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Abstract
Colorectal cancer (CRC) is one of the most common 
malignancies with high prevalence and low 5-year 
survival. CRC is a heterogeneous disease with a 
complex, genetic and biochemical background. It 
is now generally accepted that a few important 
intracellular signaling pathways, including Wnt/β-catenin 
signaling, Ras signaling, and p53 signaling are 
frequently dysregulated in CRC. Patients with mutant 
p53  gene are often resistant to current therapies, 
conferring poor prognosis. Tumor suppressor p53 
protein is a transcription factor inducing cell cycle 
arrest, senescence, and apoptosis under cellular stress. 
Emerging evidence from laboratories and clinical 
trials shows that some small molecule inhibitors exert 
anti-cancer effect via  reactivation and restoration of 
p53 function. In this review, we summarize the p53 
function and characterize its mutations in CRC. The 
involvement of p53 mutations in pathogenesis of CRC 
and their clinical impacts will be highlighted. Moreover, 
we also describe the current achievements of using p53 
modulators to reactivate this pathway in CRC, which 
may have great potential as novel anti-cancer therapy.
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Core tip: Dysregulation of p53 tumor suppressor gene 
is one of the most frequent events contributing to the 
transformation of colorectal cancer (CRC), as well as 
the aggressive and metastatic features of CRC. Mutant 
p53 reactivator, PRIMA-1MET has been tested in Phase 
Ⅰ/Ⅱ clinical trials and shows encouraging benefits. 
In this review, we systemically and comprehensively 
summarize the current understanding of p53 mutations 
in the pathogenesis of CRC and current progress in 
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reactivation of p53 as a novel therapeutic strategy. 
We hope this review will promote more investigations 
of reactivation of p53 as a viable treatment option of 
patients with CRC. 
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INTRODUCTION
Colorectal cancer (CRC) is the third most common 
cancer in men and the second most common cancer in 
women worldwide (www.wcrf.org). Although diagnosis 
and therapy have advanced significantly in the last ten 
years, its prevalence is rising, and the 5-year survival rate 
is still poor. In 2012, it accounts for nearly 14.1 million 
cases and 694000 deaths around the world (www.wcrf.
org; www.who.int). CRC becomes a serious problem for 
healthcare in Asian countries too, such as China, Japan, 
South Korea and Singapore, with a 2-4 fold increase in 
the incidence during last decades[1]. So more efficacious 
approaches are urgently needed for CRC patients.

p53 was first discovered and classified as a cellular 
SV40 large T antigen-binding protein[2,3]. This finding 
marks the beginning of  a brand-new period in cancer 
research that is expected to have a major impact in the 
clinic. p53 is a stress-inducible transcription factor, which 
regulates a large number of  diverse downstream genes to 
exert regulative function in multiple signaling processes. 
p53 mutation occurs in approximately 40%-50% of  
sporadic CRC[4]. The status of  p53 mutation is closely 
related to the progression and outcome of  sporadic 
CRC. In recent years, some small molecule compounds 
have been intensively investigated for reactivation and 
restoration of  p53 via different mechanisms. These 
promising compounds are being tested in clinical trials 
and may be approved for the treatment of  CRC patients 
in near future.

P53 FUNCTION: INDUCING CELL CYCLE 
ARREST AND APOPTOSIS
The human TP53 gene is located on chromosome 17p, 
and consists of  11 exons and 10 introns[5]. Wild type p53 
protein consists of  393 amino acid residues, and several 
functional domains. In the order from N-terminus to 
C-terminus, they are: transactivation domain (TAD), 
proline-rich domain, tetramerization domain and basic 
domain (Figure 1A). Once activated, p53 upregulates 
its negative regulator, MDM2 (murine/human double 
minute 2). MDM2 functions as an E3 ubiquitin-ligase, 

to regulate the ubiquitination of  p53 which leads to 
its degradation[6]. This forms a negative feedback loop 
that maintains low levels of  p53 in normal cells[7]. 
Depending on specific context, p53 can induce cell cycle 
arrest, or apoptosis, or senescence, in the presence of  
cellular stress, such as DNA damage, hypoxia, oncogene 
activation, etc. (Figure 1B). 

Activation of  p53 can trigger both the mitochondrial 
(intrinsic) and the death-receptor-induced (extrinsic) 
apoptotic pathways[8]. p53 induces the expression of  pro-
apoptotic Bcl-2 (B-cell lymphoma-2) family proteins, 
mainly Bax, Noxa and PUMA, but downregulates the 
pro-survival Bcl-2, leading to permeabilization of  outer 
mitochondrial membrane. Then cytochrome c releases 
from the mitochondria binds to Apaf-1, and induces the 
activation of  the initiator caspase-9, eventually resulting in 
the activation of  executioner caspase-3, -6 and -7[9]. On the 
other hand, activated p53 also upregulates the expression 
of  some DRs (death receptors), such as Fas (CD95/
APO-1), DR5 (TRAIL-R2), and PIDD (p53-induced 
protein with death domain). Together with caspase-8, they 
form the death-inducing signaling complex, subsequently 
activating caspase-3 and inducing apoptosis (Figure 1B). 
The progression of  cell cycle is tightly controlled by 
cyclins and cyclin-dependent kinases (CDK). p21(WAF1) 
is one member of  CDK inhibitor family, which hinder 
cell cycle transition from G1 to S phase. p21(WAF1) 
is a well-characterized p53-downstream gene and its 
promoter contains consensus p53-binding sequences. 
It has been shown that p21(WAF1) is one of  the major 
mediator of  p53-induced growth arrest. In response to 
DNA damage, p53 induces not only cell cycle G1 phase 
arrest, but also G2/M checkpoint arrest. Repression of  
CDC2, the CDK necessary for initiation of  mitosis, by 
p53 plays an important role in G2/M arrest. Some other 
p53 target genes, for example, GADD45, p21(WAF1), 
retinoblastoma protein (Rb), and 14-3-3σ, also cRRIMA-
1MET contribute to G2/M arrest. p21(WAF1) and Rb are 
involved in both G1 to S phase arrest and G2/M arrest 
induced by p53 (Figure 1B). 

Cellular senescence is a specific form of  cell cycle arrest, 
which is prolonged and irreversible[10]. Morphologically, 
senescence cells significantly increase in size and have 
prominent nucleoli, as well as abundant cytoplasmic 
vacuoles[11]. Cellular senescence is an important mechanism 
for preventing the development of  potentially cancerous 
cells in response to stress-induced DNA damage[12]. 
Various stress stimuli including DNA-damage response, 
dysfunctional telomeres, oncogenes, oxidative stress, usually 
trigger one of  the two pivotal routines, either the p53-
p21(WAF1) or the p16 (CDKN2A)-Rb pathways to induce 
senescence[11,13]. In addition to p21(WAF1)[14], genes have 
been reported as important in p53-induced senescence 
include tumor suppressor promyelocytic leukemia 
(PML)[15,16], plasminogen activator inhibitor-1[17], and deleted 
in esophageal cancer 1 (DEC1)[18] (Figure 1B). 
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REGULATORS OF P53 ACTIVITY AND 
THEIR IMPLICATIONS IN CRC
Activating transcription factor 3 
Activating transcription factor 3 (ATF3) is one of  the 
p53 target genes and involved in the complicated process 
of  cellular stress response[19,20]. In addition, ATF3 also 
acts as a co-transcripition factor for p53 achieving ma
ximal induction of  DR5 expression upon DNA damage 
in CRC[21]. DR5 is a trans-membrane TNF (tumor 
necrosis factor) receptor containing a death domain, 
which binds to the ligand TRAIL (tumor necrosis factor-
related apoptosis-inducing ligand), and triggers cell death 
by activating the extrinsic apoptotic pathway[22]. Ectopic 
expression of  ATF3 suppresses colon tumor growth 
and metastasisin mouse xenografts[23]. Post-translational 
modification of  ATF3 by SUMO (small ubiquitin-
related modifier) plays a negative role in the regulation 
of  p53 activity[24]. ATF3 was also found to be bound 
to mutant p53, inactiving its oncogenic potential[25]. 
Of  note, SUMO-1, a member of  the SUMO protein 
family, involves a variety of  biologically distinct functions 

through SUMO attachment of  target proteins[26]. Over-
expression of  SUMO-1 causes the accumulation of  
sumoylated p53 proteins in colon cancer cells, which 
leads to more frequent metastasis[27]. 

MicroRNAs
MicroRNA (miRs) are small non-coding RNA molecules 
consisting of  19-25 nucleotides, with functions in 
transcriptional and post-transcriptional regulation of  
gene expression[28]. miRs are believed to be important 
factors for cell proliferation, apoptosis, senescence and 
metabolism, which all play crucial role in the carcinogenic 
process[29]. For example, the high expression of  miR-
125b which directly targets the 3’UTR of  TP53, re
pressed the endogenous level of  p53 proteins, thereby 
promoting tumor growth and invasion. So, miR-125 acts 
as oncogene and is associated with the poor prognosis 
in CRC patients[30]. miR-125b had also been shown to 
repress both cell cycle-arrest and apoptotic regulators in 
the p53 network, implicating its role in oncogenesis[31,32] 
(Figure 2). Conversely, the miR-34 family (miR-34a/
b/c) are transcriptional targets of  p53[33], and directly 
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Figure 1  Structure and function of p53 tumor suppressor. A: Schematic of p53 protein structure. The function domains and corresponding amino acid regions are 
indicated. N-terminus transcription-activation domain (TAD): Residues 1-63; AD1: Residues 1-42 for G1 arrest and apoptotic activity; AD2: Residues 43-63 important 
for senescence-activity; PD: Residues 64-92 important for apoptotic activity; DBD: Residues 102-292 responsible for binding the p53 co-repressors; NLSD: Residues 
316-324, 370-376, 380-386; OD: Residues 325-356; NESD: Residues 340-353; B: In normal cells, p53 activates a plethora of target genes involved in diverse 
biological processes in response to cellular stress. Ub: Ubiquitin; PD: Poly-proline domain; DBD: DNA binding core domain; OD: Homo-oligomerization domain; 
NESD: Nuclear export signaling domain; NLSD: Nuclear localization signaling domain.
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tumorous pathological process[41]. p53 mutation in CRC 
occurs in 34% of  the proximal colon tumors, and in 
45% of  the distal colorectal tumors[8,42]. Majority of  these 
mutations occur in exon 5 to 8 (DNA binding doman), 
and mainly in some hotspot codons, such as 175, 245, 
248, 273 and 282, comprising of  G to A, C to T transition 
and leading to the substitution of  a single amino acid 
in p53 protein[41,42] (Table 1). Such substitutions most 
commonly cluster in the DNA binding domain, causing 
the disruption of  specific DNA binding and sequential 
transactivation[7,42]. 

Different types of  p53 mutations play a pivotal role 
in determining the biologic behavior of  CRC, such as 
invasive depth, metastatic site and even the prognosis 
of  patients. p53 mutations are associated with lymphatic 
invasion in proximal colon cancer, and show significant 
correlation with both lymphatic and vascular invasion 
in distal CRC[42] (Table 2). CRC patients with mutant 
p53 appear more chemo-resistance and have poorer 
prognosis than those with wild-type p53[43]. In a TP53 
colorectal cancer international collaborative study, it 
was observed that patients with mutant p53 in exon 5 
had worse outcome for proximal colon cancer[42] and 
inactivating mutation of  p53 occurred more frequent in 
advanced stage tumors and were negatively associated 
with survival[44] (Table 2). 

PHARMACOLOGICAL REACTIVATION OF 
P53 AS CANCER THERAPY
Results from a large number of  studies have unequivocally 
evidence demonstrated that mutant p53 not only plays 
a pivotal role in the transformation of  CRC, but also 

suppresses a range of  Wnt and epithelial-mesenchymal 
transition (EMT) genes[34-37]. Thus, part of  p53 tumor 
suppressor function is due to its inhibition of  Wnt 
pathway and EMT transition through miR-34 and loss of  
this inhibition could trigger the proliferation and tissue-
invasion of  CRC cells[34,35] (Figure 2).

P53 MUTATION IN CRC
Development of  CRC is a multi-factorial and multi-stage 
process involving the activation of  oncogenes and inactiva
tion of  tumor suppressor genes. Confirmed by numerous 
studies, p53 is a key tumor suppressor gene and is one 
of  the most important elements of  our body’s anticancer 
defense[38]. It is generally known that the progression 
of  CRC follows mutations of  the APC, K-Ras, and p53 
genes[39]. p53 is the most commonly mutated gene in 
human cancers[40]. It is thought that p53 mutations play a 
critical role in the adenoma-carcinoma transition during 

miRs p53

miR-125b p53
miR-34 family p53

p53 protein

Wnt pathway
EMT transition

Cell proliferation Tumor growth Tissue invasive

Figure 2  Schematic representation of miRNAs regulating p53 pathway and subsequent tumorigenesis. 

Table 1  Common, high frequency of p53 missense alterations 
in colorectal cancer

Exon Codon Codon change Nucleotide 
change

Amino acid 
change

5 175 CGC→CAC G→A Arg→His
7 245 GGC→AGC G→A Gly→Ser
7 245 GGC→GAC G→A Gly→Asp
7 248 CGG→TGG C→T Arg→Trp
7 248 CGG→CAG G→A Arg→Gln
8 273 CGT→TGT C→T Arg→Cys
8 273 CGT→CAT G→A Arg→His
8 282 CGG→TGG C→T Arg→Trp

Data selected from UMD TP53 mutation database (http://p53.fr).

Li XL et al . p53  mutation in CRC
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contributes to the aggressiveness and invasiveness of  
CRC. It is not surprising that manipulation of  the p53 
pathway has attracted interest soon after the discovery of  
p53 gene. Although reintroduction of  wild type p53 by 
gene therapy appears a straightforward and logical choice, 
this approached is impeded by the technical challenge of  
efficient gene delivery and safety issues inherent in the 
use of  viral vectors[45]. In recent years, we witness an array 
of  small molecule inhibitors modulating the p53 pathway 
being developed (Figure 3). Some of  these compounds 
have been tested as potential therapeutic agents in CRC. 

Modulation of wild-type p53 activity via inhibiting 
MDM2-p53 interaction
MDM2 protein, the E3 ubiquitin protein ligase, binds 
to the amino-terminal of  p53, and ubiquitylates p53, 
leading to its proteasomal degradiaiton; this inhibits its 
suppressive function in cancer cells[46]. Pharmacological 
inhibitors of  MDM2 have already been extensively 
researched for their anti-cancer activities through 
stabilization of  p53 protein[47-49]. Activation of  p53 

without DNA damage should be a great advantage, 
compared to many traditional chemotherapeutic agents[47].

MIs (MDM2 Inhibitors): In recent years, a number of  
MIs that disrupt the MDM2-p53 interaction have been 
discovered. The spiro oxindole MI-43 is one of  these 
specific MDM2 antagonists that cause p53 accumulation 
and lead to the induction of  target genes, e.g., p21, Puma, 
and Noxa[50]. In colon cancer cells, cell cycle arrest and 
apoptosis were induced by MI-43 in a p53-dependent 
manner [51].  MI-219 is  an improved MDM2-p53 
inhibitor with improved pharmacokinetic profile and 
higher binding affinity to MDM2. MI-219 showed 
potent efficacy as a single agent in inducing apoptosis 
in HCT-116 colon cancer cell line. Furthermore, the 
combination of  MI-219 with chemotherapeutic drug, 
Oxaliplatin, achieved high synergism in p53-mediated 
apoptotic response[52]. 
 
Nutlins: Nutlins are cis-imidazoline analogs, which 
occupy the binding pocket of  MDM2, thus disrupting 

Table 2  Summary of major conclusions on the importance of p53 in colorectal cancer development

Ref. Major conclusions

Taketani et al[21] p53 partners with ATF3 in maximal induction of DR5 upon
DNA damage 

Wei et al[25] ATF3 binds mutant p53 and inhibits its oncogenic function
Nishida et al[30] High expression of miRNA-125b predicts poor survival in CRC. miRNA-125 decreases p53 expression 
Kim et al[34,35] Loss of p53 de-represses Wnt pathway and EMT transition through miRNA-34
López et al[41] p53 mutations occur in 54% of sporadic CRC
Russo et al[42] p53 mutations correlate with the site, biologic behaviour and outcome of CRC
Iacopetta et al[44] p53 mutations that lose transactivational ability are more common in advanced CRC and associated with poor survival

EMT: Epithelial-mesenchymal transition; CRC: Colorectal cancer.

Cell cycle arrest

Senescence

Apoptosis

MI-43
nutlin-3

RITA

PRIMA-1
PRIMA-1MET

NSC1763
72

Maslinic acid
epicatechin gallate

a-lipoic acid
quinacrine

MDM2

Mutant
p53

Wild
type p53

Figure 3  Small molecule compounds pharmacologically reactivating of p53 function. MI43 and Nutlin-3 bound to MDM2 blocking MDM2-p53 interaction. RITA 
bound to p53 interfering MDM2-p53 interaction. α-Lipoic acid increased p53 protein stability and its apoptotic effect. Quinacrine induced the autophagy-associated cell 
death in a p53-dependent manner. NSC17632 activated p53-like activatity dependent on p73. PRIMA-1/PRIMA-1MET restored mutant p53 to exert apoptotic effect. Maslinic 
acid and Epicatechin gallate as plant extraction modulated the expression of p53 and its target genes in p53-dependent apoptotic and cell cycle arrest pathway.
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MDM2-p53 interaction. Nutlins were first discovered 
using biochemical screening strategy by Vassilev and 
colleagues in Roche in 2004[53]. Among them, Nutlin-3 
(R1772) has been widely tested in a variety of  cancers 
in vitro, in mouse xenografts bearing human tumors, as 
well as clinical trials in human subjects[54]. Nutlin-3 was 
observed to act as MDM2 antagonist, stabilize p53 and 
activate p53 target genes in CRC cells expressing wild-
type p53. MDMX, another member of  MDM protein 
family, shares a similar amino acid sequence and structural 
organization with MDM2. Although both MDM2 and 
MDMX negatively regulate p53, the relative abundance 
of  MDM2 and MDMX level influences cancer cells 
response to Nutlin-3. Cancer cells overexpressing 
MDM2 are sensitive to Nutlin-3, in contrast, cancer cells 
overexpressing MDMX are resistant to Nutlin-3 due to 
its inability to block p53-MDMX interaction[55]. Nutlin-
3a, but not the aftermentioned RIAT (reactivation of  p53 
and induction of  tumor cell apoptosis), has been shown 
to specifically downregulate α5 integrin in p53 wild 
type colon cancer[56]. These findings are useful in patient 
selection in a clinical trial aiming to evaluate Nutlin-3 
against CRC. Nutlin may offer clinical benefits for CRC 
bearing high expression MDM2 or α5 integrin. 

Cancer cells often acquire secondary resistance after 
a prolonged exposure of  single agent, so it is clinically 
desirable to treatment the cancer patients with combination 
therapy. Nutlin has been tested in combination with 
other drugs in CRC. Tumor necrosis factor (TNF)-
related apoptosis-inducing ligand (TRAIL) is one 
of  the DNA damage-inducible p53 target gene[57]. 
Notably, TRAIL induces cell death mainly through the 
induction of  extrinsic apoptosis pathway, while Nutlin 
works predominately through inducing the intrinsic 
apoptosis pathway. Combination of  Nutlin-3 and TRAIL 
synergistically enhances cell death in human p53 wild 
type sarcoma HOS cells and colon cancer HCT116 cells 
owing to the simultaneous engagement of  intrinsic and 
extrinsic apoptosis pathways[58]. Furthermore, Nutlin-3 
treatment increases DR5 expression on both mRNA 
and protein levels[58,59]. Controlled, concomitant release 
of  Nutlin-3 and Doxil, the liposomal preparation 
of  doxorubicin, by novel drug engineering, leads to 
synergistic anti-proliferative effect and induction of  cell 
death in CRC cells carrying both wild-type and mutant 
p53[60]. Combination treatment with Nutlin-3 and 
Inauhzin, a SIRT1 (Sirtuin 1) inhibitor in colon and lung 
cancer cell lines, is able to enhances their apoptotic effect 
in a p53-dependent manner[61]. It is also noteworthy that 
Nutlin-3 can mediate the phosphorylation of  p53 at key 
DNA-damage-specific serine residues (Ser15, 20 and 37) 
and initiate the DNA damage signaling pathway which 
resulted in cell cycle arrest in p53-independent manner[62]. 
Currently, Nutlin-3 has already been evaluated in phase I 
clinical trial to treat patients suffering from hematologic 
neoplasms[63]. Taken together, Nutlin-3 may be a helpful 
addition to our armamentarium combating CRC, 
particularly used in conjunction with other drugs. 

RITA: RITA was identified from National Cancer 
Institute library compound Challenge set for its ability 
to inhibit the proliferation of  HCT-116 (p53 wild type) 
much more than its p53 null counterpart[64]. RITA 
has been shown to suppress colon cancer growth in a 
mouse xenofgraft model. Mechanically, this compound 
directly binds to p53 rather than MDM2, and induces 
a conformational change in p53, which interfered with 
the p53-MDM2 interaction, and p53 ubiquitination, 
resulting in p53 accumulation and cellular apoptosis[64,65]. 
The study carried out by Di Marzo et al[66] implicated 
that RITA also reactivated mutant p53 function in 
malignant mesothelioma. Whether RITA is also effective 
in CRC cells harboring mutant p53 would merit further 
investigation.

Activation of p53-like activity via other p53 family 
members, p67 and p73
In addition to p53, the p53 family includes two other 
members, p63 and p73[67]. They encode proteins with 
significant sequence homology and functional similarity 
with p53. A derivative of  the cytotoxic plant alkaloid 
ellipticine, NSC176327 induced potent killing in CRC 
cells regardless of  p53 status. Further experiments 
revealed that NSC176327 treatment increased the 
expression of  p73, p21 and DR5, while knockdown of  
p73 in p53 null cells rendered these cells resistant to this 
drug treatment[68]. The notion that p73 is also a drug 
target in CRC is reinforced by other studies. Ray et al[69] 
reported that MDM2 inhibitors, like Nutlin-3 , could 
also disrupt the MDM2-p73 binding, and induce the 
expression of  apoptotic proteins such as Noxa, PUMA 
and cell cycle arrest protein p21 in CRC cells lacking of  
functional p53[70]. Securinine, a widely used alkaloid, was 
identified to promote p73-dependent apoptosis in p53-
deficent CRC cells[71]. In conclusion, these results shed 
new light on the induction of  p73 as a therapeutic option 
in CRC patients with either mutant p53 or p53 null. 

Reactivation of mutant p53
It has been long recognized that mutant p53 protein not 
only abrogates the tumor suppressor function, but also 
gain novel oncogenic function, which promotes a more 
aggressive, metastatic cancer phenotype. However, it is 
until recently that promising compounds that specifically 
targeting this type of  mutant oncogenic p53 proteins 
have been developed. Aiming to screen compounds 
that specifically targeting mutant p53, Bykov et al[72] 
discovered one compound 2,2-bis(hydroxymethyl)-1-
azabicyclo[2,2,2]octan -3-one, which inhibited the growth 
of  Saos-2-His-273 cells, a Tet-off  mutant p53 cell line. 
This compound was named PRIMA-1 (p53-reactivation 
and induction of  massive apoptosis-1, APR-017)[72]. Late, 
its methylated form, RRIMA-1MET (APR-246) which 
is more efficient, was developed by the same group[73]. 
PRIMA-1 restores the sequence-specific DNA binding 
region via forming adducts with thiols in mutant p53 and 
activating several p53 target genes, promoting apoptosis 
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in human cancer cells with mutant p53[74]. The initial 
consideration was that these two compounds had potent 
effects on p53-mutant cells, compared to cells with wild-
type p53. However, emerging evidence demonstrated 
that unfolded mutant p53 and unfolded wild-type 
p53 could also be refolded by PRIMA-1 and PRIMA-
1MET[74,75]. So PRIMA-1 and PRIMA-1MET may induce 
apoptosis in cancer cells carrying either wild-type p53 or 
mutant p53. Among the class of  small molecules that can 
selectively induce apoptosis in cancer cells with mutant 
p53, PRIMA-1MET is the first drug which has already 
advanced to a phase Ⅰ/Ⅱ clinical trial for hematologic 
malignancies and prostate cancer[76,77]. However, there is 
little investigation about the ability of  PRIMA-1MET to 
induce apoptosis and inhibit tumor growth in different 
CRC cell lines with different p53 status, thus, more 
studies are necessary to intensively explore RRIMA-1MET 
as a novel therapeutic strategy in CRC. 

Natural agents extracted from plants 
Recently, the anticancer function of  agents extracted 
from nature plants is attracting some attention. The 
mechanisms implicated have been uncovered constantly. 

Maslinic acid: Maslinic acid (MA) is a natural triterpene 
from Olea europaea, and possesses potent anticancer 
property aganist CRC cells. Exposure to MA induced 
the expression of  JNK (c-Jun NH2-terminal kinase), 
p53, and increased the mitochondrial apoptotic signaling 
molecules, resulting in cell cycle arrest and apoptosis[78,79]. 
In p53-deficient CRC cells, apoptosis could also be 
induced by MA without requiring the mitochondrial 
pathway[80].

Epicatechin gallate: Experimental and epidemiological 
evidences reveal that dietary polyphenolic plant-derived 
compounds have anti-proliferative and anti-invasive 
activity in cancers of  gastrointestinal tract, lung, skin, 
prostate and breast[81-83]. Epicatechin gallate (ECG) is one 
of  the most important compounds of  polyphenols found 
in green tea, which stimulated the expression of  p53, 
p21, and MAPKs (mitogen-activated protein kinases) in 
CRC cells, leading to cell cycle arrest at G0/G1-S phase 
in a time-dependent manner[82]. Furthermore, ECG could 
inhibit the degradation of  p53 protein and RNA that 
contributed to the stabilization of  p53.

Other compounds
p53 proteins can be targeted for proteasomal degradation 
in both normal and cancer cells. α - Lipoic acid (α-LA) 
is the most common drug worldwide to treat diabetic 
polyneuropathy. Yoo and colleagues had shown α-LA 
inhibited proliferation and induced apoptosis in colon 
cancer cells via preventing p53 degradation. Specifically, 
α-LA treatment downregulated ribosomal protein 
p90S6K (RPS6KA4) which was confirmed to inhibit 
p53 function. Furthermore, α-LA exerted an inhibitory 
effect on the nuclear translocation of  nuclear factor-κB 

(NF-κB), which played an important role in regulating 
RPS6KA4 gene expression[84].

FUTURE PERSPECTIVES
There is no doubt that reactivation and restoration of  
p53 function have great potential as a novel therapeutic 
strategy in CRC. However, the majority of  molecules 
that lead to cell cycle arrest and apoptosis in CRC cells, 
has only been tested in cell lines and animal models, 
and has yet to enter in clinical trials. In addition, it is 
clear that mutant p53 promotes various oncogenic 
events. Nevertheless, the critical mechanisms are still 
not completely understood. The issue that different 
mutations might affect p53 function differently makes 
small molecule inhibitors targeting mutant p53 more 
complicated to assess in a clinical trial. This theme 
needs to be explored further. Importantly, resistance to 
treatments and poor prognosis for CRC patients with new 
p53 mutations will require the continuing development 
of  new agent targeting these novel mutations. Riding on 
the last 30 years of  intensive research in p53 area, this 
is now the time to harvest the fruits from this body of  
work and translate our knowledge of  p53 into clinical 
practice for CRC patients. 
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