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Abstract
Monocytes are effector immune cells but a precise anal-
ysis of their role in immune response has been preclud-
ed by their heterogeneity. Indeed, human monocytes 
are composed of at least three different subsets with 
different phenotypic characteristics and functional prop-
erties, the so-called classical, intermediate and non-
classical monocytes. A review of the literature shows 
that these monocyte subsets are differently affected 
during viral, bacterial, parasitic and fungal infections. 
The expansion of the CD16+ compartment (intermedi-
ate and non-classical monocytes) is typically observed 
in the majority of infectious diseases and the increased 
proportion of CD16+ monocytes is likely related to 
their activation through their direct interaction with the 
pathogen or the inflammatory context. In contrast, the 
number of non-classical and intermediate monocytes 
is decreased in Q fever endocarditis, suggesting that 
complex mechanisms govern the equilibrium among 
monocyte subsets. The measurement of monocyte sub-
sets would be useful in better understanding of the role 
of monocyte activation in the pathophysiology of infec-
tious diseases.
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Core tip: In this review of the literature we show that 
monocyte subsets are differently affected during viral, 
bacterial, parasitic and fungal infections. We observe 
that the CD16+ compartment (intermediate and non-
classical monocytes) is typically increased in the major-
ity of infectious diseases. The measurement of mono-
cyte subsets would be useful in better understanding of 
the role of monocyte activation in the pathophysiology 
of infectious diseases.
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INTRODUCTION
Human monocytes arise from bone marrow progenitors 
with myeloid-restricted differentiation potential and then 
circulate in the blood for a few days before migrating into 
tissues[1]. Monocytes differentiate into macrophages and 
dendritic cells (DCs) during inflammation and less effi-
ciently in the steady state[2]. 

Monocytes play a pivotal role in the immune response 
as effector cells. These cells are equipped with pattern 
recognition receptors (PRRs) and phagocytic receptors 
necessary for the ingestion and elimination of  microbes 
and damaged cells[3,4]. They express adhesion molecules 
and chemokine receptors, which are required to migrate 
toward inflamed or infected tissues[5]. Monocytes also ini-
tiate the adaptive immune response through their ability 
to produce cytokines and to differentiate into DCs, the 
major antigen-presenting cells (APCs)[6]. Finally, mono-
cytes play critical roles in homeostasis and tissue repair[7]. 
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A fundamental property of  monocytes consists of  their 
high plasticity[8]. They may adopt a biphasic response to a 
unique signal, first releasing inflammatory cytokines such 
as interleukin (IL)-6 and IL-1β[9] and then releasing im-
munoregulatory cytokines such as IL-10 and transform-
ing growth factor (TGF)-β, thus an avoiding excessive 
inflammatory response[10]. We recently demonstrated that 
the gene expression program of  human monocytes is 
determined by the time scale of  the stimulation: although 
macrophage polarization genes are expressed in early 
stimulated monocytes, this expression is lost when the 
stimulation is sustained[11].

Another difficulty in analyzing the precise role of  
monocytes in the immune response is related to their 
heterogeneity, as they are composed of  at least three dif-
ferent subsets with different phenotypic characteristics 
and functional properties. The aim of  this review is to 
summarize what is known regarding the functions of  
monocyte subsets and to describe the evolution of  these 
monocyte subsets during infectious diseases. 

DEFINITION OF MONOCYTE SUBSETS
Human monocytes were initially defined as an homoge-
neous population on the basis of  morphology, cytochem-
istry (monocyte-specific esterase) and flow cytometry 
measurements, such as light scattering and the expression 
of  CD14, the receptor of  bacterial lipopolysaccharides 
(LPS)[12]. Multi-color flow cytometry using antibodies 
against CD14 and CD16, the low affinity receptor for 
IgG, has revealed their heterogeneity, consisting of  three 
subsets[12,13]. The “classical monocytes” that represent 
approximately 90% of  circulating monocytes highly ex-
press CD14 but not CD16 (CD14++CD16- cells). Other 
circulating monocytes express CD16: “non-classical 

monocytes” representing approximately 5% of  circulat-
ing monocytes, express low levels of  CD14 but highly 
express CD16 (CD14+CD16+cells) and “intermediate 
monocytes”, which highly express CD14 with the con-
comitant expression of  CD16 (CD14++CD16+ cells)[14] 
(Figure 1). However, the notion of  intermediate mono-
cytes is still debated. For Ziegler-Heitbrock and Hofer, 
they are only a transition from[14], conversely, for Hijdra 
et al[15], they consist of  a true population of  monocytes, 
as revealed by the expression of  chemokine and Tumor 
Necrosis Factor (TNF) receptors. Because only the level 
of  CD14 expression allows the distinction between non-
classical monocytes and intermediate monocytes and 
many papers do not explicitly make this distinction, we 
propose referring to them collectively as CD16+ mono-
cytes[1] and precisely defining the type of  monocyte sub-
set when it is documented. 

PHENOTYPIC AND FUNCTIONAL 
CHARACTERISTICS OF MONOCYTE 
SUBSETS 
The phenotypic properties of  CD16- (classical) and 
CD16+ (intermediate and non-classical) human mono-
cytes are summarized in Table 1. CD16+ monocytes ex-
press lower levels of  CD64 than CD16- monocytes but 
highly express HLA-DR, CD86, and CD49d compared 
with CD16- monocytes[16,17], demonstrating an activated 
phenotype. The expression of  PRRs and chemokine 
receptors varies according to the monocyte subset. The 
intermediate monocytes express higher levels of  Toll-
like receptor (TLR)-2 and TLR4 than classical and non-
classical monocytes[17,18]. The non-classical monocytes 
do not express CCR2, the membrane receptor of  the 
chemokine CCL2, making them likely unable to migrate 
in response to CCL2. In contrast, classical and intermedi-
ate monocytes express CCR2 and migrate in response 
to CCL2[19,20]. Intermediate monocytes, but not classical 
and non-classical monocytes, express CCR5[19-21]. The re-
sponses to classical agonists of  monocytes vary according 
to the monocyte subset. For instance Lipopolysaccharide 
(LPS) stimulation of  classical monocytes, but not inter-
mediate monocytes, decreases the membrane expression 
of  CD163; hence, the majority of  soluble CD163 found 
in plasma originates from classical monocytes[22,23].

The functional properties of  monocyte subsets are 
also different (Table 2). The phagocytosis of  Staphylo-
coccus aureus and Escherichia coli is lower in non-classical 
monocytes than in intermediate monocytes and classical 
monocytes, a property likely related to the expression 
of  CD14[18]. The non-classical monocytes produce less 
reactive oxygen species (ROS) in response to ligands of  
TLR4, TLR7 or TLR8 than the classical monocytes[24,25]. 
In addition non-classical and intermediate monocytes 
produce lower levels of  cytokines, including granulocyte 
colony-stimulating factor, IL-6, IL-10 and CCL2 in re-
sponse to LPS stimulation than classical monocytes[20]. 
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The monocyte subsets likely play different roles as APCs. 
CD16+ monocytes express higher levels of  HLA-DR 
than classical monocytes[12,26], suggesting that they are 
potent APCs. It has been shown that CD16+ monocytes 
are more efficient in presenting tetanus toxoid to CD4+ 
T cells than classical monocytes[27]. Taken together, these 
results suggest that CD16+ monocytes are activated un-
der homeostatic conditions but they are less responsive 
to monocyte stimuli than CD16- monocytes.

Interestingly, monocytes are known to act as precur-
sors of  macrophages or DCs. It has been shown that the 
ability of  monocyte subsets to differentiate into DCs is 
different according the monocyte subset. Indeed, non-
classical monocytes are more prone to becominge DCs 
with a higher capacity to induce T cell proliferation and 
IL-4 production by CD4+ T cells[28]. In addition, the 
functional properties of  monocyte-derived macrophages 
are dependent on the type of  monocyte subset. It has 
been recently shown that the macrophages derived from 
CD16+ monocytes are more phagocytic than those de-
rived from classical monocytes; they also exhibit a spe-
cific gene expression program[29].  

The investigation of  monocyte functions has ben-
efited from the use of  mouse models, though it remains 
unclear whether monocyte subsets are similar in humans 
and mice. Murine monocytes can be separated into at 
least two subpopulations, Gr1+ and Gr1- monocytes. 
The major subset of  murine monocytes is composed 
of  “inflammatory” Gr1+ monocytes that produce high 
levels of  TNF, ROS and nitric oxide (NO) but low lev-
els of  IL-10 upon in vivo infection with bacteria such as 
Listeria monocytogenes or parasites such as Toxoplasma 
gondii[30]. Gr1+ monocytes also produce type I interfer-
ons (IFNs) in response to viral ligands[31]. Murine Gr1+ 
monocytes resemble human classical monocytes based 
on surface marker expression, gene expression and a 
reduced ability to produce inflammatory cytokines[32,33]. 
In contrast, the minor subset of  murine monocytes does 
not express Gr1. These Gr1- monocytes patrol the blood 
vasculature, differentiate into macrophages after extrava-

sation into tissues and are likely associated with tissue re-
pair[34,35]. Murine Gr1- monocytes, which resemble human 
CD16+ monocytes, are described as the main producers 
of  inflammatory cytokines such as TNF and IL-1β in re-
sponse to LPS[26]. 

The existence of  different subsets of  monocytes 
likely has pathophysiological consequences. An expansion 
of  the CD16+ monocyte subsets inflammatory diseases 
including hemophagocytic lymphohistiocytosis[36], asth-
ma[37], sarcoidosis[38], peridontitis[39], atopic eczema[40], pan-
creatitis[41] and alveolar proteinosis[42] has been observed. 
Despite immunosuppressive therapy, the CD16+ mono-
cyte compartment is also increased in kidney transplant 
patients, suggesting that this subset may be involved in 
the persistent, allograft-induced inflammatory reaction[43]. 
In patients with colorectal cancer, the percentage of  in-
termediate monocytes is mainly increased at the onset of  
the disease[44], and this subset is also increased in adult 
survivors of  childhood acute lymphoblastic leukemia[13].  

MONOCYTE SUBSETS AND VIRAL 
INFECTIONS 
Human immunodeficiency virus 
Human immunodeficiency virus (HIV) is a lentivirus that 
efficiently infects CD4+ T cells, leading to their apopto-
sis and a decreased number of  circulating CD4+ T cells. 
The antiretroviral therapies to date restore the number 
of  circulating CD4+ T cells but are unable to completely 
eliminate viral infection, as demonstrated by HIV per-
sistence in tissues. Both in vitro and in vivo studies have 
clearly demonstrated that blood monocytes and tissue 
macrophages can be infected by HIV[45,46]. During the 
early phase of  HIV infection, the proportion of  CD16+ 
monocytes is increased[47], and this increase in CD16+ 
monocytes in treatment-naïve HIV-infected patients 
is correlated with high viral loads and low CD4+ cell 
counts[48]. Convergent results have been obtained with the 
infection of  non-human primates by simian immunodefi-
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Table 1  Major marker of monocyte subsets

Markers Classical 
monocytes

Intermediate
monocytes

Nonclassical-
monocytes

Ref.

CD14 ++ ++ + [1]
CD16 - + + [1]
CD86 + ++ ++ [17]
CD64 ++ + + [17]
HLA-AB + ++ + [21]
HLA-DR + ++ + [21,25]
CCR1 ++ + - [21]
CCR2 ++ - - [15,20,21]
CCR5 + ++ - [15,20,21]
CXCR1 ++ - - [21]
CXCR2 ++ - - [15,21]
CX3CR1 ++ + - [15,20]
CD62L ++ - - [20,21]

++: High; +: Median; -: Low.

Table 2  Functional characteristics of monocyte subsets

Functions Classical
monocytes

Intermediate
monocytes

Nonclassical-
monocytes

Ref.

Phagocytosis ++ ++ + [25]
MHC Ⅱ processing + ++ + [25]
Antigen presentation + ++ + [25]
CD4+ T cell 
proliferation

+ ++ + [25]

Transendothelial 
migration

- - ++ [15]

Patrolling endothelium - - ++ [24]
Virus sensing - - ++ [24]
TNF production + - ++ [24]
IL-1β production + ++ ++ [24]
CCL2 production ++ - - [24]
IL-10 production ++ - - [24]

++: High; +: Median; -: Low. IL: Interleukin.
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results suggest that HIV infection leads to the modulation 
of  monocyte subsets.

Dengue virus
Dengue fever, a public health problem in tropical coun-
tries, is due to the dengue virus (DENV), a flavivirus that 
is transmitted to humans via the bite of  an Aedes mos-
quito[59,60]. Monocytes are implicated in protection against 
DENV infection[61,62]. Indeed, monocytes infected in vitro 
with DENV produced IFN-α which is protective against 
viruses[63]. This is confirmed by the increase in DENV 
titers in mice deficient in IFN receptors[64]. Nevertheless, 
the role of  monocytes is likely more complex. Monocytes 
are involved in dengue pathogenesis through virus propa-
gation[65], and DENV-specific antibodies promote the in-
fection of  monocytes and thus increase the viral burden 
of  individual monocytes[66].

It has been demonstrated that the number of  CD16+ 
monocytes is twofold higher in dengue patients than in 
healthy controls[67], but the relative role of  monocyte 
subsets in dengue infection remain unclear. In vitro classi-
cal monocytes and CD16+ monocytes are susceptible to 
DENV and produce molecules associated with dengue 
protection, such as IFN-α, CXCL10 and TNF-related 
apoptosis-inducing ligand (TRAIL), a cytokine known to 
induce cell apoptosis[68]. Taken together, these results sug-
gest that classical monocytes and CD16+ monocytes may 
potentially contribute to anti-dengue responses, however 
only CD16+ monocytes appear to be affected by DENV 
infection in vivo.

Hepatitis C virus
Hepatitis C is due to an RNA virus (HCV) that affects 
160 million individuals worldwide and is responsible for 
chronic hepatitis and hepatocellular carcinoma[69,70]. It 
has been recently demonstrated that HCV infects CD16+ 
monocytes but not classical monocytes in individuals 
infected with HCV. This specific tropism is related to 
the expression of  CD81, the receptor considered to be 
necessary for HCV entry into target cells. Hence, CD81 
is highly expressed on CD16+ monocytes but not on clas-
sical monocytes[71]. These results also suggest that the ex-
pression of  CD81 by monocyte subsets is associated with 
the expression of  CD16. Furthermore, we can suppose 
that the monocyte subsets that express CD16 may serve 
as HCV reservoirs. In hemodialyzed patients with chron-
ic hepatitis, the CD16+ monocyte subset is increased 
threefold compared with healthy donors[72], suggesting 
an impact of  the viral infection on monocyte distribu-
tion. The frequency of  CD16+ monocytes is decreased 
and negatively correlated with viral load in chronic HCV 
infection. Furthermore the expression of  PD-L1 allows 
the discrimination between chronic HCV infection and 
spontaneous HCV resolvers[73]. 

Cytomegalovirus
Cytomegalovirus (CMV) is a herpes virus of  medical im-
portance in immune-compromised individuals. CMV has 

ciency virus (SIV), with SIV infecting both CD4+ T cells 
and monocytes. Following the first description of  CD16+ 
monocytes in cynomolgus monkeys (Macaca fascicularis) 
nearly two decades ago, an increase in CD16+ monocytes 
ten days after SIV infection has been observed. Note that 
increased levels of  CD16+ monocytes have also been re-
ported in rhesus monkeys (Macaca mulatta) with lentiviral 
encephalitis[49]. The treatment of  chronically infected ma-
caques with high doses of  corticosteroids decreased the 
proportion of  CD16+ monocytes (intermediate mono-
cytes), whereas the other subsets of  monocytes were 
found to be unresponsive to corticosteroids[50]. Highly ac-
tive antiretroviral therapy (HAART) rescues the amount 
of  intermediate monocytes[51]. The viral efficiency of  
HAART is also associated with insulin resistance, and it 
has been reported that the abundance of  classical mono-
cytes predicts the risk of  insulin resistance and metabolic 
syndrome during the chronic phase of  HIV infection[51].

HIV infection also affects the phenotype of  monocyte 
subsets. The membrane expression of  CD163, a recep-
tor involved in the resolution of  inflammation and M2 
polarization[52] by classical and intermediate monocytes 
is increased in HIV-1 infection, but HIV-infection does 
not induce the membrane expression of  CD163 in non-
classical monocytes[53]. Note that plasma CD163 is not 
significantly altered by HIV-1 infection, demonstrating 
that CD163 shedding is not associated with the alteration 
of  the membrane expression of  CD163[53]. The exposure 
of  whole blood to HIV enhances the expression of  tis-
sue factor (TF) on non-classical monocytes, whereas LPS-
activated TLR-4 increases TF expression on all monocyte 
subsets[47]. The acquisition of  such activated phenotypes 
by non-classical monocytes is reminiscent of  the observa-
tion in acute coronary syndrome and suggests a potential 
role of  non-classical monocytes in the cardiovascular risk 
of  HIV infection. A recent study reported a decrease in 
the proportion of  non-classical monocytes expressing TF 
in patients treated with rosuvastatin though anti-retroviral 
therapy has no effect on monocyte activation[54]. The func-
tional alteration of  monocyte subsets is associated with 
that of  the programmed death-1 (PD-1) pathway known 
to limit the functions of  virus-specific T cells during 
chronic infections such as HIV infection[55]. The expres-
sion of  PD-1 by monocytes is increased in viremic sub-
jects compared with healthy subjects, but the expression 
of  PD-1 by CD16+ monocytes is twofold higher than that 
of  classical monocytes. The relationship between HIV 
infection and PD-1 expression likely involves an indirect 
mechanism in which inflammatory cytokines play a major 
role[56]. First, the expression of  PD-1 by monocyte subsets 
is not related to viral load in patients with HIV infection. 
In vitro, viral material such as HIV single-stranded RNA 
(RNA40) fails to increase PD-1 expression by monocytes. 
Second, inflammatory cytokines such as TNF, IL-1β and 
IL-6 increase the expression of  PD-1 by monocytes in 
a dose-dependent manner, and it has been largely dem-
onstrated that the circulating levels of  these cytokines 
are increased in HIV infection[57,58]. Taken together, these 
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a tropism for immune and non-immune cells in vivo and 
in vitro, yet peripheral blood leukocytes are involved in 
viremia and latency, regardless of  the immune status of  
the patient[74]. Monocytes are likely latent reservoirs and 
support viral dissemination by benefiting from the matu-
ration of  monocytes into permissive macrophages and 
dendritic cells. CMV encodes inflammatory viral chemo-
kines required for viral dissemination. A recent study pro-
posed that patrolling monocytes acquire the virus from 
the initial site of  infection and deliver to the spleen and 
salivary glands where CMV can persist. Analysis of  the 
recruitment of  patrolling monocytes reveals two phases: 
the first phase is necessary for the activation of  natural 
killer (NK) response; and the second phase, involving 
viral chemokine and CX3CR1, the marker of  patrolling 
monocytes, is required for the amplification of  monocyte 
recruitment. Although this study revealed a previously 
undescribed role for this minority monocyte subset as a 
latent reservoir, it is not clear whether this finding can be 
extrapolated to human disease[75]. 

MONOCYTE SUBSETS AND BACTERIAL 
INFECTIONS
The study of  monocyte subsets in bacterial infections is 
in its infancy. In patients with severe bacterial sepsis, the 
number of  CD16+ monocytes is dramatically increased[76]. 
Another report shows that the proportion of  intermedi-
ate and non-classical monocytes increases during sepsis. 
CD16+ monocytes show a reduced ability to engulf  a 
bacterium such as E. coli, express low levels of  CD86 
and HLA-DR, and poorly presents antigen to T cells[77]. 
The hemolytic uremic syndrome observed in children is 
due to bacterial toxins. The acute period of  this disease 
is characterized by an increased proportion of  CD16+ 
monocytes that express higher levels of  CD16 and lower 
levels of  CD14 compared with those of  healthy age-
matched children. In addition, HLA-DR expression by 
classical monocytes is decreased in this patients, and this 
lower expression of  HLA-DR is related to the severity of  
the disease[78]. In patients with tuberculosis, the percent-
age and absolute numbers of  CD16+ monocytes are in-
creased[79]; nevertheless, some authors did not find chang-
es in the proportion of  CD16+ and CD16- monocytes 
during tuberculosis[80]. When expanded, these monocytes 
exhibit decreased expression of  markers associated with 
maturation and differentiation and also functional altera-
tions. These alteration include a decrease in phagocytosis 
potential, a tendency toward cell death and an increased 
production of  TNF after stimulation with live M. tubercu-
losis[79]. In addition, CD16+ monocytes differentiate into 
cells that poorly express CD1a and CD209 (DC-SIN) 
and with a low capacity for presenting mycobacterial an-
tigens. It is likely that this differentiated cell populations 
contributes to the impairment of  DC maturation during 
tuberculosis[81]. The expansion of  these monocytes is 
amplified in patients with HIV co-infection[82]. Q fever is 
an acute infectious disease caused by Coxiella burnetii, an 

obligate intracellular bacterium that targets monocytes 
and macrophages[83], in patients with valvular damage and 
in immunocompromised patients, the primo-infection 
may lead to a chronic disease that essentially manifests 
as endocarditis[83]. We recently found that the distribu-
tion of  monocyte subsets is altered in patients with Q 
fever endocarditis, with a decreased number of  CD16+ 

monocytes (non-classical and intermediate monocytes) 
(submitted manuscript), which to our knowledge, is the 
first demonstration that minor monocyte subsets are de-
creased in an infectious disease.

MONOCYTE SUBSETS AND PARASITIC 
INFECTIONS
Only a few papers report the modulation of  monocyte 
subsets in parasitic infections. It has been demonstrated 
that, the proportion of  CD16+ monocytes is increased in 
pregnant women infected with Plasmodium falciparum, the 
agent of  malaria. These CD16+ monocytes express high-
er levels of  CCR5 than classical monocytes[84]. CD16+ 
monocytes may play a major in the pathogenesis of  ma-
ternal malaria because placental plasma concentrations of  
chemokines such as CCL3 and IL-8 are increased and are 
associated with placental monocyte infiltration[84,85]. Nev-
ertheless, classical monocytes appear to be critical for the 
control of  Toxoplasma gondii infection in mice[86] and Leish-
mania brasiliensis in humans via the generation of  reactive 
oxygen species[87].  

MONOCYTE SUBSETS AND FUNGAL 
INFECTIONS
Aspergillus fumigatus
Aspergillus fumigatus (A. fumigatus) is an environmental fun-
gus that causes life-threatening infections in neutropenic 
patients. Inhaled A. fumigatus spores (conidia) germinate in 
the lung and form hyphae that invade blood vessels and 
disseminate to other tissues[88]. It has been clearly dem-
onstrated that monocyte subsets contribute differently to 
the defense against A. fumigatus infection. Indeed, classical 
monocytes are efficient at restricting conidial germination 
in vitro whereas CD16+ monocytes fail to suppress the ger-
mination of  conidia. The efficiency of  monocyte subsets 
in controlling A. fumigatus germination is likely dependent 
on inflammatory cytokines. Although classical monocytes 
do not secrete TNF following infection, CD16+ mono-
cytes produce high levels of  TNF and IL-1β[89]. These re-
sults are rather surprising because CD16+ monocytes are 
thought to be more mature and share features with tissue 
macrophages and, thus, might be expected to have stron-
ger antimicrobial properties[26]. These data suggest that 
CD16+ monocytes are the subset that is the most efficient 
in the control of A. fumigatus infection. 

Candida albicans
Candida albicans (C. albicans) is responsible of  the major-
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ity of  fungal infections. In 30% of  healthy subjects, C. 
albicans is present as commensal yeast. However when 
host defense mechanisms are impaired, C. albicans can 
cause mucocutaneous infections, or disseminate into the 
bloodstream, thereby infecting multiple organs[90]. Mono-
cytes are associated with systemic candidosis. While the 
uptake and killing of  C. albicans by classical monocytes 
and CD16+ monocytes are similar, classical monocytes 
stimulated with heat-killed yeasts produce higher levels 
of  IL-1β and prostaglandin E2 (PGE2) than CD16+ 
monocytes[91]. It has also been demonstrated that the 
production of  IL-1β by classical monocytes favors the 
production of  IL-17A by CD4+ T lymphocytes and that 
PGE2 regulates inflammation[92-94]. In addition, the higher 
production of  IL-1β and PGE2 by classical monocytes 
is associated with increased membrane expression of  
the mannose receptor (MR)[92,95], suggesting that classical 
monocytes instead play an immunoregulatory role. These 
results suggest that only classical monocytes are able to 
initiate antifungal Th17 responses in human CD4+ T 
lymphocytes.

CONCLUSION
Circulating monocytes has been classically considered a 
homogeneous cell population, but in recent years it has 
become clear that they are composed of  different sub-
sets. A review of  the literature shows that monocyte sub-
sets are differently affected in infectious diseases caused 
by varied pathogens including virus, bacteria, parasites 
and fungi. In the majority of  cases, an expansion of  
the CD16+ compartment is observed, and the increase 
in CD16+ monocytes is likely related to their activation 
through their direct interaction with the pathogen or 
through cytokines. More surprisingly, it has also been 
found that the relative number of  non-classical and inter-
mediate monocytes is decreased in Q fever endocarditis, 
suggesting that complex mechanisms govern the equilib-
rium between monocyte subsets. The measurement of  
monocyte subsets would be useful in better understand-
ing of  the role of  monocyte activation in the pathophysi-
ology of  infectious diseases.
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