Calabresi PA, Reich DS. Longitudinal changes in diffusion tensor-based quantitative MRI in multiple sclerosis. Neurology 2011; 76: 179-186 [PMID: 21220722 DOI: 10.1212/WNL.0b013e318206ca61]

78
Rocca MA, Valsasina P, Absinta M, Riccitelli G, Rodegher ME, Misci P, Rossi P, Falini A, Comi G, Filippi M. Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology 2010; 74: 1252-1259 [PMID: 20404306 DOI: 10.1212/WNL.0b013e3181d9ed91]

79
Abe O, Masutani Y, Aoki S, Yamasue H, Yamada H, Kasai K, Mori H, Hayashi N, Masumoto T, Ohtomo K. Topography of the human corpus callosum using diffusion tensor tractography. J Comput Assist Tomogr 2004; 28: 533-539 [PMID: 15232387 DOI: 10.1097/00004728-200407000-00016]

80
Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, van Zijl PC, Hillis AE, Wytik R, Mori S. DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. Neuroimage 2005; 26: 195-205 [PMID: 15862219 DOI: 10.1016/j.neuroimage.2005.01.019]

81
Zarei M, Johansen-Berg H, Smith S, Ciccarelli O, Thompson AJ, Matthews PM. Functional anatomy of interhemispheric cortical connections in the human brain. J Anat 2006; 209: 311-320 [PMID: 16928200 DOI: 10.1111/j.1469-7580.2006.00615.x]

82
Dougherty RF, Ben-Shachar M, Bammer R, Brewer AA, Wandell BA. Functional organization of human occipital-callosal fiber tracts. Proc Natl Acad Sci USA 2005; 102: 7350-7355 [PMID: 15883384 DOI: 10.1073/pnas.0500003102]

83
Shimony JS, Burton H, Epstein AA, McLaren DG, Sun SW, Snyder AZ. Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb Cortex 2006; 16: 1653-1661 [PMID: 16400157 DOI: 10.1093/cercor/bhj102]

84
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412: 150-157 [PMID: 11449264 DOI: 10.1038/35084005]

85
Tettamanti M, Paulesu E, Scifo P, Maravita A, Fazio F, Perani D, Marzi CA. Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J Neurophysiol 2002; 88: 1051-1058 [PMID: 12163553]

86
Omura K, Tsukamoto T, Kotani Y, Ohgami Y, Minami M, Inoue Y. Different mechanisms involved in interhemispheric transfer of visuomotor information. Neuroreport 2004; 15: 2707-2711 [PMID: 15597039]

87
Weber B, Treyer V, Oberholzer N, Jaermann T, Boesiger P, Brugger P, Regard M, Buck A, Savazzi S, Marzi CA. Attention and interhemispheric transfer: a behavioral and fMRI study. J Cogn Neurosci 2005; 17: 113-123 [PMID: 15701243 DOI: 10.1162/0898929052880002]

88
Mazerolle EL, D’Arcy RC, Beyea SD. Detecting functional magnetic resonance imaging activation in white matter: interhemispheric transfer across the corpus callosum. BMC Neurosci 2008; 9: 84 [PMID: 18789154 DOI: 10.1186/1471-2202-9-84]

89
Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res 2001; 140: 280-289 [PMID: 11681303 DOI: 10.1007/s002210100813]

90
Meyer BU, Röricht S, Gräfin von Einsiedel H, Kruggel F, Weindl A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 1995; 118 (Pt 2): 429-440 [PMID: 7735884 DOI: 10.1093/brain/118.2.429]

91
Stancák A, Lücking CH, Kristeva-Feige R. Lateralization of movement-related potentials and the size of corpus callosum. Neuroreport 2000; 11: 329-332 [PMID: 10674480 DOI: 10.1097/00001756-200002070-00021]

92
Bonzano L, Tacchino A, Roccatagliata L, Abbruzzese G, Mancardi GL, Bove M. Callosal contributions to simultaneous bimanual finger movements. J Neurosci 2008; 28: 3227-3233 [PMID: 18354026 DOI: 10.1523/JNEUROSCI.4076-07.2008]

93
Salvolini U, Polonara G, Mascioli G, Fabri M, Manzoni T. [Functional topography of the human corpus callosum]. Bull Acad Natl Med 2010; 194: 617-631; discussion 631-632 [PMID: 21171254]

94
Fabri M, Polonara G, Mascioli G, Salvolini U, Manzoni T. Topographical organization of human corpus callosum: an fMRI mapping study. Brain Res 2011; 1370: 99-111 [PMID: 21081115 DOI: 10.1016/j.brainres.2010.11.039]

95
Polonara G, Mascioli G, Foschi N, Salvolini U, Pierpaoli C, Manzoni T, Fabri M, Barbaresi P. Further evidence for the topography and connectivity of the corpus callosum: An fMRI study of patients with partial callosal resection. J Neuroimaging 2014: 1-10 [PMID: 25039660 DOI: 10.1111/jon.12136]

96
Suárez-Solá ML, González-Delgado FJ, Pueyo-Morlans M, Medina-Bolívar OC, Hernández-Acosta NC, González-Gómez M, Meyer G. Neurons in the white matter of the adult human neocortex. Front Neuroanat 2009; 3: 7 [PMID: 19543540 DOI: 10.3389]

97
Iadecola C. Intrinsic signals and functional brain mapping: caution, blood vessels at work. Cereb Cortex 2002; 12: 223-224 [PMID: 11839596 DOI: 10.1093/cercor/12.3.223]

98
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004; 5: 347-360 [PMID: 15100718 DOI: 10.1038/nrn1387]

99
Lauritzen M. Reading vascular changes in brain imaging: is dendritic calcium the key? Nat Rev Neurosci 2005; 6: 77-85 [PMID: 15611729 DOI: 10.1038/nrn1589]

100
D’Arcy RC, Hamilton A, Jarmasz M, Sullivan S, Stroink G. Exploratory data analysis reveals visuovisual interhemispheric transfer in functional magnetic resonance imaging. Magn Reson Med 2006; 55: 952-958 [PMID: 16506159 DOI: 10.1002/mrm.20839]

101
Magistretti PJ. Brain energy metabolism. In Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR, editors. Fundamental Neuroscience. San Diego: Academic Press, 2003: 339-360

102
Kida I, Hyder F, Behar KL. Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging respo-nse to forepaw somatosensory activation in the rodent. J Cereb Blood Flow Metab 2001; 21: 585-591 [PMID: 11333369 DOI: 10.1097/00004647-200105000-00013]

103
Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F. Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci USA 2002; 99: 10765-10770 [PMID: 12134056 DOI: 10.1073/pnas.132272199]

104
Iacoboni M. Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI. Neuropsychologia 2006; 44: 2691-2699 [PMID: 16759673 DOI: 10.1016/j.neuropsychologia.2006.04.029]

105
Nir Y, Dinstein I, Malach R, Heeger DJ. BOLD and spiking activity. Nat Neurosci 2008; 11: 523-524; author reply 524 [PMID: 18437185 DOI: 10.1038/nn0508-523]

106
Rossi DJ. Another BOLD role for astrocytes: coupling blood flow to neural activity. Nat Neurosci 2006; 9: 159-161 [PMID: 16439980 DOI: 10.1038/nn0206-159]

107
Jakovcevic D, Harder DR. Role of astrocytes in matching blood flow to neuronal activity. Curr Top Dev Biol 2007; 79: 75-97 [PMID: 17498548 DOI: 10.1016/S0070-2153(06)79004-4]

108
Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9: 260-267 [PMID: 16388306 DOI: 10.1038/nn1623]

109
Rabi SJ, Madhavi C, Antonisamy B, Koshi R. Quantitative analysis of the human corpus callosum under light microscopy. Eur J Anat 2007; 11: 95-100

110
Iadecola C, Beitz AJ, Renno W, Xu X, Mayer B, Zhang F. Nitric oxide synthase-containing neural processes on large cerebral arteries and cerebral microvessels. Brain Res 1993; 606: 148-155 [PMID: 7681722 DOI: 10.1016/0006-8993(93)91583-E]

111
Estrada C, DeFelipe J. Nitric oxide-producing neurons in the neocortex: morphological and functional relationship with intraparenchymal microvasculature. Cereb Cortex 1998; 8: 193-203 [PMID: 9617914 DOI: 10.1093/cercor/8.3.193]

112
Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature 2010; 468: 232-243 [PMID: 21068832 DOI: 10.1038/nature09613]

113
Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE. Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 2007; 10: 321-330 [PMID: 17293857 DOI: 10.1038/nn1854]

114
Kukley M, Capetillo-Zarate E, Dietrich D. Vesicular glutamate release from axons in white matter. Nat Neurosci 2007; 10: 311-320 [PMID: 17293860 DOI: 10.1038/nn1850]

115
Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 2007; 10: 1369-1376 [PMID: 17965657 DOI: 10.1038/nn2003]

116
Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 1991; 14: 60-67 [PMID: 1708538 DOI: 10.1016/0166-2236(91)90022-M]

117
Garthwaite J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 2008; 27: 2783-2802 [PMID: 18588525 DOI: 10.1111/j.1460-9568.2008.06285.x]

118
Tiede R, Krautwald K, Fincke A, Angenstein F. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing. J Cereb Blood Flow Metab 2012; 32: 570-584 [PMID: 22167232 DOI: 10.1038/jcbfm.2011.182]

119
Gsell W, Burke M, Wiedermann D, Bonvento G, Silva AC, Dauphin F, Bührle C, Hoehn M, Schwindt W. Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. J Neurosci 2006; 26: 8409-8416 [PMID: 16914666 DOI: 10.1523/JNEUROSCI.4615-05.2006]

120
Nielsen AN, Fabricius M, Lauritzen M. Scanning laser-Doppler flowmetry of rat cerebral circulation during cortical spreading depression. J Vasc Res 2001; 37: 513-522 [PMID: 11146405 DOI: 10.1111/j.1469-7793.2001.00773.x]

121
Hoffmeyer HW, Enager P, Thomsen KJ, Lauritzen MJ. Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers. J Cereb Blood Flow Metab 2007; 27: 575-587 [PMID: 16896350 DOI: 10.1038/sj.jcbfm.9600372]

122
Iadecola C, Li J, Xu S, Yang G. Neural mechanisms of blood flow regulation during synaptic activity in cerebellar cortex. J Neurophysiol 1996; 75: 940-950 [PMID: 8714666]

123
Busija DW, Bari F, Domoki F, Louis T. Mechanisms involved in the cerebrovascular dilator effects of N-methyl-d-aspartate in cerebral cortex. Brain Res Rev 2007; 56: 89-100 [PMID: 17716743 DOI: 10.1016/j.brainresrev.2007.05.011]

124
Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 2003; 6: 43-50 [PMID: 12469126 DOI: 10.1038/nn980]

125
Gawryluk JR, Brewer KD, Beyea SD, D’Arcy RC. Optimizing the detection of white matter fMRI using asymmetric spin echo spiral. Neuroimage 2009; 45: 83-88 [PMID: 19084071 DOI: 10.1016/j.neuroimage.2008.11.005]

126
Mazerolle EL, Beyea SD, Gawryluk JR, Brewer KD, Bowen CV, D’Arcy RC. Confirming white matter fMRI activation in the corpus callosum: co-localization with DTI tractography. Neuroimage 2010; 50: 616-621 [PMID: 20053383 DOI: 10.1016/j.neuroimage.2009.12.102]

127
Miller MB, Sinnott-Armstrong W, Young L, King D, Paggi A, Fabri M, Polonara G, Gazzaniga MS. Abnormal moral reasoning in complete and partial callosotomy patients. Neuropsychologia 2010; 48: 2215-2220 [PMID: 20188113 DOI: 10.1016/j.neuropsychologia.2010.02.021]

128
Pierpaoli C, Ferrante L, Berlucchi G, Ortenzi A, Manzoni T, Fabri M. Imitation strategies in callosotomized patients. 8th National Congress IBRO. Italy: Florence, 2011: 14-18 

129
Pierpaoli C, Polonara G, Foschi N, Salvolini U, Berlucchi G, Fabri M. Cortical activation during imitative behaviour in control subjects and callosotomized patients. 9th FENS Forum of Neuroscience. Italy: Milan, 2014: 5-9 

130
Volpe BT, Sidtis JJ, Holtzman JD, Wilson DH, Gazzaniga MS. Cortical mechanisms involved in praxis: observations following partial and complete section of the corpus callosum in man. Neurology 1982; 32: 645-650 [PMID: 7201094 DOI: 10.1212/WNL.32.6.645]

131
Bentin S, Sahar A, Moscovitch M. Intermanual information transfer in patients with lesions in the trunk of the corpus callosum. Neuropsychologia 1984; 22: 601-611 [PMID: 6504300 DOI: 10.1016/0028-3932(84)90024-1]

132
Geffen G, Nilsson J, Quinn K, Teng EL. The effect of lesions of the corpus callosum on finger localization. Neuropsychologia 1985; 23: 497-514 [PMID: 4033904 DOI: 10.1016/0028-3932(85)90004-1]

133
Risse GL, Gates J, Lund G, Maxwell R, Rubens A. Interhemispheric transfer in patients with incomplete section of the corpus callosum. Anatomic verification with magnetic resonance imaging. Arch Neurol 1989; 46: 437-443 [PMID: 2705905 DOI: 10.1001/archneur.1989.00520400097026]

134
Levin HS, Mattson AJ, Levander M, Lindquist CE, Simard JM, Guinto FC, Lilly MA, Eisenberg HM. Effects of transcallosal surgery on interhemispheric transfer of information. Surg Neurol 1993; 40: 65-74 [PMID: 8322184 DOI: 10.1016/0090-3019(93)90174-Y]

135
Aglioti S, Tassinari G, Corballis MC, Berlucchi G. Incomplete gustatory lateralization as shown by analysis of taste discrimination after callosotomy. J Cogn Neurosci 2000; 12: 238-245 [PMID: 10771408 DOI: 10.1162/089892900562066]

136
Aglioti SM, Tassinari G, Fabri M, Del Pesce M, Quattrini A, Manzoni T, Berlucchi G. Taste laterality in the split brain. Eur J Neurosci 2001; 13: 195-200 [PMID: 11135018 DOI: 10.1046/j.0953-816X.2000.01378.x]

137
Le Bihan D. Diffusion, confusion and functional MRI. Neuroimage 2012; 62: 1131-1136 [PMID: 21985905 DOI: 10.1016/j.neuroimage.2011.09.058]

138
Gawryluk JR, Mazerolle EL, D’Arcy RC. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front Neurosci 2014; 8: 239 [PMID: 25152709 DOI: 10.3389/fnins.2014.00239]

P- Reviewer: Arsalidou M, Sijens PE    S- Editor: Ji FF    L- Editor: A    E- Editor: Lu YJ

FIGURE LEGENDS
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Figure 1  Subdivisions of the human corpus callosum. Midsagittal magnetic resonance image of the corpus callosum (above) and its seven anatomical regions according to Witelson[8]. Region 1: Rostrum; 2: Genu; 3: Anterior midbody; 4: Central midbody; 5: Posterior midbody; 6: Isthmus; 7: Splenium. Both images are oriented in the Talairach space, where the origin of X, Y and Z axes coincides with the anterior commissure (coordinates 0, 0, 0).
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Figure 2  Blood-oxygen-level dependent effect within the corpus callosum and interhemispheric fibers. Blood-oxygen-level dependent effect evoked in the CC by different kind of peripheral sensory stimulation (left) and CC sites where fibers interconnecting the cortical areas activated cross the CC (right). A and B: Focus evoked by olfactory stimulation and callosal fibers connecting primary olfactory cortices, respectively; C and D: The same for gustatory stimuli and areas; E and F: Motor task and motor cortex; G and H: Hand tactile stimulus and somatosensory cortex; I and L: Auditory stimuli and cortex; M and N: Visual stimuli and cortex. Authors’ original data. CC: Corpus callosum.
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Figure 3  Callosal activation and callosal fibers topography. A: Summary diagram showing the distribution of the callosal foci evoked by different stimuli in control subjects. Each dot represents the “mean” value of the y and z Talairach coordinates (reported on the respective Cartesian axes) of the foci evoked by different stimuli. Yellow: Foci by gustatory stimuli; violet: Olfactory stimuli; green: Hand motor tasks; red: Tactile stimuli; black: Auditory stimuli; blue: Visual stimuli. See the text for a detailed description; B: Shows the crossing sites of interhemispheric fibers interconnecting the sensory and motor cortical areas activated by the specific peripheral stimuli. Vertical gray lines mark the seven CC regions according to Witelson[8].
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Table 1  Summary of studies evidencing activation of the corpus callosum in humans


Ref.


�
Year


�
Task


�
CC localization


�
Technique


�
Subjects


�
�
Mosier et al[89]


�
2001


�
Swallowing


�
Anterior


�
fMRI


�
Healthy controls


�
�
Tettamanti et al[85]


�
2003


�
Visuomotor 


�
Anterior


�
fMRI


�
Healthy controls


�
�
Omura et al[86]


�
2004


�
Visuomotor transfer


�
Anterior


�
fMRI


�
Healthy controls


�
�
Weber et al[87]


�
2005


�
Visuomotor


�
Anterior


�
fMRI


�
Healthy controls


�
�
Mazerolle et al[88]


�
2008


�
Visual transfer


�
Posterior


�
fMRI


�
Healthy controls


�
�
Mazerolle et al[126]


�
2010


�
Visual transfer


�
Posterior 


�
fMRI and DTI


�
Healthy controls


�
�
Fabri et al[94]


�
2011


�
Tactile, gustatory, visual


�
Different regions according peripheral stimuli


�
fMRI


�
Healthy controls


�
�
Fabri et al[59]


�
2013


�
Tactile, gustatory, visual, auditory


�
Different regions according peripheral stimuli


�
fMRI and DTI


�
Healthy control and Callosotomized patients


�
�
Polonara et al[95]


�
2014


�
Tactile, gustatory, visual, auditory


�
Different regions according peripheral stimuli


�
fMRI and DTI


�
Callosotomized patients


�
�
A more extensive review of the studies reporting the activation in the CC can be found in Gawryluk et al[138], 2014. DTI: Diffusion tensor imaging; fMRI: Functional magnetic resonance imaging; CC: Corpus callosum.











