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Abstract
Breast cancer is the most frequent female malignancy 
worldwide. Current strategies in breast cancer therapy, 
including classical chemotherapy, hormone therapy, and 
targeted therapies, are usually associated with chemo-
resistance and serious adverse effects. Advances in our 
understanding of changes affecting the interactome 
in advanced and chemoresistant breast tumors have 
provided novel therapeutic targets, including, cyclin 
dependent kinases, mammalian target of rapamycin, 
Notch, Wnt and Shh. Inhibitors of these molecules 

recently entered clinical trials in mono- and combina-
tion therapy in metastatic and chemo-resistant breast 
cancers. Anticancer epigenetic drugs, mainly histone 
deacetylase inhibitors and DNA methyltransferase in-
hibitors, also entered clinical trials. Because of the com-
plexity and heterogeneity of breast cancer, the future in 
therapy lies in the application of individualized tailored 
regimens. Emerging therapeutic targets and the impli-
cations for personalized-based therapy development in 
breast cancer are herein discussed.
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Core tip: Emerging therapeutic targets may overcome 
chemoresistance in breast cancer.

Nwabo Kamdje AH, Seke Etet PF, Vecchio L, Tagne RS, Mbo 
Amvene J, Muller JM, Krampera M, Lukong KE. New targeted 
therapies for breast cancer: A focus on tumor microenviron-
mental signals and chemoresistant breast cancers. World J Clin 
Cases 2014; 2(12): 769-786  Available from: URL: http://www.
wjgnet.com/2307-8960/full/v2/i12/769.htm  DOI: http://dx.doi.
org/10.12998/wjcc.v2.i12.769

INTRODUCTION
The incidence of  breast cancer, the most common can-
cer in women and the second cause of  cancer death in 
women worldwide[1,2], is currently growing[3,4]. Cancers 
are diseases characterized by aberrant microenvironment 
and intrinsic signaling causing a continuous proliferation 
of  affected cells (“cancer cells”). Clinical features and 
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prognosis of  cancers vary tremendously according to the 
tissue and organs they originate from and affect. Breast 
cancer may start in milk ducts, and can be invasive [inva-
sive ductal carcinoma (IDC)] or not (ductal carcinoma in 
situ). IDC would represent up to 80% of  cases[5,6]. Breast 
cancer may also start in the lobules, with invasive features 
(invasive lobular carcinoma) or not (lobular carcinoma in 
situ ). In metastatic breast cancer malignant cells originat-
ing from breast primary tumors invade other tissues and 
organs of  the body, resulting in a systemic disease. As 
disease early detection is associated with better prognosis, 
screening campaigns involving healthy female subjects are 
performed worldwide. Notably, mammography, which 
requires the use of  low-dose X-rays to capture images in-
side the breast, is the current goal standard screening for 
detection of  breast cancer asymptomatic cases[7,8]. How-
ever, although the technique requires X-rays, the benefits 
of  the earlier detection of  breast cancer outweigh the 
risk of  radiation exposure, which can be associated with 
the development of  breast cancer in previously healthy 
women is present[9,10]. New approaches for early detection 
have been proposed, and may also contribute to reducing 
breast cancer mortality (for review see[11,12]).

Three major therapeutic approaches are used today to 
treat or control breast cancer: surgical removal of  prima-
ry tumors, irradiation of  cancer cells to stop their growth, 
and anticancer drugs, which kill cancer cells or inhibit 
their proliferation. Notably, oncoplastic surgery, a tech-
nique combining classical lumpectomy (or partial mastec-
tomy) and plastic surgery techniques have revolutionized 
breast-conserving surgery for removal of  lumps and 
malignant masses. However, surgery or radiotherapy still 
requires chemotherapy to eradicate remaining malignant 
cells and impede relapses. Anticancer drugs are based 
on three therapeutic approaches: (1) the classical che-
motherapy, where cancer cell proliferation is stopped by 
the indiscriminate targeting of  rapid cell divisions in the 
body; (2) hormone therapy, devised to stop cancer cell 
growth by targeting the receptors and downstream signal-
ing molecules of  hormones pivotal for the proliferation 
of  these cells; and (3) and the emerging and promising 
targeted therapy, where signaling pathways deregulated 
in primary breast tumors are specifically targeted. Breast 
cancer treatment is still challenging, as drugs in use are 
expensive, have serious undesired effects[13-15], and drug 
resistance is common, particularly in metastatic cases[16,17], 
underlying the need for new targeted therapies. Interest-
ingly, recent advances in the understanding of  breast 
cancer biology have highlighted the tumor microenviron-
ment as a major player in breast carcinogenesis and have 
provided new avenues for targeted therapy.

The present review summarizes and discusses the 
current understanding of  changes affecting breast micro-
environment during breast tumorigenesis, with a particu-
lar emphasis on signaling pathways currently targeted for 
therapy and emerging therapeutic targets. Personalized-
based targeting implementation is also discussed.

TUMOR MICROENVIRONMENT IS 
PIVOTAL FROM BREAST CANCER 
INITIATION TO METASTASIS
Numerous stromal cell types are found in the extracel-
lular matrix of  the breast stroma, including endothelial 
cells, fibroblasts, adipocytes, and resident immune cells[18]. 
In addition to these cell types, cancer-affected microenvi-
ronment contains malignant cells termed as cancer-asso-
ciated fibroblasts (CAFs), which are the most numerous 
cell type, and infiltrating macrophages termed as tumor-
associated macrophages (TAMs). 

Cancer-associated fibroblasts
CAFs were reported to play key roles in malignant cell 
proliferation and tumor maintenance[18,19]. An in vivo study 
involving xenograft of  MDA-MB-231 breast cells in 
SCID mice revealed that CAFs induce p53-dependent 
antimitogenic responses in normal stromal fibroblast[20], 
at least partly through Notch-dependent mechanisms[21]. 
In another study, CAFs expressed vascular endothelial 
growth factor in presence of  hypoxia inducible factor 1 
a/G-protein estrogen receptor (HIF-1α/GPER) signal-
ing, suggesting a role for these cells in hypoxia-dependent 
tumor angiogenesis[22]. Under the same conditions, CAFs 
were shown to express Notch molecules[23], which pro-
motes cancer cell survival, proliferation[24,25], as well as an-
giogenesis[26]. In addition, Luga et al[27] showed that CAFs 
release exosomes, which stimulate invasiveness and ma-
lignant cell metastasis via a Wnt11-dependent mechanism. 
On the same hand, CAFs induced phenotypical changes 
in adipocytes resulting in the generation of  fibroblast-like 
cells [adipocyte-derived fibroblasts (ADF)], which in turn 
increased migratory abilities of  metastatic cells by releas-
ing high levels of  collagen Ⅰ and fibronectin[28]. Notably, 
CAF-induced ADF phenotype generation was mediated 
by reactivation of  the oncogenic Wnt/β-catenin pathway 
in the latter cells in response to Wnt3a produced by the 
cancer cells, suggesting CAFs and ADFs as potential 
therapeutic targets in metastatic breast cancer. Further-
more, CAFs may promote breast cancer initiation and 
progression to metastasis via tumor-α9β1 integrin signal-
ing[29] and fibroblast growth factor signaling[30], as well as 
malignancy orchestration and tumor stroma reprogram-
ming through activation of  heat shock factor 1[31], a tran-
scriptional regulator. 

Interestingly, Capparelli et al[32,33] have hypothesized 
that senescent fibroblasts may promote tumor growth 
through an autophagy-dependent mechanism termed as 
“autophagy-senescence transition”. In order to test such 
hypothesis, these authors introduced autophagy genes 
such as bnip3, ctsb or ATG16L1 in immortalized human 
fibroblasts that resulted in the induction of  a constitu-
tive autophagic phenotype (characterized by mitophagy, 
aerobic glycolysis, L-lactate and ketone body produc-
tion) with senescence features associated with increased 
β-galactosidase activity, increased level of  cyclin depen-
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dent kinase inhibitor (CDKI) p21, and cellular hyper-
trophy. Interestingly, “autophagic-senescent” fibroblasts 
were able to induce tumor growth and metastasis in-
dependently of  angiogenesis, with stronger effects (up 
to 11-fold) in autophagic fibroblasts producing large 
amounts of  ketone bodies. These observations were con-
firmed in vivo, as the lysosomal enzyme and biomarker 
of  senescence, β-galactosidase, was also found in human 
breast cancer stroma. A recent in vivo study revealed the 
ability of  CAF autophagy and senescence to promote 
tumor growth and metastasis increasing the rate of  gly-
colysis and enhancing the generation of  mitochondrial 
fuels including bodies[33] in a compartment-specific fash-
ion, thus supporting the role of  CAFs to metabolically 
regulate tumorigenesis. In this study, the injection of  the 
antidiabetic molecule along with peroxisome proliferator-
activated receptor gamma (PPARγ), known to stimulate 
glycolysis and pro-autophagy, into stromal cells enhanced 
the growth of  co-injected breast cancer cells by 60%, 
whereas PPARγ injection in cancer cells reduced the 
growth of  breast cancer cells by 40%[34]. 

Tumor-associated macrophages
TAMs infiltration into neoplastic tissues is an important 
negative prognostic factor[35,36], and a hallmark of  triple 
negative breast cancer[37], a chemoresistant subtype of  
breast cancer[38,39]. Overall, emerging evidence suggests 
that TAMs are major player in anticancer drug resistance 
in breast cancer. For instance, Yamashina et al[40] recently 
reported that cancer stem-like cells originating from che-
moresistant tumor promote macrophage colony-stimulat-
ing factor production via an interferon regulatory factor 5 
-dependent mechanism, and transform recruited CD14(+) 
monocytes in tumorigenic M2-macrophages (immuno-
regulatory), probably through CXCR3 downregulation[41]. 
Interestingly, the differentiation inducer dimethyl sulfoxide 
exerted antitumor effects in a mouse breast cancer model 
(4T1) possibly by inducing M1-phenotype in TAMs[42]. 

Furthermore, TAMs may promote carcinogenesis 
and metastasis via Wnt signaling, which mediates the 
angiogenic switch and metastatic processes in breast can-
cer[43,44]. Notably, TAMs release high levels of  the Wnt 
family ligand Wnt7b[45], and cancer stem-like cells may 
trigger the metastatic effect of  TAMs through enhance-
ment of  the β-catenin pathway via vitamin D receptor 
suppression by tumor necrosis factor alpha[46]. In addi-
tion, in vivo and in vitro studies supported a pivotal role for 
Wnt 5a signaling in TAMs-induced metastasis[47,48], and a 
strong correlation was found between Wnt5a expression 
in malignant cells and the number of  CD163(+) M2-
macrophages[49]. In a relatively recent study investigating 
the potential of  the phosphodiesterase type 5 inhibitor 
(vasodilator) drug dipyridamole in xenograft mice, anti-
cancer effects were mediated at least partly by decreasing 
β-catenin cytosolic levels[50]. Altogether, these findings 
implicated TAMs as a key links between chemoresistance 
and tumorigenic activities of  cancer stem-like cells, and 
thus, positioning TAMs as potential therapeutic targets 

for breast cancer. Figure 1 shows the main signaling path-
ways currently in use for targeted breast cancer therapy, 
as well as some possible new targets.

NOTCH SIGNALING
Notch family of molecules
The Notch family of  membrane bound receptors and 
ligands regulate several cell processes including cell in-
vasion, survival and apoptosis, via the Notch signaling 
pathway. The pathway comprises four receptors (Notch1 
through Notch4) and five Notch ligands (Delta-like 1, 3, 
and 4, and Jagged1 and 2). Notch ligands include an ex-
tracellular domain containing multiple epidermal growth 
factor (EGF)-like repeats and an extracellular DSL where 
ligand binding occurs, and an intracellular domain with 
a PDZ-binding motif  at C-terminal domain[51,52]. Notch 
receptors are also made of  an extracellular and an intra-
cellular domain covalently linked. Notch receptor extra-
cellular domain also contains EGF-like repeats (26-29 
depending on the Notch receptor), whereas Notch in-
tracellular domain (NICD) presents with LIN12/Notch-
related repeats preventing ligand-independent signaling, 
cysteine residues, and a C-terminal transactivation domain 
containing a PEST sequence with proteolytic activity.

Notch ligands are expressed on the plasma membrane 
of  one cell and interact with Notch receptors on the plas-
ma membrane of  a neighboring cell, initiating the cleav-
age of  the receptor by proteases [ADAM (a disintegrin 
and metalloprotease) and γ-secretase] that culminates in 
the release of  the NICD[53]. Released NICD translocate 
to the nucleus and forms a transcriptional activator com-
plex with C-promoter binding factor 1/Suppressor of  
Hairless and Lag-1 (CSL) transcription factor. Together 
with cofactors like mastermind-like protein, NICD-CSL 
complex induces the transcription of  cell fate key target 
genes such as vegfr3 and, notch1 that regulate angiogenesis 
and apoptosis, p21 that regulates the cell cycle, as well as 
transcription factor genes such as the basic helix-loop-
helix and hairy/enhancer of  split/-related (hes and hey) [54,55] 
(Figure 1).

Notch signaling as a therapeutic target
As already mentioned (section 2), Notch signaling is used 
by CAFs to promote cancer cell survival and prolifera-
tion. Early reports revealed that upregulation of  Notch 
signaling suffices to transform normal breast epithelial 
cells in malignant cells in vitro, and that high levels of  
NICD are present in breast primary tumors[56-59]. Notch 
carcinogenic effects are mediated via the silencing pro-
apoptotic signaling pathways and growth-inhibitory mol-
ecules like TGF-β[58]. Notch-induced TGF-β silencing 
also promotes bone metastasis[60,61]. In addition, Notch 
signaling, which is required for physiological angiogen-
esis, may also be a key player in neoangiogenesis[62]. A 
Notch 3 addiction of  the lymphovascular embolus was 
reported in a xenograft model of  inflammatory breast 
carcinoma, a subtype of  breast cancer whose hallmark is 
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lymphovascular invasion[63]. 
In vitro studies in estrogen receptor (ER)-negative breast 

cancer cells (MDA-MB-231) performed by Lee et al[64] re-
vealed that Notch signaling up-regulates the transcription 
of  the apoptosis inhibitor survivin. In another study, 
these authors showed that Notch-1-survivin functional 
gene signature is common in basal breast cancer[65]. In ad-
dition, crosstalk between Notch and signaling pathways 
involved in cell growth were reported as well, including 
the estrogen receptor[66], human epidermal growth fac-
tor receptor 2 (HER2)[67], and the metabolic signaling 
pathways phosphatidylinositol 3-kinase (PI3K)/ pro-
tein kinase B (Akt)/mammalian target of  rapamycin 
(mTOR)[68,69] and MAP kinase/ERK[70,71]. Interestingly 
combined targeting of  Notch and EGFR signaling sup-
pressed chemoresistance in a basal-like breast cancer in 
vivo model[72], suggesting that co-targeting of  Notch and 
associated pathways may represent a new avenue for 
overcoming chemoresistance (Figure 1). 

Tumor initiating cells of  tumors overexpressing 
HER2/neu also express high levels of  Notch molecules, 
whose signaling is known to enhance HER2 expression[73]. 
Chemoresistance to HER2+ breast cancers to trastu-
zumab, a monoclonal antibody against HER2, is associ-
ated with the overexpression of  Notch-1 and its ligand 
Jagged-1[74,75]. Similarly, cancer stem-like cells also achieve 
resistance against chemotherapy and radiotherapy via 
Notch signaling[76], and targeting of  this signaling path-
way reduces the stem-like population[77]. The γ-secretase 
inhibitor MRK-003 induced long-term recurrence-free 
survival in a transgenic mouse model of  HER2+ breast 
cancer[78]. Similarly, co-targeting of  Notch and HER2 

signaling pathways prevented breast tumor recurrence in 
orthotopic breast tumor xenograft using trastuzumab-
resistant BT474 cells[79]. 

Platelet-derived growth factor-D, another marker of  
breast cancer poor prognosis, may increase breast tumor 
aggressiveness by activating Notch and NF-κB signaling 
pathways[80]. Furthermore, Notch-1 and Notch-4, estab-
lished bio-markers of  the chemoresistant breast cancer 
subtype[81], were reported as novel transcriptional targets 
in triple negative breast cancer[82,83]. Jagged1/Notch4 sig-
naling was shown to induce epithelial-to-mesenchymal 
transition[84]. Notch signaling was also reported as a 
mechanism of  resistance to PI3K inhibitors[85] and hor-
mone therapy[86].

Clinical evaluation of Notch signaling targeting
Notch signaling inhibitors have a promising clinical ef-
ficacy as they abrogate HER2-Notch axis of  chemore-
sistance. Notch silencing by ɣ-secretase inhibitors (GSIs) 
inhibited the proliferation of  breast cancer cells partly by 
causing cell cycle arrest and apoptosis[76], and by sensitiz-
ing chemoresistant breast cancer cells to the BH3 mi-
metic ABT-737[87]. Notably, GSIs induce toxicity to breast 
cancer both in vitro and in vivo models, however mecha-
nisms of  such cytotoxicity are complex and may involve 
proteasome inhibition and downregulation of  Bax and 
Bcl-2[88,89]. 

Following encouraging pre-clinical studies[83,90,91], 
the oral gamma secretase inhibitor R04929097 recently 
entered phase-Ⅰ trial in patients with advanced solid tu-
mors. Early reports of  combination therapies with the ki-
nase inhibitor temsirolimus[92], the antimetabolites of  the 
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Figure 1  Notch signaling in breast cancer. In Notch-driven breast cancers, tumor cells and neighboring cells express Notch ligand and receptors. In pres-
ence of ADAM/TACE and g-secretase enzymatic complex, Notch ligand-receptor interactions result in the release of Notch intracellular domain (NICD), which translo-
cate to cell nucleus and activate CSL transcription factor. Target genes include signaling molecules involve in cancer cell survival, proliferation, angiogenesis, growth, 
energy metabolism, and chemoresistance. Inhibitors of many of these signaling molecules have been developed and are in use in various cancers, including g-secretase 
inhibitors, vascular endothelial growth factor inhibitors, estrogen signaling inhibitors, and HER2 inhibitors. ER: Estrogen receptor; HER2: Epidermal growth factor re-
ceptor 2; ADAM/TACE: A disintegrin and metalloprotease/tumor necrosis factor-α converting enzyme; CSL: CBF1/Suppressor of Hairless/LAG-1.
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pyrimidine analog family gemcitabine (PHL-078/CTEP 
8575)[93] or cediranib (PJC-004/NCI 8503) revealed that 
the combinations were safe and promising in breast, tra-
cheal, and pancreas cancer patients. However, anemia, 
diarrhea, fatigue, hypertension, neutropenia, and nausea 
were observed, among other side effects. GSI reported 
side effects seem to be mediated primarily through pro-
teasome inhibition[88,94]. Thus, CSL inhibition, which 
was reported to mediate a more effective inhibition of  
Notch-dependent carcinogenic processes than GSIs[95], 
may represent a less toxic approach for Notch signaling 
targeting.

Another GSI, PF-03084014, also presented promising 
results in breast xenograft models[96], with gastrointesti-
nal toxicity easily abrogated by glucocorticoids[97]. Other 
promising pre-clinical observations included a synergis-
tic effect with the antimitotic drug docetaxel in breast 
cancer[98], colorectal cancer[99], and metastatic pancreatic 
cancer[100] models. Antiangiogenic effects where also re-
ported in combinations with the tyrosine kinase inhibitor 
sunitinib in solid tumors[101], whereas in chronic lympho-
cytic leukemia cells combinations with the nucleoside 
metabolic inhibitor fludarabine inhibited angiogenesis 
as well as migration and invasion of  Notch 1-mutated 
cancer cells[102,103]. PF-03084014 therefore appears as an 
appealing GSI for both solid and blood cancers and may 
be a good targeted-therapy drug in breast cancer. 

CDK
CDKs, cyclins and CDKI
Cyclins, CDK inhibitors (CDKIs, e.g ., p16INK4, 
p15INK4B, p18INK4C. p21WAF1/CIP1[104,105]) and CDKs 
are the three key classes of  regulatory molecules that deter-

mine cell cycle progression through the G0-G1-S-G2 and M 
phases[106,107]. Numerous CDKs are found in eukaryotic cells, 
of  which some are pivotal cell cycle regulators, such as 
CDK1/2/4/6 (Figure 2). CDKs (catalytic subunits, het-
erodimeric serine/threonine kinase class) associate with 
cyclins (regulatory subunits) to form an active catalytic 
complex favoring G1/S cell-cycle progression in mitosis. 
For instance, CDK1/A2 or CDK1/B1 complexes trigger 
mitosis in mammalian cells by phosphorylating down-
stream cell cycle regulatory proteins[108]. Other CDKs 
are involved in the regulation of  cellular transcription, 
such as CDK7-11[107,109]. A recent proteomic analysis of  
the CDK family in human cells has identified a CDK5 
complex as a key regulator of  non-neural cell growth and 
migration factor[110]. 

CDK involvement in breast cancer
Early and emerging evidence suggests that cyclin D1 
promotes breast tumorigenesis[111,112]. CDK1 activity was 
recently reported as a powerful predictor of  taxane che-
mosensitivity, indicating a role for CDK1 in breast tumori-
genesis[111]. Notably, taxanes are the drug class most used 
for breast cancer pre-operative chemotherapy; they induce 
apoptosis in malignant cells by stopping their replica-
tion[113,114]. Moreover, studies investigating genes that are 
synthetically lethal in Myc-dependent cancer identified 
numerous CDKs as Myc synthetic-lethal genes[115-117]. In-
terestingly, in one of  such studies CDK1, but not CDK2 
or CDK4/6 was selectively lethal to Myc-dependent 
breast cancer cells[117]. This observation indicates that 
targeting CDK1 may induce apoptosis in Myc-dependent 
cancers, where Myc drives cancer cell growth and cycle 
progression[118]. Increases in activities and levels of  other 
CDK complexes were also reported in breast cancer 
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Figure 2  CDK4/6 signaling in breast cancer. A: Cyclin dependent kinases (CDK) 4/6 signaling is overexpressed in breast cancer. Such overexpression, which results 
from the silencing of CDK endogenous inhibitors, participate directly to cancer cell proliferation by triggering G1-S transition, and indirectly to chemoresistance via a PI3K/Akt/
mTOR-dependent mechanism; B: CDK4/6 inhibitors sensitize chemoresistant cells to PI3K inhibitors and various other anticancer agents. PI3K: Phosphatidylinositol 3-kinas.
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primary tumors and experimental models, including 
CDK4/6 and cyclin E/CDK2 complexes[119-121]. The oc-
currence of  cyclin E/CDK2 proteolytic cleavage prod-
ucts associates with poor clinical outcome in breast can-
cer patients and increases tumorigenicity in experimental 
models at least partly by promoting stem-like properties 
of  tumor cells[120]. Transcriptional regulator CDK8 target-
ing was also recently reported to inhibit both the prolif-
eration and the migration of  breast cancer cells[122]. In ad-
dition, BRCA2 gene, whose aberrant activating mutations 
associate with familial breast cancer[123,124], was reported 
to induce genomic stability in malignant cells through a 
CDK-dependent mechanism[125].

A link between the cell cycle and steroid hormone 
metabolism involving CDK4/6 was recently uncovered 
in breast cancer primary tumor cells[126]. In this study, 
malignant cells appeared to control the activity of  ste-
roid metabolic enzymes, i.e., the expression of  steroid 
hormone receptors (including ER), by alteration of  
CDK4/6-levels (overexpression of  CDK4 and decrease 
of  its homolog CDK6). Such mechanism may play a 
pivotal role in the carcinogenesis and chemoresistance of  
steroid hormone-dependent cancers. In another recent 
study the newly synthesized compound KU004 that had 
a potent anticancer effect by targeting HER2 induced 
a decrease in CDK4 expression[127]. On the same hand, 
CDK 4/6 inhibitors sensitized PIK3CA mutant breast 
cancer to PI3K inhibitors in a xenograft study[128] (Figure 
2), further suggesting a role for CDK4/6 imbalance in 
breast tumorigenesis.

CDK inhibitors
CDK4/6 inhibitors are more efficient and less toxic anti-
neoplastic agents than molecules targeting other CDKs[129]. 
The selective cyclin D kinase 4/6 inhibitor palbociclib 
(PD-0332991) is currently entering phase Ⅲ trial for ER+ 
breast cancer patients, following encouraging results in 
progression free survival in phase Ⅱ trials[130]. Using the 
bioluminescence imaging technology, an early study in xe-
nograft models displaying metastatic progression revealed 
powerful antimetastatic effects, comparable to avastin, and 
docetaxel effects[131]. In addition, palbociclib, preferentially 
inhibited the proliferation of  luminal ER+ breast cancer 
cell lines in vitro[132], suppressed malignant cell proliferation 
in approximately 85% of  cases irrespective of  ER+/- or 
HER2+/- statuses[133]. Furthermore, palbociclib induced 
growth arrest in hormone-resistant MCF-7 breast can-
cer cells by a mechanism consistent with cellular senes-
cence[134]. This observation is not surprising considering 
the functional link between tumor microenvironment 
carcinogenic activity, ageing, and autophagy discussed 
above (section 2.1), and indicate that the drug may also 
affect metabolic processes in CAFs and stem-like tumor 
cells[33,34]. 

Chemoresistance to CDK4/6 inhibitors has been 
reported[133,135]. Analyses of  primary tumor cells of  cases 
resistant to CDK4/6 inhibitors showed that these cells 
lack the tumor suppressor retinoblastoma protein (RB)[133], 

which is necessary for CDK4/6 control of  the cell cycle 
restriction point[135]. Interestingly, RB-deficient chemore-
sistant breast cancers, such as RB-deficient triple nega-
tive breast cancers, are more sensitive to the metabolic 
inhibitor of  the folate analog family methotrexate and to 
the anthracycline topoisomerase inhibitor doxorubicin 
compared to RB+ cell lines[136], indicating that combina-
tion therapy may improve CDK4/6 inhibitor response 
in resistant cases. However, a report by Roberts and 
colleagues cautioned against the use of  these agents in 
combination with DNA-damaging drugs (e.g., doxorubi-
cin, carboplatin), considering the potential genotoxic side 
effects[129]. The dangers that may result from such combi-
nation also emerged in other pre-clinical studies[137,138]. 

The CDKI dinaciclib (MK-7965), which selectively 
binds to the ATP site of  CDKs and acts as a protein-
protein inhibitor of  bromodomains[139,140], also displayed 
encouraging anticancer properties in pre-clinical studies 
in human cancer models[141,142]. The drug recently en-
tered phase Ⅲ in leukemia[139] and phase Ⅱ trial in solid 
cancers. The drug is well tolerated in monotherapy, but 
revealed an antitumor activity whose efficacy was not su-
perior to the nucleoside metabolic inhibitor capecitabine 
in a phase Ⅱ trial in advanced breast cancer patients[143]. 
Comparable observations were reported in non-small 
cell lung cancer where the drug was compared with the 
protein kinase inhibitor erlotinib[144]. Similar combination 
therapy studies in progress for breast cancer[143,144] may 
provide alternative strategies for breast cancer therapy. 

OTHER EMERGING THERAPEUTIC 
TARGETS
Wnt signaling
A number of  reports have suggested that Wnt signaling 
pathway, which is normally involved in embryonic induc-
tion and cell fate[145,146], is aberrantly activated in blood 
cancers[147-149] and solid cancers, such as head and neck, 
lung, gastrointestinal, and breast cancer[27,150-155]. Wnt5a 
and Wnt11 are major players in macrophage-induced 
malignant invasion in metastatic breast cancer[27,151], and 
several breast tumors constitutively release-inducible Wnt 
ligands[156]. In addition, the naturally occurring pentacyclic 
triterpenoid ursolic acid, which is known to exert anti-
tumor activity in various solid cancers including breast 
cancer, may act through inhibition of  canonical (Wnt/
β-catenin) signaling[150]. Similarly, the natural plant poly-
phenol rottlerin was reported to inhibit Wnt/β-catenin 
signaling in cancer cells by promoting the degradation of  
Wnt co-receptor LRP6 (low density lipoprotein receptor-
related protein 6)[157]. Such inhibition resulted in cell death 
in various cancer cell lines, including MDA-MB-231 and 
T-47D breast cancer cells. Salinomycin, another novel 
LRP6 inhibitor, induced comparable effects in breast 
and prostate cancer cell lines, by inhibiting both Wnt/
β-catenin and PI3K/Akt/mTOR signaling[158].

The development of  specific Wnt inhibitors is in 
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progress. Recently, a specific inhibitor of  Porcupine 
(PORCN, an O-acyltransferase required for the secretion 
of  Wnt ligands[159]) termed as LGK974 was developed. 
LGK974 displayed potent anticancer properties in in vitro 
and in vivo models of  breast cancer and pancreatic adeno-
carcinoma mediated by reduction of  the transcriptional 
expression of  Wnt target genes[147,160]. However, another 
recent report revealed that Wnt signaling molecules are 
differentially expressed in breast cancer clinical subtypes 
and in cancer stem-like cells, indicating that the develop-
ment of  more specific Wnt-targeted therapies in breast 
cancer may be necessary[161]. Wnt signaling was also re-
ported a major role in malignant cell acquired resistance 
to classical chemotherapy, including resistance to tamoxi-
fen[162], and in chemoresistant cells from triple negative 
breast cancer patients[163], suggesting the potential of  Wnt 
inhibitor combination therapies.

Shh signaling
Early studies have suggested that Sonic Hedgehog (Shh) 
overexpression, mediated by both NF-κB up-regulation 
and shh promoter hypomethylation in breast cancer[164], 
is a critical event in the development of  various solid 
cancers[165-167]. For instance, Shh signaling was reported 
to promote the survival of  cancer epithelial cells, but 
not their normal counterparts[168]. Targeting of  Shh tran-
scription activator Gli1 enhanced apoptosis and attenu-
ated migration in inflammatory breast cancer cells[169]. 
In addition, Shh non-classical activation was reported as 
a multidrug resistance enhancer, including resistance to 
Smo inhibitors[170], suggesting that targeting these path-
ways specifically may abrogate the associated chemore-
sistance.

Smo inhibitor anticancer drug cyclopamine, which 
inhibits Shh signaling by antagonizing its downstream 
target Smo, is metabolically stable and is currently inves-
tigated for the treatment of  various cancers[171-173]. The 
chemotherapy drug paclitaxel used in combination with 
cyclopamine was shown to antagonize chemoresistant 
breast cancer cells both in vivo and in vitro[174], suggest-
ing Shh signaling as a candidate for targeted therapy in 
chemoresistant cancer cells. Similarly, cyclopamine also 
sensitized chemoresistant tumor cells to taxane drugs in 
ovarian cancer[175], another hormone-related cancer. Not 
surprisingly, Shh targeting was reported as a therapeutic 
option in endocrine-resistant breast cancer due to its abil-
ity to sensitize PI3K/AKT signaling-induced tamoxifen 
chemoresistant malignant cells[176].

Notably, ER-α physiologically regulates non-canonical 
Shh signaling in the mammary gland, and is essential for 
mammary gland morphogenesis at puberty[177,178]. Howev-
er, Gli1 expression also enhances migration and invasion 
of  malignant cells in ERα-negative and triple negative 
breast cancers, where it represents a predictor of  poor 
prognosis[179]. These observations indicate that Shh sig-
naling involvement in breast cancer cells is complex and 
therefore targeting Shh in chemoresistant cancer therapy 
can also compromise its normal physiological function.

FUTURE DIRECTIONS: 
PERSONALIZED-BASED THERAPY AND 
EPIGENETIC TARGETS
Personalized-based therapy
The major challenges in breast cancer treatment include 
resistance to chemotherapy, hormone therapy and even 
targeted therapy (Table 1), which underline the need for 
developing novel targeted therapies. Although the main 
molecular events driving cancer involve the activation of  
proto-oncogenes or the inactivation of  tumor suppressors, 
deregulation of  various signaling intermediates and meta-
bolic factors have been well documented[72,77,82,83,149,161]. 
The events triggering cancer development affect proto-
oncogenes such as Notch, Wnt, and Shh, which are the 
developmental genes driving embryonic induction and 
organogenesis during fetal life. These genes, whose ex-
pression is normally transcriptionally reduced or silenced 
in most adult tissues (except stem-like cells) by regulator 
molecules, are aberrantly overexpressed in cancer cells, 
conferring them stem-like properties[72,77,82,83,149,161]. 

Concomitantly, neoplastic tissue growth is fuelled by 
the upregulation and overexpression of  receptors such as 
HER2, ER and, IGF-1R[70,71,180], the upregulation and/or 
activation of  signaling molecules associated with cell 
proliferation[111,112], cell migration[181,182], oxidative stress, 
hypoxia and neoangiogenesis[22,26], all which are charac-
teristic of  tumor microenvironment. Thus, the complete 
characterization of  all these tumor promoting events will 
pave the way for the development more efficient and less 
toxic anticancer drugs. Computational causal network 
models aimed at improving the current understanding of  
signaling molecule interactions in breast cancer, which 
will allow the determination of  specific subsets of  pa-
tients susceptible to a given therapeutic approach, are cur-
rently in development[156,183]. Although the complexity of  
such networks makes this effort challenging, nonetheless, 
the development of  such tool would allow implementa-
tion of  a highly efficient personalized-based therapy in 
breast cancer.

Epigenetic changes drive tumorigenesis
Epigenetics describes heritable alterations in gene ex-
pression patterns that do not alter the primary DNA 
sequence, but play critical roles in normal differentiation 
and development. Epigenetic alterations include modi-
fications such as DNA methylation, histone modifica-
tions and nucleosome remodeling. The plasticity and 
reversibility of  epigenetic events enable a better control 
of  the dynamism of  cellular processes. However, de-
regulation of  the normal epigenetic patterns can lead 
to aberrant expression of  cell growth regulatory genes 
that can culminate in cancer. Epigenetic factors affect 
gene expression both pre- and post-transcriptionally and 
probably account for the high inter-individual variability 
in clinical course and treatment outcome of  both blood 
and solid cancers[184,185]. There is ample evidence linking 
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the etiology of  breast to abnormal genetic and epigenetic 
events[180,186,187]. Cancer-specific DNA methylation chang-
es and well as dysregulation of  histone modification have 
been characterized as contributors to breast cancer de-
velopment. Progress in our understanding of  epigenetics 
mechanisms in breast cancer have led to the identification 
of  novel therapeutic targets. Recent therapeutic strategies 
involving the use of  epigenetic agents alone or in com-
bination with chemotherapy and/or endocrine therapy 
are showing promising results in breast cancer patients 
including chemoresistant cases[186,188].

The technological breakthrough of  “omics era” has 
allowed the development of  high-throughput sequenc-
ing technology allowing both global and comprehensive 
investigations of  the interactome, the epigenome, and 
the transcriptome (i.e., active signaling pathways, cascades 
of  pre- and post-translational changes affecting specific 
genes, and changes in gene expression)[189-191] at individual 
level. Epigenetic alterations in cancer constitute appeal-
ing therapeutic targets due to their pivotal roles in disease 
initiation, progression, and chemoresistance, and to their 
reversibility. For instance, chemoresistance to the ER 
antagonist fulvestrant is mediated by epigenetic modula-
tion (more specifically hSWI/SNF-mediated chromatin 
remodeling) of  GPER and CDK6 expression[192], sug-
gesting that adjuvant therapy targeting SWI/SNF activity 
may induce apoptosis in resistant cancer cells. SWI/SNF 

tumor-dependency has also been reported in other solid 
cancers and in leukemias[193,194].

Epigenetic targets in breast cancer: histone deacety-
lation and DNA hypermethylation

Studies have shown that the transcriptional expression 
of  various signaling molecules associated with breast can-
cer and other cancers may result from selective epigenetic 
silencing of  regulator genes mediated by histone deacety-
lation and gene promoter (DNA) hypermethylation[195-197], 
among other potential epigenetic mechanisms[186,198]. For 
instance, the reduction in ER expression observed in 
various chemoresistant breast tumors may be mediated 
by epigenetic silencing (e.g., erβ1 silencing)[199]; and some 
histone deacetylases (HDACs) such as HDAC3/8 were 
reported to play pivotal regulatory roles in the prolifera-
tion of  normal and MDA-MB-231 cells[200].

Data from numerous pre-clinical in vivo and in vitro 
studies support the potential of  DNA methylation sta-
tus targeting in breast cancer. Both the HDAC inhibitor 
(HDACI) trichostatin A and the DNA methyltransferase 
(DNMT) inhibitor (DNMTI) deoxycytidine (5-aza-2’-
deoxycytidine) induced apoptosis in various breast cancer 
cell lines[201-205]. The HDACI Romidepsin (FK-288) elimi-
nated both primary and metastatic tumors in combina-
tion with Paclitaxel in the Mary-X pre-clinical model of  
inflammatory breast cancer[206]. The green tea-derived 
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  Drug Trade name Class Anticancer mechanism 

  Classical chemotherapy
     Methotrexate Abitrexate®, Mexate®, Folex® Antimetabolites, folate 

analogs
Folate receptor competitive antagonist[218]

     5-fluorouracil Adrucil®, Efudex®, Fluoroplex®, prodrug 
capecitabine/Xeloda®

Antimetabolite, pyrimidine 
analogs

Inhibition of the phosphatase and tensin 
homolog  thymidylate synthase[219]

     Gemcitabine hydrochloride Gemzar®

     Doxorubicin hydrochloride Adriamycin® Anthracycline Deoxyribonuclease inhibitor[220]

     Epirubicin hydrochloride Ellence®

     Pamidronate disodium Aredia® Nitrogen-containing 
bisphosphonate

Inhibition of farnesyl pyrophosphate synthase 
activity[221]

     Cyclophosphamide Clafen®, Cytoxan®, Neosar® Nitrogen mustard alkylating 
agent

Inhibition of DNA replication by interacting 
with the alkyl group of DNA guanine base[222]

     Paclitaxel Abraxane® Taxol® Taxanes Microtubule Inhibitors[223,224]

     Docetaxel Docecad®, Taxotere®

     Ixabepilone Ixempra® Epothilone B analog
  Targeted therapy
     Everolimus Afinitor® mTOR inhibitor Silencing of PI3K/Akt/mTOR signaling[225]

     Trastuzumab Herceptin® HER2 inhibitor Anti-HER2 monoclonal antibodies[226,227]

     Pertuzumab Perjeta®

     Ado-Trastuzumab Emtansine Kadcyla® Antibody-drug conjugate HER2 inhibitor and cytotoxic agent[228]

     Lapatinib ditosylate Tykerb® Dual tyrosine kinase inhibitor EGFR/HER2 inhibitor[229]

  Hormone therapy
     Toremifene Fareston® Selective ER modulator Silence ER signaling[230,231]

     Fulvestrant Faslodex® ER antagonists 
     Tamoxifen citrate Nolvadex®

     Anastrozole Arimidex® Aromatase inhibitors Inhibit estrogen synthesis[232-234]

     Exemestane Aromasin®

     Letrozole Femara®

     Goserelin acetate Zoladex® GnRH agonist
     Megestrol acetate Megace® Progesterone derivative Progestational and antigonadotropic effects[235]

Table 1  Current therapeutics for breast cancer

PI3K: Phosphatidylinositol 3-kinase; Akt: Protein kinase B; HER: Epidermal growth factor receptor 2.
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anticancer molecule epigallocatechin-3-gallate suppressed 
invasiveness in MDA-MB-231 and MCF-7 breast cancer 
cells by silencing matrix metalloproteinase 2 (MMP2) and 
MMP-9 and inducing TIMP-3 through increased activi-
ties of  the enhancer of  zeste homolog 2 and HDACs[207]. 
Suberoylanilide hydroxamic acid, another naturally oc-
curring HDACI, restored radiosensitivity and suppressed 
breast cancer lung metastasis in vitro and in vivo[208]. 

The HDACI Vorinostat sensitized mesenchymal-like 
triple-negative breast cancer cell lines to hormone therapy 
by reactivating ERα[209] and PI3K/Akt/mTOR signaling 
sensitivity[210], corroborating the role of  epigenetic altera-
tions in chemoresistance development in breast tumors. 
Furthermore, the HDACI abexinostat induced cancer-like 
stem cells differentiation in 16 breast cancer cell lines[211]. 
Because of  these interesting observations, the HDA-
CIs belinostat, panobinostat, and vorinostat, previously 
used only in blood cancers, have entered phase Ⅰ and 
Ⅱ clinical trials in solid tumors, such as lung, prostate, 
gastrointestinal, ovarian and breast cancer, where they 
are showing encouraging results (for review see[212]). Vari-
ous DNMTI are also showing encouraging responses in 
metastatic and chemoresistant breast cancers in mono-
therapy and in combination therapies in phase Ⅰ and Ⅱ 
trials[213-217]. 

CONCLUSION
Targeted therapies are associated with reduced adverse 
effects and better outcome. Tumor microenvironment 
cells such as cancer-associated fibroblasts and tumor-as-
sociated macrophages undergo aberrant genetic and epi-
genetic changes that trigger the overexpression of  signal-
ing molecules promoting neoplasia and neoplastic tissue 
survival. Many therapeutic targets have emerged. They 
include Notch, CDKs, mTOR, Wnt, and Shh, whose in-
hibitors are showing promising results in ongoing clinical 
trials, both in monotherapy and in combination therapy. 
Similarly, epigenetic drugs are also showing encourag-
ing results in breast cancer, particularly in advanced and 
chemoresistant cases. New technological advances will 
enable the identification of  precise alterations affecting 
the interactome, transcriptome, and the epigenome, lead-
ing to the design of  more specific tailored therapies. Such 
therapeutic approach may also be beneficial in the treat-
ment of  chemoresistant breast cancers.
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