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Abstract
After myocardial infarction (MI), the heart undergoes 
extensive myocardial remodeling through the accu-
mulation of fibrous tissue in both the infarcted and 
noninfarcted myocardium, which distorts tissue stru-
cture, increases tissue stiffness, and accounts for 
ventricular dysfunction. There is growing clinical 
consensus that exercise training may beneficially alter 

the course of post-MI myocardial remodeling and 
improve cardiac function. This review summarizes 
the present state of knowledge regarding the effect 
of post-MI exercise training on infarcted hearts. Due 
to the degree of difficulty to study a viable human 
heart at both protein and molecular levels, most of the 
detailed studies have been performed by using animal 
models. Although there are some negative reports 
indicating that post-MI exercise may further cause 
deterioration of the wounded hearts, a growing body 
of research from both human and animal experiments 
demonstrates that post-MI exercise may beneficially 
alter the course of wound healing and improve cardiac 
function. Furthermore, the improved function is likely 
due to exercise training-induced mitigation of renin-
angiotensin-aldosterone system, improved balance 
between matrix metalloproteinase-1 and tissue inhibitor 
of matrix metalloproteinase-1, favorable myosin heavy 
chain isoform switch, diminished oxidative stress, 
enhanced antioxidant capacity, improved mitochondrial 
calcium handling, and boosted myocardial angiogenesis. 
Additionally, meta-analyses revealed that exercise-based 
cardiac rehabilitation has proven to be effective, and 
remains one of the least expensive therapies for both 
the prevention and treatment of cardiovascular disease, 
and prevents re-infarction.
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Core tip: After myocardial infarction, the heart 
undergoes extensive myocardial remodeling through 
the accumulation of fibrous tissue in both the infarcted 
and noninfarcted myocardium, which distorts tissue 
structure, increases tissue stiffness, and accounts 
for ventricular dysfunction. There is growing clinical 
consensus that exercise training may beneficially alter 
the course of post-myocardial infarction (MI) myocardial 
remodeling and improve cardiac function. This review 
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summarizes the present state of knowledge regarding 
the effect of post-MI exercise training on infarcted 
hearts.
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INTRODUCTION
Myocardial infarction (MI) is the major cause of heart 
failure in the adult American population[1]. Annually, 
1.5 million Americans suffer from MI, with just over 
one-third of all cases inflicting serious heart disease 
and death. Because of this, post-MI treatments 
have become the major focus of research. There 
is growing clinical consensus that exercise training 
may beneficially alter the clinical course of post-
MI myocardial remodeling and improve cardiac 
function[2,3]. Exercise training in post-MI patients 
with left ventricle (LV) systolic dysfunction has been 
recommended as a useful adjunct to the existing 
medical therapy, not only to attain symptomatic 
and functional improvement but also to prevent 
the progression of LV dysfunction and its attendant 
morbidity and mortality[4,5]. Significant improvements 
in exercise capacity were noted with no major 
complications in patients with moderate or severe LV 
dysfunction[4,6,7]. Post-MI training reverses skeletal 
muscle metabolic derangements[8,9], increases 
maximal cardiac output[6,10,11] and improves the 
quality of life in these patients. Exercise training 
also improves in myocardial perfusion, independent 
of regressive changes in coronary lesions[12]. The 
improvement in myocardial blood flow of the infar-
cted area, even late after acute infarction, may 
lead to a consistent recovery of both regional and 
global LV function. Patients with MI experienced an 
exercise training-induced improvement in myocardial 
oxygenation and LV function[13].

In recent years, cardiac rehabilitation (CR) 
has become a multi-disciplinary and multi-faceted 
intervention aimed at restoring well-being and 
impeding disease progression in patients with heart 
disease[14]. This complex intervention involves a 
variety of therapies, including risk factor education, 
psychological input, and drug therapy. Nevertheless, 
international clinical guidelines have consistently 
identified exercise-based CR as an essential element 
of therapy. 

Despite guidelines recommending the use of 
CR programs for patients with MI, participation in 
these programs continues to be low; in fact, it has 
been reported that only 10% to 20% of patients 
who survive an acute MI participate in an exercise-

based secondary prevention CR program[15]. In-
deed, the reason for such low participation is likely 
multifactorial; additionally, conflicting results regar-
ding the efficacy of experimental research and the 
absence of large randomized controlled trials with 
respect to re-infarction likely serve as additional 
barriers[3]. Therefore, we reviewed the evidence and 
the mechanisms by which post-MI exercise improves 
morbidity and mortality, as obtained by means of 
experimental and clinical studies. 

POST-MI LV REMODELING
LV remodeling is the process by which ventricular 
size, shape, and function are regulated by mechanical, 
neurohormonal, and genetic factors[16,17]. After ac-
ute MI, the abrupt increase in volume overload 
induces a unique pattern of remodeling in the infarct 
zone and bordering non-infarct myocardium. The 
oxygen deprived myocardium experiences a localized 
inflammatory response via neurohormonal activation 
mediated in part by the migration of neutrophils, 
monocytes and macrophages[16]. Hypotension and 
the subsequent decrease in cardiac output stimulate 
temporary circulatory hemodynamic compensatory 
mechanisms including increased sympathetic nervous 
system, renin-angiotensin-aldosterone system (RAAS), 
and natriuretic peptide activity[18]. 

The induction of cardiomyocyte hypertrophy is a 
key process during post-MI remodeling that offsets 
increased volume over load, attenuates progressive 
dilation, and stabilizes contractile function; thus, 
post-MI myocyte hypertrophy initially serves as an 
adaptive, cardiac-preserving response[7,17]. However, 
over time, chronic neurohormonal activation, myo-
cardial stretch, RAAS activity, and various paracrine 
and autocrine factors continue to promote eccentric, 
pathological hypertrophy, progressively deteriorating 
LV function to the point of failure. Interestingly, 
compelling evidence has shown that post-MI exercise 
favorably influences the course of LV remodeling, 
which accordingly, has attracted much attention[19].

EFFECT OF POST-MI EXERCISE 
TRAINING ON RAAS AND MYOCARDIAL 
REMODELING
Circulating angiotensin Ⅱ (Ang Ⅱ) is markedly incre-
ased following MI. AngⅡ is a potent stimulant in 
pathologic myocardial remodeling both as a circulating 
hormone and as an autocrine/paracrine mediator 
produced in response to hemodynamic overload[20]. 
AngⅡ plays a major role in vasoconstriction and 
aldosterone release. This peptide also serves as a 
growth factor and stimulates fibrous tissue formation 
in various[21-23]. AngⅡ is also generated in the infarcted 
heart and regulates tissue structure in an autocrine 
and paracrine manner. All the components for Ang
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Ⅱ generation including angiotensinogen, renin, and 
angiotensin converting enzyme (ACE), are present 
in the infarcted heart[24,25]. Locally generated AngⅡ 
stimulates transforming growth factor-β1 (TGF-β1) 
synthesis, which, in turn, enhances proliferation 
and collagen generation of myofibroblast, and leads 
to cardiac fibrosis[26]. Pharmacological intervention 
with ACE inhibitor or AngII receptor antagonist 
significantly attenuates cardiac fibrosis, and improves 
cardiac function and survival[27,28]. 

Acute physical exercise stimulates renin release 
and activates renin-angiotensin system[29,30] with 
an elevation of aldosterone[31], whereas chronic 
exercise training attenuates renin-angiotensin system 
at resting condition[32]. A study on patients with MI 
has demonstrated that the resting plasma AngⅡ 
reduced by 26% after 4 mo of exercise training[32]. 
The reduction in plasma AngⅡ was accompanied 
with 32% reduction in aldosterone, 30% reduction in 
vasopressin, and 27% reduction in atrial natriuretic 
peptide. An animal study using a pacing-induced 
heart failure in rabbits also revealed exercise training-
induced attenuation of resting plasma AngⅡ[33].

In a previous study[34], we systematically exa-
mined the effect of exercise training on RAAS using 
a rat-MI model. Rats performed a moderate intensity 
exercise training on a rodent treadmill 1 wk after MI 
5 d/wk for 8 wk at 16 m/min, 50 min per session. 
Our results showed that exercise training significantly 
attenuated circulating renin, ACE, AngⅡ, and aldos-
terone compared with sedentary rats with MI. Rats 
in exercise groups had similar LV end-diastolic 
diameters (LVEDd) compared with their sedentary 
counterparts and tended to have smaller LV end-
systolic diameters (LVESd), and percent fractional 
shortening in exercise rats was significantly higher 
than in sedentary rats. These findings suggest that 
exercise training normalizes the circulating RAAS 
and improves LV function without compromising LV 
dilation. 

In a similar study[35], we further evaluated the 
effect of post-MI exercise training on myocardial fib-
rosis, cardiac function, and factors inducing adverse 
remodeling. For the first time, changes caused by 
exercise training were investigated in typeⅠ and 
Ⅲ collagen, matrix metalloproteinase (MMP-1), 
tissue inhibitor matrix metalloproteinase (TIMP-1), 
TGF-β1), AngⅡ receptor type 1 (AT1), and ACE at 
both gene and protein levels after MI. Our results 
indicated exercise training significantly attenuated 
the expression of TIMP-1 at both gene and protein 
level and improved balance between MMP-1 and 
TIMP-1 (imbalance between the two appear to be 
responsible for the increased MMP activity observed 
in congestive heart failure). Training also lowered 
expression of AT1 receptor protein and reduced ACE 
mRNA expression as well as ACE binding. In addition, 
training significantly decreased collagen content, 
thereby resulting in attenuated cardiac fibrosis. 

Lastly, exercise training preserved cardiac function. 
AngⅡ receptor blockade has been widely used 

to alleviate detrimental effects associated with 
elevated RAAS[36,37]. In a subsequent study[38], we 
investigated the effect of combined exercise training 
along with AngII receptor blockade on post-MI 
ventricular remodeling in rats. Losartan (an Ang
Ⅱ receptor antagonist) treatment (20 mg/kg per 
day) was initiated 1-wk post-MI, and administered 
via gastric gavage for 8 wk. The results indicated 
significantly decreased levels of TIMP-1 in mRNA 
and protein expression in both trained and losartan 
treated groups. Exercise trained groups exhibited 
attenuated expression of AT1 receptor protein, and 
decreased ACE binding. These findings revealed that 
exercise training after MI provided beneficial effects 
on post-MI cardiac function and LV remodeling by the 
alteration of specific gene and protein expressions 
that regulate myocardial fibrosis, whereas the 
combination of both exercise training and losartan 
treatment improved the effects[35,38]. Tables 1 and 2 
summarize both human and animal studies on post-
MI physical training. 

EARLY VS LATE PHASE POST-MI 
EXERCISE
Post-MI remodeling has been arbitrarily divided 
into two phases: the early phase, which lasts up to 
72 h, and the late phase, lasting beyond 72 h[17]. 
Generally, adaptive responses that preserve stroke 
volume are invoked during the early stage, whereas 
late remodeling primarily involves hypertrophy 
and alterations in LV architecture in an attempt 
to distribute increased wall stresses more evenly. 
Differences in function between adjacent and re-
mote non-infarcted regions are greatest at one 
week after anterior MI, and persist for a minimum 
of six months post-MI[39]; it is during this six-month 
period that systolic function decreases drastically, as 
the LV undergoes progressive dilatation, eccentric 
hypertrophy, and the lengthening of non-infarcted 
segments[17]. Thus, the question of when to begin 
exercise and at what intensity has proven elusive. 
Nevertheless, recent evidence offers novel insights 
and indeed provides an answer to some questions, 
although, as quality research often does, asks several 
more. 

To date, several studies in humans reported 
contradictory effects of training on LV remodeling 
after MI[4,6,7,40-45]. However, careful inspection of these 
studies indicate that after small MI, exercise has no 
detrimental effect[7,41], or even improves[4,43,44,46] LV 
geometry and function, independent and irrespective 
of whether exercise was started late (1 year)[4,44] or 
early (< 2 mo)[7,41,43] after MI. Conversely, in patients 
with large MI (encompassing 35% to 50% of LV 
mass), exercise had either no[42], or a beneficial[4] 
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of volunteer exercise, de Waard et al[59] reported 
remarkable data addressing the question of 
exercise training 24 h after MI. As opposed to most 
humans, mice like to run, and will do so seemingly 
endlessly when presented the opportunity. During 
the first week after induction of MI, recovering 
mice slowly titrated up their daily running activity, 
reaching distances similar to their sham-operated 
counterparts towards the end of the study, thus, 
suggesting that early post-MI exercise training 
may have positive effect in post-MI recovery and 
myocardial remodeling. Authors reported that 
exercise had no effect on survival, MI size, or LV 
dimensions, but improved LV fractional shortening 
from 8% ± 1% to 12% ± 1%, LV dP/dtP30 from 
5295 ± 207 to 5794 ± 207 mmHg/s, and reduced 
pulmonary congestion. Additionally, this study also 
provided novel information regarding myocardial 
Ca2+ handling after MI, debunking the previously 
held notion that exercise sensitizes myofilaments 
to the effects of Ca2+[59]. A study from our group[34] 
systematically examined the timing effect of post-
MI exercise training. Rats started exercise training at 
either 1 wk or 6 wk after MI on a treadmill for 8 wk. 
Rats in exercise groups had similar LVEDd compared 
with their sedentary counterparts and tended to have 
smaller LVESd, and percent fractional shortening 
(%FS) in exercise rats was significantly higher than 

effect on ejection fraction (EF) and LV volumes but 
only when started late after MI. However, when 
exercise after large MI is initiated at a time when LV 
remodeling is still ongoing (3 to 4 mo after MI), the 
majority of studies reported that exercise has either 
no[6,7,41], or even a detrimental[40,47] effect on LV 
volume and EF. 

Similarly, experimental research using rat models 
of MI suggests that exercise initiated late (> 3 wk) 
after moderate to large MI does not aggravate[45,48], 
or even blunts[49-51] LV dilation and hypertrophy. 
Contrarily, exercise started < 1 wk after moderate 
to large MI resulted in variable outcomes with 
beneficial[52], no[53,54], or detrimental[55,56] effects on LV 
remodeling. Therefore, these rodent studies further 
evidence the concern that early exercise after MI may 
further exacerbate LV remodeling. Importantly, there 
are a number of concerns with the methodology of 
these studies. First, exercise experimental studies 
conducted late after MI predominately used treadmill 
running[45,48-50], whereas early exercise studies used 
swimming[51-55]. Since swimming is not a habitual 
activity for rats, this type exercise mode may 
markedly elicit both psychological and physiological 
stress to the animals, which potentially offsetting the 
beneficial effects of exercise compared to treadmill 
running[57,58]. 

Amazingly, in a recent study of evaluating 8-wk 
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Table 1  Summary of physical training protocols and outcomes in selected human studies

  Ref. Type of exercise Exercise 
intensity

Exercise duration Exercise 
frequency

Training 
period

Assessment Outcome

  Braith et al[32] 
  1999 

Treadmill walk 40%-70% of 
peak oxygen 
uptake (VO2)

 Started with 10-20 
min as tolerated and 

increased to 30-45 min 
by the 10th wk

3 times/wk 4 mo Plasma RAAS Reduced Resting AngII, 
Aldosterone, vasopressin, 

and atrial natriuretic 
peptide

  Myers et al[143] 
  2001

Outdoor 
walking at an 

elevation of 3500 
ft, in addition to 

cycling

60%-70% of 
peak VO2 

Two 1-h sessions of 
walking, 45 min of 

cycling

5 times/wk 2 mo Post-exercise oxygen 
uptake kinetics

High-intensity training 
did not result in a faster 
recovery of oxygen debt

  La Rovere et al[144] 
  20021

Graded exercise 
(cycling, 

calisthenics)

Adjusted to 
75% of the 

heart rate at 
peak VO2 

30 min 5 times/wk 1 mo BRS, LVEF BRS improved by 26%, 
while LVEF remained 

unchanged

  Marchionni et al[145]   
  20032

Cycling 70%-85% of 
max heart 

rate

1 h 3 times/wk 6 mo Total work capacity, health-
related quality of life

Improved total work 
capacity and health-
related quality of life

  Zheng et al[146] 
  20081

 

Bicycle 
ergometer

75% of peak 
heart rate

 

30 min 3 time/wk 6 mo HR recovery, time to reach 
anaerobic threshold, left 
ventricular end-diastolic 

Exercise training 
prevented ventricular 

remodeling to a
 certain 
extent

  Giallauria et al[46] 
  2013

Bicycle 
ergometer

60%-70% of 
peak VO2

30 min 3 times/wk 6 mo diameter, left ventricular 
ejection fraction
dipyridamole

rest gated myocardial 
perfusion single photon 

emission computed 
tomography

Improved peak oxygen 
consumption, myocardial 

perfusion and LV 
function

1Exercise was part of a comprehensive secondary prevention program; 2Combination study consisting of Home and Hospital/group participants. RAAS: 
Renin-angiotensin-aldosterone system; LVEF: Left ventricular ejection fraction; BRS: Baroreflex sensitivity.
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myofilament Ca2+ sensitivity. Although a much 
simpler experimental approach, there are various 
problems associated with this method. First, maximal 
developed tension cannot be assessed in unloaded 
myocytes, and any changes in developed tension are 
ignored when estimating Ca2+ sensitivity. Secondly, 
basal sarcomere length is much shorter in unloaded 
myocytes (1.8 vs 2.2), and cannot be controlled; 
therefore, even a slight change in basal sarcomere 
length would confound the result, which in turn, has 
prompted investigators to wrongly conclude that 
exercise increases myofilament sensitivity[51]. Thus, 
data from de Waard et al[59] reveals that voluntary 
exercise training in mice early after MI normalizes 
myofilament dysfunction, which likely occurred in 
response to the exercise-induced improvement in 
unloaded shortening of isolated intact cardiomyo-
cytes, as the Ca2+ transient amplitude was not found 
to be altered by exercise. Furthermore, basal Ca2+ 

was reduced by exercise, altogether suggesting that 
exercise decreases myofilament Ca2+ sensitivity. 

Dysregulation of cardiac β-adrenergic receptor 
(β-AR) signaling represents another important 
factor leading to the pathological LV remodeling 
and the progression to heart failure. In the failing 
myocardium, adverse changes in β-AR signaling 
are mainly attributed to β1-AR downregulation and 
desensitization/uncoupling of both β1 and β2-AR’s. It 
has been reported that exercise after MI increases 

in sedentary rats. These finding suggest that exercise 
training does not cause LV dilation and preserves LV 
function. 

POST-MI EXERCISE AND MYOCARDIAL 
CONTRACTION
Ca2+ handling abnormalities can largely explain 
depressed myocyte contractility in the remodeled 
myocardium, whereas abnormalities in myofilament 
function are less well understood. Previously, it was 
reported in pigs that impaired pump function three 
weeks after MI could also be attributed to decreased 
maximal isometric tension in skinned cardiomyocytes 
in areas remote from the ischemic border zone; as it 
turns out, the impairment occurred in the context of 
increased Ca2+ sensitivity of the myofilaments[60]. As 
a result, the authors attributed the increased post-MI 
Ca2+ sensitivity to reduced protein kinase A-mediated 
troponin I (TnI) phosphorylation[60]. Similarly, 
increased myofilament Ca2+ sensitivity has also been 
reported in end-stage human heart failure, mediated 
by decreased TnI phosphorylation. 

Although experimentally challenging, investigators 
from the de Waard study were able to construct a full 
pCa-force relationships in isometrically contracting 
myocytes[59], which differs from previous studies 
relying on simultaneous measurements of FS% and 
Ca2+ fluorescence in unloaded myocytes to estimate 
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Table 2  Summary of physical training protocols and outcomes in selected animal studies

  Ref. Type of exercise Exercise 
intensity

Exercise 
duration

Exercise 
frequency

Training 
period

Assessment Outcome

  Hashimoto et al[76] 
  2004

Treadmill 
running

10 m/min 60 min 5 d/wk 6 wk Myosin heavy 
chain isoforms, 

cardiac wall 
measurements

Exercise training resulted in a significant 
increase of α-MHC expression in both 
anterior and posterior wall, ensuring a 

beneficial role in the remodeling of the heart
  Xu et al[35] 2008 Treadmill 

running
16 m/min @ 

5% grade
50 min 5 d/wk 8 wk TIMP-1, AT1, 

ACE, collagen 
volume fraction, 

MMP

Early exercise training after MI reduces 
TIMP-1 expression, improves the balance 
between MMPs and TIMPs, and mitigates 
the expressions of ACE and AT1 receptor, 
thus attenuating myocardial fibrosis and 

preserving cardiac function
  De Waard et al[59] 
  2007

Voluntary 
treadmill exercise 

training

N/A N/A 5 d/wk 8 wk LV fractional 
shortening, Ca2+ 
sensitivity, PLB, 

SERCA

Voluntary exercise improved LV and 
cardiomyocyte shortening, attenuates 

global LV dysfunction

  Wan et al[34] 2007 Treadmill 
running

16 m/min @ 
5% grade

50 min 5 d/wk 8 wk Echo and RAAS Exercise training improved cardiac 
function and attenuated RAAS. Early 
and late exercise training had similar 

beneficial results
  Xu et al[106] 2010 Treadmill 

running
16 m/min @ 

5% grade
50 min 5 d/wk 8 wk SOD, GPx, 

MnSOD
Exercise training combined with Ang

Ⅱ receptor blockade reduced oxidative 
stress

  Yengo et al[147] 2012 Treadmill 
running

15% grade, 
speed 

increased 
from 13 to 
24 m/min

Progressively 
increased to 

60 min

6 d/wk 10 wk Collagen 
concentration, 
non-reducible 
collagen cross-

linking in the RV

Exercise training normalized the observed 
increase in cross-linking, and favorably 

modifies heart extracellular matrix

RAAS: Renin-angiotensin-aldosterone system; MHC: Myosin heavy chain; TIMP-1: Tissue inhibitor matrix metalloproteinase; AT1: AngII receptor type 1; 
ACE: Angiotensin converting enzyme; MMP: Matrix metalloproteinase; SOD: Superoxide dismutase; GPX: Glutathione peroxidase.
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POST-MI OXIDATIVE STRESS AND 
EXERCISE TRAINING 
Reactive oxygen species (ROS) including superoxide 
(O2

-), hydroxyl (OH-), and peroxynitrite (ONOO-), 
have an unpaired electron[78]. These ROS serve as 
signaling molecules when in low concentrations; 
however, they elicit harmful oxidative stress when 
produced in excess[79]. ROS can directly damage 
the lipids of cell membranes, proteins and both 
nuclear and mitochondrial DNA resulting in serious 
or mortal cellular injury[80]. However, the toxicity 
associated with the excessive ROS can be prevented 
by antioxidant defense systems that provide a 
healthy cellular environment. Living cells have both 
enzymatic and non-enzymatic defense mechanisms 
to balance the multitude of oxidative challenges 
presented to them. The enzymatic antioxidant system 
includes superoxide dismutase (SOD), catalase and 
glutathione peroxidase (GPX)[81]. SOD catalyzes the 
dismutation of superoxide (O2

-) to hydrogen peroxide 
(H2O2). Catalase and GPX further metabolize H2O2 

to water and oxygen. The non-enzymatic group incl-
udes a variety of biologic molecules, such as vitamins 
E and C[81,82]. Oxidative stress is enhanced by an 
unbalance between elevated ROS production and 
diminished antioxidant system. 

Excessive oxidative stress has been observed 
in the myocardium of patients with CHF[83,84]. 
Heart failure subsequent to myocardial infarction 
is associated with oxidative stress in both infarcted 
and noninfarcted myocardium[83,85,86]. Researchers 
have identified a membrane-based NAD(P)H oxi-
dase as a major source of O2

- in the heart[87]. An 
elevated NAD(P)H oxidase expression has been 
observed in the infarcted rat heart and the extent of 
NAD(P)H oxidase elevation is negatively correlated 
with the deteriorated hemodynamic function and 
ventricular remodeling of the heart[88]. Furthermore, 
progressive decrease in antioxidant enzymes, SOD, 
catalase[89], and glutathione (an antioxidant)[90] has 
also been observed in the infarcted rat heart. These 
observations suggest that the impaired antioxidant 
system and/or augmented ROS promote oxidative 
stress, contributing to the adverse remodeling and 
dysfunction of the infarcted heart[91]. 

There is growing evidence that chronic exercise 
training adaptively bolsters the activity of protective 
antioxidant enzymes such as catalase, SOD, GPX[92], 
glutathione reductase (GR)[93], and antioxidant glu-
tathione content[94,95] in skeletal muscles of healthy 
animals. Nine-weeks of treadmill training markedly 
elevated manganese-SOD (Mn-SOD, an isozyme 
of SOD) activity and its protein content both at 
rest and after an acute exercise bout in the soleus 
muscle of rats[96]. In contrast, the muscle Mn-SOD 
gene expression of untrained rats was significantly 
decreased after an acute bout of exercise[96]. Exercise 

β1-AR, as evidenced by a 48% increase in β1-AR 
protein, and a 36% increase in cAMP levels, and 
improves β-AR signaling[59,61], which in turn, may also 
contribute to improvement in myocardial contractility 
in patients with MI.

Myosin heavy chain (MHC) acts as the chemical-
mechanical transducer of motion in muscle fibers 
by converting energy from ATP into the sliding 
myofilaments[62]. The isoform α-MHC elicits two to 
three times faster actin-activated ATPase activity 
and actin filament sliding velocity than the isoform 
MHC-β[63,64]. Thyroid hormone (TH) has profound 
effects on the cardiovascular system, and is known to 
critically regulate the expression of MHC isoforms in 
the myocardium[65]; in fact, in the absence of TH, the 
α-MHC  gene is not transcribed[62]. Triiodothyronine 
(T3), the active cellular form of TH, mediates its 
actions upon binding to thyroid hormone receptors 
(TRs)[66,67]. 

After MI, T3 levels are significantly reduced in 
patients[68]; similarly, decreased serum concentrations 
of TH have also been observed in patients with 
chronic heart failure (CHF), which, in part, attributes 
to impaired cardiac function[69]. In experimental 
post-MI rat models, following the decrease of serum 
T3, significant downregulation of α-MHC and the 
concomitant upregulation of MHC-β are observed in 
the LV non-infarcted myocardium, along with changes 
in TR isoforms at the mRNA level[68,70,71]. These, in 
addition to other MI-induced alterations in cardiac 
phenotype, are thought to further contribute to the 
progressive nature of LV systolic dysfunction, and 
have been associated with poor prognosis[62,63,72,73]. 
Interestingly, endurance exercise has been reported 
to favorably reverse MHC α- to β-cardiac isoform 
shifts after MI at both gene and protein levels[74,75], 
which in turn, may be associated with preserved 
cardiac functioning, attenuated LV remodeling, and 
increased myofibril function[76]. Recent evidence by 
our group[75] indicated that post-MI exercise training 
significantly increase cardiac expression of α-MHC 
and decrease cardiac expression of MHC-β without 
changing serum T3 levels. Similarly, unpublished data 
from our group recently revealed that moderate-
intensity treadmill exercise training markedly 
increased TRα-1 and TRβ-1 nine weeks after MI. 
Thus, it is likely that favorable changes in TH target 
gene transcription may be due to exercise-dependent 
upregulation of TR isoforms. Nevertheless, studies 
with experimental models of LV dysfunction and 
preliminary clinical investigation of patients with CHF 
reported that the TH analog 3,5-diiodothyroproionic 
acid elicits improvements in both systolic and 
diastolic LV function, accompanied by an increase in 
cardiac output and improved lipid profile[77]. Thus, 
it is conceivable that the combination of exercise 
combined with TH treatment could potentiate 
beneficial results, and warrants further investigation. 
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apoptosis[117,118]. Treatment of cardiac myocytes 
with O2

- or H2O2 induces apoptosis, suggesting a 
mechanism of ROS as an initial pathogenic event[119]. 
Enhanced pro-apoptotic Bax expression coexists 
with oxidative stress and apoptosis in the infarcted 
heart[120], whereas oxidative stress activates pro-
apoptotic enzymes, caspase-9 and caspase-3, 
resulting in cardiac apoptosis and ventricular dys-
function[117]. In vivo studies have demonstrated that 
long-term treatment with the antioxidants, probucol 
or pyrrolidine dithiocarbamate, attenuates oxidative 
stress and myocyte apoptosis within noninfarcted 
myocardium in rats[121,122]. 

Siu et al[98] demonstrated that endurance tra-
ining downregulated the expression of caspase 
and Bax, and upregulated Bcl-2 (an anti-apoptotic 
gene product) in both skeletal and cardiac muscles 
of healthy rats. These anti-apoptotic effects were 
associated with elevated protein content of Mn-
SOD. A clinical study also revealed that exercise 
training attenuated skeletal muscle apoptosis along 
with improved antioxidant capacity in patients with 
CHF[99]. Accordingly, the data are consistent with 
the idea that an increased antioxidant capacity and 
attenuated oxidative stress from exercise training 
may be involved in reducing pro-apoptotic genes, 
suggesting that exercise training may attenuate 
the extent of apoptosis in muscles. However, the 
influence of post-MI exercise training in myocardial 
apoptosis remains to be elucidated.

POST-MI EXERCISE AND CARDIAC 
ANGIOGENESIS
After myocardial infarction (MI), the adequate 
growth of new capillaries and arterioles, or angio-
genesis, represents a critical process in the dev-
elopment of compensatory hypertrophy in the 
remaining non-infarcted myocardium[123]. Although 
compensatory angiogenesis can be observed in 
both the ischemic and infarcted heart, previous stu-
dies have demonstrated that angiogenesis may be 
inadequate[124,125]; in fact, recent evidence suggests 
that impaired angiogenesis may lead to maladaptive 
LV remodeling, promoting the transition from 
adaptive cardiac hypertrophy to LV dilation and 
dysfunction[61,126]. 

Exercise, through increased vascular shear stress, 
potentiates a powerful angiogenic stimulus[127]. The 
pro-angiogenic effect of exercise has previously 
been demonstrated in healthy swine hearts[128]. A 
study conducted by Leosco et al[61] reported that 
exercise induced a significant increase of capillary 
density in lateral border and remote zones to the 
infarct site, but not in the area close to the infarcted 
site. One of our recent studies (unpublished data) 
confirms that post-MI exercise training induced about 
1.5-fold increase in capillary density in the septum 

training also resulted in significant increase in SOD 
activity in the LV of normal rats[97,98]. These findings 
suggest that muscles have the capacity of responding 
to training in such a manner as to enhance antio-
xidant system and reduce the accumulation of ROS 
resulting from enhanced metabolic activity.

In patients with CHF, exercise training enhanced 
GPX and catalase activities, and mitigated lipid pero-
xidation in skeletal muscles[99]. Exercise training also 
downregulated both gene expression and activity of 
pro-oxidant NAD(P)H oxidase, and decreased vascular 
generation of ROS in human arterial tissue[100]. 

Inconsistent findings have been reported on the 
effect of post-MI exercise training on ROS and 
antioxidants. Yamashita et al[101] and Brown et al[102] 
reported that exercise training resulted in an increase 
in myocardial SOD content along with improved 
recovery from ischemia-reperfusion injury. Others, 
however, reported that exercise training increased 
cardioprotection without amplifying myocardial SOD 
content[103,104] and only certain cardiac antioxidant 
enzyme activities (i.e., SOD) were enhanced in 
the exercise trained animals[97,101,105]. The variation 
in the findings of these studies may be due to the 
differences in the intensity and duration of exercise 
regimens. A study from our group[106] demonstrated 
that exercise training increased MnSOD gene 
expression after MI regardless of losartan treatment. 
In addition, exercise training together with losartan 
treatment remarkably enhanced the enzymatic 
activity of catalase, suggesting an additive effect 
of exercise training and AngⅡ receptor blockade 
treatment. But exercise training did not enhance 
myocardial glutathione peroxidase activity. Our 
data also revealed that post-MI exercise training 
notably attenuated MI-induced elevation of plasma 
thiobarbituric acid reactive substances (TBARS, a 
marker of lipid oxidation) although cardiac TBARS 
was not altered. 

It has been documented that AngⅡ stimulates 
NAD(P)H oxidase activity, which promotes ROS 
production[107,108]. Thus, exercise training may imp-
rove antioxidant capacity and attenuate oxidative 
stress by attenuating RAAS[35,38,106]. 

MYOCARDIAL APOPTOSIS AND 
EXERCISE TRAINING 
Loss of cardiomyocytes is an important mechanism 
in the development of myocardial remodeling and 
cardiac failure[109]. After MI, apoptotic cardiomyocyte 
death occurs in the infarcted myocardium as well as 
the surviving portions of the heart[110,111]. Myocyte 
apoptosis not only occurs at early phase (7 d) of 
MI[112,113], but also progresses to late phase (up 
to 6 mo) in myocardium remote from the area of 
ischemic damage[114,115], contributing to CHF[116]. ROS 
have proven to be powerful mediators of myocyte 
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a significant reduction in all-cause mortality and total 
cardiac mortality, there was no significant difference 
with respect to re-infarction[142]. Conversely, a recent 
meta-analyses conducted in 2011 consisting of 34 
RCTs (n = 6111) found that patients randomized 
to exercise-based CR had a significantly lower risk 
of re-infarction, cardiac mortality, and all-cause 
mortality[3]. In a stratified analysis, treatment effects 
were consistent regardless of study periods, duration 
of CR, or time beyond the active intervention[3]. 
Additionally, Exercise-based CR had favorable effects 
on cardiovascular risk factors, including smoking, 
blood pressure, body weight, and lipid profile[143].

CONCLUSION 
Most of the human and animal studies demonstrated 
that post-MI physical exercise training results in 
positive effect on myocardial remodeling. These 
beneficial effects include improved cardiac function, 
mitigated interstitial myocardial fibrosis, and 
enhanced physical capacity. As a result, physical 
exercise training provides good prognosis and 
improves the quality of life of MI patients. The 
current literature revealed the mechanism of 
physical training-induced improvement in post-
MI cardiac remodeling. Physical training attenuates 
renin[29,30], ACE, AngⅡ, and aldosterone[31,34]. The 
attenuation of AngⅡ, in turn, reduces cardiac fibr-
osis[34] and aldosterone secretion[32,34], which may 
ease MI-induced plasma expansion. Physical training 
also improves the balance between MMP-1 and 
TIMP-1, which, in turn, reduces cardiac stiffness 
via regulation of collagen accumulation[38]. Studies 
show that physical training significantly improves 
ß-adrenergic receptor, cAMP[59,61], and favorably 
reverses MHC α- to β-cardiac isoform shifts[74,75], 
attributing to improvement in myocardial contractility. 
In addition, post-MI physical training may enhance 
antioxidant enzyme capacity and attenuate oxidative 
stress[97,101,105]. It is important to note that the 
existing studies have only investigated the effects of 
endurance exercise on post-MI remodeling; therefore, 
the effects of post-MI resistance training have yet 
to be systematically examined to identify a better 
exercise mode. Furthermore, although majority 
of the research has shown that post-MI exercise 
training improves cardiac remodeling and function, 
the suitable exercise intensity, duration, and the 
time to start training are yet to be optimized to 
provide clinically relevant information regarding the 
pathophysiology of post-MI recovery through physical 
training. 
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