
SOC lesion. Pharmacological immunosuppression is 
a major contributor of the increased risk of cancer 
for KTR, with the cancer lesions themselves further 
adding to systemic immunosuppression and could 
explain, in part, these phenomena. Immune profiling 
includes; measuring immunosuppressive drug levels 
and pharmacokinetics, enumerating leucocytes and 
leucocyte subsets as well as testing leucocyte function 
in either an antigen specific or non-specific manner. 
Outputs can vary from assay to assay according to 
methods used. In this review we define the rationale 
behind post-transplant immune monitoring assays 
and focus on assays that associate and/or have the 
ability to predict cancer and rejection in the KTR. 
We find that immune monitoring can identify those 
KTR of developing multiple SCC lesions and provide 
evidence they may benefit from pharmacological 
immunosuppressive drug dose reductions. In these 
KTR risk of rejection needs to be assessed to determine 
if reduction of immunosuppression will not harm the 
graft.
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Core tip: Kidney transplant recipients (KTR) with cancer 
have different leukocyte compartmentalisations and 
immune cell functions than KTR with no cancer. These 
differences can be used to determine KTR at risk 
of developing cancer and identify those who do not 
mount a reaction to their graft. Indicating there is a 
group of KTR that may benefit from pharmacological 
immunosuppressive drug dose reductions.
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Abstract
Half of all long-term (> 10 year) australian kidney 
transplant recipients (KTR) will develop squamous 
cell carcinoma (SCC) or solid organ cancer (SOC), 
making cancer the leading cause of death with a 
functioning graft. At least 30% of KTR with a history 
of SCC or SOC will develop a subsequent SCC or 
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INTRODUCTION
Kidney Transplant Recipients (KTR) have a 3 to 12-fold 
increased risk of developing Non-Lymphoid or solid 
organ cancers (SOC) when compared to the general 
population[1-4]. Cancers in KTR have poorer prognoses 
for a given stage/grade than the general population, 
which leads to higher mortality[5-9]. In Australia, it is 
observed that 20% of KTR will develop SOC within 15 
years post transplantation (the median graft survival). 
Over a 5 year period (2007-2011) 267 KTR (or 31%) 
of all KTR died with a functioning graft (ANZDATA, 
2012). 

Additionally, KTR have a 60 to 250-fold increased 
risk of developing a Non-Melanoma Skin Cancer (NMSC), 
which includes; squamous cell carcinoma (SCC), basal cell 
carcinoma, Kaposi’s sarcoma, Merkel cell carcinoma, and 
adnexal tumours[1,7,10]. SCC is the most common cancer 
in KTR with 50% of KTR who are 15 years post transplan
tation developing an SCC[11]. The disease progression 
of SCC is much more aggressive than the general popula
tion and is exemplified by the development of multiple 
SCC lesions and metastatic potential, phenomena that 
rarely occur in the immune competent[5,6,12]. 

The cumulative risk of subsequent SCC tumours is 
30%-32%, 60%-62% and 75%-80% over 1, 3 and 5 
years after first tumour, respectively[13]. Compounded, 
this equates to approximately 10% of KTR having > 
5 tumours within 5 years of their first tumour, with 
some individual KTR reaching 40 primary SCC tumours 
during recipient life[14]. A single SCC lesion is a risk factor 
for subsequent SCC development with 60%-80% of 
KTR with one or more tumours developing another 
tumour within 1-3 years[15]. SCC tumour characteristics 
that are risk factors of metastatic SCC and include: 
size[16], depth[16,17], thickness[17], diameter[18] and poor 
differentiation[17]. Depth > 2.8 mm has a three-fold 
greater risk of metastasizing in KTR than the general 
population[19]. 

Further evidence of tumour aggression is the inva
sive potential of SCC in KTR, with more perineural and 
lymphatic invasion that the general population[20]. Metas
tatic incidence increases by 5%-8% with every SCC 
tumour accrued in KTR[14]. Due to SCC lesions mainly 
located in ultra violet (UV) exposed areas, e.g., the 
neck, face and scalp there is a possibility of invasion into 
subcutaneous cranial nerves in the perineural space, 
leading to extensive surgery and perhaps death[21]. 
Reports observed an incident mortality of 1%-18%[22,23]. 
Observational studies have showed a 37% incidence of 
SCC metastasizing[18] which leads to the median KTR 
survival after diagnosis being only 2 years[24]. Further
more, it has been observed that a previous SCC is a 
risk factor for multiple SCC and even development of 
SOC[11,13,19]. This is probably due to the exposure of pro-
carcinogenic agents as well as the compounding effects 
of cancer induced, and pharmacological administrated, 
immunosuppression.

Therefore there are various risk factors and clinical 
parameters that influence the development of post-
transplant cancer. The next section will introduce some 
of these factors and the rationale behind why they are 
factors of risk.

IMMUNOSUPPRESSION TYPE 
There are limited and conflicting data on the use of 
different types on immunosuppressive drugs and the 
associated cancer risks. The conflict mainly due to 
the multiple confounding factors associated to cancer, 
immunosuppressive drugs in particular have the dual 
capacity to suppress both anti-graft and anti-cancer 
immunity. The immunosuppressive drug types introduced 
in this section include; azathioprine (AZA), mycopheno
late mofetil (MMF), calcineurin inhibitors (CNI), steroids 
and mammalian target of rapamycin inhibitors (mTORi). 
These immunosuppressants are rarely used in mono-
therapies and are therefore hard to compare one ano
ther; instead modes of action and evidence for cancer 
development are presented.

AZA
AZA is catabolised to 6-mercaptopurine, which directly 
affects the synthesis of purines and has the ability to 
incorporate into DNA[25,26]. Lymphocytes rely heavily 
on de novo purine synthesis making AZA an effective 
immunosuppressant. AZA was originally used as an 
anti-cancer therapy however some cancers intrinsically 
have, or gain, purine scavenging and are, or become, 
resistant to AZA treatment[27]. When incorporated, 
the metabolite and the DNA form a complex that 
can block DNA repair, is photosensitive and produces 
reactive oxygen species (ROS) under UV exposure[25,27]. 
These work synergistically to affect DNA repair which 
form lesions[26,27]. One case-controlled study identified 
that AZA increased risk of developing SCC by 5-fold. 
However, in the same study calcineurin inhibitors (CNI) 
and steroids were also identified as risk factors[28]. 

MYCOPHENOLATE
MMF is a pro-drug of mycophenolic acid (MPA), which 
directly affects purine synthesis and is classified as an 
anti-proliferative drug[29]. The reaction of MPA is reversible 
and does not interfere with the DNA structure as AZA 
does[29]. One study showed a decrease photosensitivity 
when a cohort was randomised onto a MMF from AZA 
suppression regimen[30]. In another study comparing 
MMF to AZA usage in organ transplant recipients 
showed that the MMF group had a 27% adjusted risk 
reduction[31]. Conversely, a 3 group randomised control 
trial of 133 KTR; 45 KTR randomised to AZA treatment, 
44 KTR randomised to 3 g daily of MMF and 44 KTR 
randomised to 3 g daily of MMF with no differences in 
cancer incidences between all three groups[32].
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CALCINEURIN INHIBITORS
Cyclosporine A (CsA) forms a complex with cyclophilin 
which inhibits calcineurin, making CsA and CNI[33]. 
Calcineurin de-phosphorylates nuclear factor of activated 
T cells (NFAT), which translocates to the nucleus. It is 
in the nucleus where NFAT activates pro-inflammatory 
cytokines such as interleukin 2 (IL-2)[34]. Therefore 
CsA indirectly affects pro-inflammatory cytokine IL-2 
transcription. An isotype of cyclophilin is expressed in 
the mitochondria which releases apoptotic signals under 
oxidative stress. CsA blocks this signal transduction and 
allows cells to by-pass apoptosis when under oxidative 
stress, including ROS and UV-damage, contributing to 
carcinogenesis[35,36]. Other tumorigenic side effects of CsA 
are direct or in-direct suppression of p53, production of 
transforming growth factor beta (TGF-β) and vascular 
endothelial growth factor (VEGF)[37-39]. 

When investigating this in the clinic, a retrospective 
analysis of 1000 KTR showed that KTR on CsA based 
regimens had greater cumulative incidence of tumours 
than those on an AZA based regimens[40]. In another 
retrospective study any regimen with CsA had an Odd 
Ratio of approximately 4.5[41]. Inversely, A CsA based 
mono-therapy was shown to be less carcinogenic than 
a MMF and prednisone dual-therapy[42,43]. Another CNI, 
tacrolimus (TAC), inhibits calcineurin by forming a 
complex with FK506-binding protein 12 (FKBP12) and 
outcompetes calmodulin therefore still inhibiting IL-2 
transcription. TAC does not target cyclophilin, so avoids 
all interference with the mitochondria that CsA has. In a 
retrospective study of 609 liver transplant patients, TAC 
had a higher incidence rate for de novo cancers than 
CsA[44]. However in most database analyses, TAC-based 
immunosuppressive regimens have either no significant 
difference or a reduced risk of cancer incidence and/or 
risk over CsA-based immunosuppression regimens[45-48].

CORTICOSTEROIDS 
Corticosteriods are mainly utilised for treatment of auto-
immunity, inflammatory disorders and transplantation 
rejection. Corticosteriods function by inhibiting trans
cription of IL-1, IL-2, IL-6, interferon (IFN)-γ and tumor 
necrosis factor (TNF)-α and transcription factors such as 
nuclear factor-κB[49-54]. Inhibition of these Th1 cytokines 
promotes a Th2 response, which provides another 
indirect immunosuppressive function[55]. Corticosteroids 
induce TGF-b and can increase the incidence of Kaposi’s 
sarcoma cell proliferation[56,57]. 

MAMMALIAN TARGET OF RAPAMYCIN 
INHIBITORS
Both Sirolimus (SIR) and Everolimus (EVO), like TAC, 
bind to FKBP12. However the formed complex inhibits 
mTOR’s via mTORC 1 subunit (Raptor) binding and are 

considered mTORi. mTORi can also be classified as anti-
proliferatives as they induce apoptosis via p53 depen
dent and independent pathways. This and mTORi’s ability 
to prevent IL-2 signalling cause it to have both anti-
cancer and anti-rejection properties. Additionally, mTORi 
affect protein synthesis, including VEGF which inhibits 
metastatic potential in murine models[58,59]. SIR has been 
used to treat patients with renal cell carcinoma (RCC) 
and EVO has shown to benefit patients with metastatic 
RCC who do not response to mainstream treatment[60-62]. 
Sirolimus Conversion from CNI based regimens, is 
beneficial in Kaposi sarcoma and SCC involution[63-66] 
However it can often lead to increased adverse reactions 
and increases in rejection episodes if performed too early 
post-transplant[67,68]. 

ANTI-THYMOCYTE GLOBULIN 
INDUCTION THERAPY 
Anti-thymocyte globulin (ATG) is either horse- or rabbit- 
derived antibodies directed against human T cells, given 
as an induction therapy of transplant recipients. The T 
cells that reconstitute have a regulatory phenotype and 
return much faster than other T cells[69]. There is an 
association with prolonged CD4 lymphopenia and ATG 
as well as CD4 lymphopenia and cancer[70]. Without 
knowing cause and effect it is speculative to say that 
ATG is associated with cancer.  

Despite the various functions of immunosuppressive 
types each playing a role with cancer in KTR, overall 
immunosuppressive load or immunosuppressive dose 
can also have detrimental effects and promote cancer 
development. 

IMMUNOSUPPRESSION DOSE 
There is an association between immunosuppression 
dose and cancer incidence. KTR have 3-fold increased 
cancer risk compared to dialysis patients, in a retro
spective registry based study[71]. Furthermore, heart 
transplant patients have higher levels of immunosu
ppression than KTR and also have corresponding increa
ses in cancer (100% compared to 88% 5 year incidence, 
respectively[14]). Additionally, KTR randomised to a low 
dose CsA base regimen had reduced incidence of cancer 
following reduction, with the caveat that they had higher 
rejection rates[72]. 

IMMUNOSUPPRESSION DURATION 
Maintained immunosuppression increases the risk of 
cancer over time which is evident in the steady increase 
in KTR that accrue cancer in the years post-transplant. 
Australian KTR SCC incidence is 20%, 50% and 80% at 5, 
15 and 30 years post transplantation respectively[11,73]. 
Included in the duration of immunosuppression would 
be the age and aging of the KTR. 
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Other clinical parameters are associated with cancer 
risk that are also orientated by human behaviour, apart 
from UV exposure, are communicable diseases such as 
oncogenic viral infections that remain latent in the immune 
competent. 

VIRAL INFECTION
Human papillomavirus (HPV) is a group of more than 
150 viruses with some types associating with anogenital, 
oropharyngeal and skin cancers[95,96]. It has been 
speculated that HPV infection may prevent UV light-
induced apoptosis[97]. Between 65% and 90% of SCC 
lesions from transplant recipients are positive for HPV 
DNA[98].

Epstein barr virus (EBV) is associated with: sino-
nasal angiocentric T-cell lymphoma, Hodgkin lymphoma 
and nasopharyngeal carcinoma[95]. There are data that 
EBV associates with mononucleosis, Burkitt lymphoma 
and post-transplant lymphoproliferative disorder in 
KTR[99,100]. 

Chronic Cytomegalovirus virus (CMV) infection can 
cause graft rejection, but with malignancy however it does 
have indirect associations with cancer[99]. A prospective 
study followed 63 KTR and retrospectively included 131 
KTR, with convincing data that CMV positive KTR with 
increased γδ T cell proportions, the Vδ2neg sub-population 
in particular, had decreased cancer incidence[101]. This 
case-control study compared 18 short-term KTR (median 
3 years post Tx), who developed 12 skin and 6 solid 
tumours over the prospective period and compared to 45 
KTR who did not develop cancer. The skin nor solid organ 
tumour types were not disclosed. 

IMMUNE PHENOTYPING
The association with cellular markers and cancer has 
been previously studied. The identification of immune 
cell populations and sub-populations in patient blood 
is called immune phenotyping. Measurement of CD4 
T cells in 150 KTR revealed that KTR with skin cancer 
had 330 CD4+ cells/μL of blood in comparison to KTR 
with no cancer who had 565 CD4+ cells/μL (P < 0.01). 
Additionally KTR with cancer had non-significant 
increases in CD8 and CD19 lymphocytes[102]. Another 
study involving 250 KTR over a 10 year period showed a 
mean of CD4+ lymphocytes of < 600 CD4+ T cells/μL for 
those with cancer and > 700 CD4+ T cells/μL for those 
with no cancer, however there was no useful threshold 
found using receiver operator curve (ROC) analysis[103]. 
Additionally, CD8+ T cells and CD19+ B cells were also 
investigated in the same study; there was no difference 
between KTR with SCC when compared to KTR without 
SCC[104]. It was noted however, that immune phenotype 
was more pronounced in KTR with SOC compared to 
KTR with SCC: CD4 count: 234 cells/μL vs 543 cells/μL, 
P < 0.001; CD8: 328 cells/μL vs 640 cells/μL P = 0.100; 
CD19: 19 cells/μL vs 52 cells/μL, P < 0.001[104]. All these 

AGE AND GENDER
Age is a risk factor of cancer development, independent 
of immunosuppression duration[74]. This is exemplified 
in a retrospective study that showed both Age and male 
gender were risk factors[41]. When comparing KTR to 
the general population in an aged matched cohort of 
median age 39 years old, there was a 12-fold increased 
risk of developing non-skin cancers[4]. Age and gender 
can influence other parameters of cancer risk. This is 
particularly the case in Australia were certain, culturally 
male-orientated, jobs may involve higher exposure to 
UV radiation. 

ULTRA-VIOLET RADIATION
It is evident that UV exposure increases the risk of skin 
cancer, including NMSC, by the observations recorded 
by clinicians of the locations of tumours. Cumulative 
sun exposure, including outdoor occupation, latitudinal 
residence and even childhood burning events all increase 
risk of post-transplantation cancer development[75-77]. 
These increases in carcinogenesis are in part to the 
aforementioned AZA-UV interactions but mainly via 
direct UV-related mutagenesis. Due to the structure 
of DNA, it absorbs of UV-A (315-400 nm) and UV-B 
light (280-315 nm), in doing so the DNA itself forms 
cyclobutane pyrimidine dimers in two adjacent pyri
midines of the same DNA strand, which alters the 
structure of DNA and restricts transcription[78,79]. A single 
point mutation can lead to transcriptional arrest[79]. A 
study found that invasive SCC contained mutations of the 
tumour suppressor gene P53[80]. An important conclusion 
from this study is that P53 mutation could have happen
ed in childhood, as most UV exposure happens in child
hood[81]. 

In addition to direct DNA mutagenesis, UV exposure 
can also have local and systemic effects on the immune 
system. It is thought that the local effect involves 
antigen presenting cells (APC)’s, including resident 
keratinocytes and Langerhans cells[82,83]. Whereas the 
systemic immunosuppression may come from splenic 
cells, migrated Langerhans cells, dendritic cells. Increased 
expression of IL-4, IL-10, prostaglandin E2, IL-1α and 
TNF-α with polarisation of immunity to a Th2 response 
also plays a role in systemic immunosuppression[83-85]. In 
combination with this, co-stimulation is effected on both 
APC and T cells[86]. Other cell types that are affected by 
UV irradiation are innate immune cells and suppressor 
cells[87-91]. Regulatory T cells (Tregs) that are induced by 
UV express lymph node homing molecule CD62L and 
may provide systemic immunosuppression[87,88]. 

The DNA damage and immune suppression of 
UV can be reversed by IL-12 dependent induction of 
nucleotide excision repair protein[92]. Also immunity can 
be restored by the administration of IL-12[93], activating 
APC’s, increasing IFN-γ and thus balancing Th1-Th2 
polarisation[93,94]. 
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studies showed an association with CD4 lymphopenia 
and cancer, however the majority of the cohorts 
underwent ATG induction therapy. However they did not 
define CD4+ subsets or other lymphocytes that may be 
affected by cancer. 

While these studies provide some evidence that cancer 
may influence the peripheral immune cells, there was 
no investigation into sub-types of these cells, primarily 
because multi-parameter flow was not common place. 
Recently, it was reported that high numbers of CD4+ 
Regulatory T cells (Tregs, i.e., CD4+FOXP3+CD127LoCD25Hi) 
and low numbers of Natural Killer (NK cells, i.e., 
CD56+CD16+), in peripheral blood associated with and 
predicted recurrent SCC in KTR[105]. This study also 
showed an increase in CD8+CD28-. These CD8 T cells co-
localise with Tregs within cancer tissue and have been 
shown to be suppressive from patients with cancer, and 
therefore abbreviated to CD8+ Tsupps[106]. Furthermore, 
there was a decrease in CD8+CD45RA-CD62L+ CD8 
central memory T cells (CD8+ Tcm), which has been 
shown to decrease in KTR using the corticoid steroid 
prednisolone, despite cancer status[105]. This indicates that 
immunosuppression may affect immune phenotype and 
warrants investigation.

Operationally tolerant organ transplant recipients 
have increases in Regulatory T cells, B cells (particular 
naïve B cells), Vδ1 γδ T cells and decreases in CD3+ 
proportions (B:T ratio), NK cells, Vδ2 γδ T cells within 
their peripheral blood[107]. Transplant patients have 
increased Regulatory T cells, B cells (memory B cells), 
CD8+ γδ T cells and CD8+ CD27-CD28- T cells and 
decreases in CD4 counts, NK cells and CD8+ Tcm[105,108]. 

REGULATORY T CELLS (TREGS)
Immune suppressor cell existence has been debated from 
the early 1970’s through to the mid 1990’s[109-112]. The 
pivotal paper adoptively transferred CD4+CD25+ T cells in 
CD25 depleted mice, which mitigated the autoimmune 
diseases that manifested[112]. However, CD25 is also 
expressed on activated lymphocytes with only the high
est proportion being suppressive in vitro via competitive 
absorption of IL-2[112-115]. The discovery and transfection 
of the transcription factor forkhead box protein 3 (FOXP3) 
into naïve T cells helped identify FOXP3 and its function 
as the master regulatory gene[116,117] and CD127 inversed 
expression to FOXP3 expression has given Tregs the 
current phenotype CD4+FOXP3+CD25hiCD127lo[114].

Tregs are required in a healthy immune system to 
maintain self-tolerance and immune homoeostasis during 
immune reactions, pregnancy and disease. Uncontrolled 
immune reactions and organ failure result when mutations 
in FOXP3 occur, as observed in the scurfy mouse models 
and similarly Immunodysregulation, Polyendocrinopathy, 
enteropathy, and X-linked (IPEX) syndrome observed in 
humans[118-120]. Both IPEX and X-linked Autoimmunity-
Allergic Dysregulation syndrome cause multi-organ failure 
due to mass lymphocyte proliferation of self-reactive 

effector cells [119]. 

CD4+ TREG SUBSETS 
The CD4+ Treg in the periphery, defined by FOXP3+
CD25hiCD127lo, contain two subsets: those that originate 
from the thymus, known as natural Tregs (nTregs), 
and those that are induced in the periphery, known 
as induced Tregs[121]. The Ikaros family transcription 
factor, Helios is expressed in 100% of all CD4+FOXP3+ 
thymocytes of mice and approximately 70% of Tregs in 
the periphery of both mice and humans[122]. Though the 
premise that Helios only defines nTreg is currently under 
debate, nonetheless, it may provide evidence of in vivo 
activated Tregs[101,123]. Despite the debate it seems that 
KTR with cancer have similar Helios expression than 
KTR without cancer[108].

TREG MODES OF ACTION
Treg apoptosis induction requires cell contact with co-
stimulatory molecule Cytotoxic T cell Late Antigen-4, 
Fas/Fas ligand interaction and release of Perforin and 
Granzyme B[124-126]. Indirectly, Tregs can down-regulate 
B7 Co-stimulation molecules CD80/CD86 on APC[127]. 
In addition, prostaglandin E2 (PGE2) excreted by Tregs, 
mediates expression of indoleamine 2,3-dioxygenase 
in APCs causing tryptophan starvation and leading to 
impaired lymphocyte proliferation[128]. Another form 
of suppression is the formation of localised adenosine 
by cleaving phosphate groups from ATP, ADP and AMP 
by ecto-NTPDase-1 (CD39) and ecto-5’-nucleotidase 
(CD73) cell surface enzymes[129]. Expression of CD39 and 
CD73 has been shown on murine and human Tregs[129]. 
Human Tregs also may work in concert with other CD73 
expressing cells to elicit a regulatory response. Adenosine 
has been shown to act via Adenosine receptors (A1, A2a, 
A2b and/or A3), with A2a receptor being the dominate 
receptor on effector cells[130,131]. The adenosine formed 
by the hydrolysis of ATP can regulate lymphocyte pro
liferation in autoimmune disease, transplantation and 
cancers[132-134]. Additionally, it has been shown that 
adenosine and PGE2 in Tregs co-operate when regulating 
immune responses[133]. Other regulatory cells are CD4+ 
helpers that have suppressive function are classified by 
the ability to secret of IL-10 (Tr1) and TGF-β (Th3) which 
they are also induced by, respectively.

TREGS IN VIRAL INFECTIONS
EBV antigen specific Tregs, mainly IL-10 secreting 
Tr1 and recruited nTregs, can inhibit the EBV-specific 
immunity permissive in tumour progression[100,135]. Thus 
reduction in Tregs may be beneficial in treatment of 
chronic viruses. Interestingly, Treg depletion in a herpes 
simplex virus (HSV) mouse model decreased para
lysis onset, indicating that Tregs have an early role in 
protective immunity to HSV infection, similarly observed 
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in Lymphocytic Choriomenigitis virus mouse model, 
shown in the same study[136]. 

TREGS AND TRANSPLANTATION 
In regards to transplantation, when isolated CD4+CD25- 
cells are administered to BLABc nu/nu mice grafted 
with C57BL/6 skin there is a swifter rejection rate than 
administering untouched lymphocytes of the same 
source[112]. This indicates CD4+CD25- T cell subpopulation 
has greater cytotoxicity when absent from CD4+CD25+ 
T cells and that CD4+CD25+ T cells are possible inducers of 
tolerance.

In KTR, Tregs can differ in accordance with the 
situation of the patient. Two different studies on clini
cally tolerant, chronic rejection, stable, minimally 
suppressed KTR and healthy controls, showed tolerant 
KTR and minimally suppressed KTR had similar CD4+

CD25+FOXP3+ and CD4+CD25hi cells with similar FOXP3 
transcription levels when compared to the healthy 
controls[137,138] and that chronically rejecting KTR had 
lower CD4+CD25hi cells with low FOXP3 transcripts, 
indicating that Tregs may be protective or involved with 
tolerance[137,138]. An additional study supported this in 
liver transplant recipients which showed increased FOXP3 
mRNA expression in CD4+CD25hi T cells of tolerant 
patients compared to patients who had rejection episodes 
after cessation of immunosuppression[139]. Thus induction 
of Tregs for suppression of allograft cellular rejection 
episodes[140] and possible induction of tolerance[141] seem 
like an attractive substitute to immunosuppression. 
However Tregs that co-express CD25 and CD39 have 
been denoted as a memory subtype of Treg (mTreg) and 
are associated with cellular rejection episodes[142] in KTR. 
Increases in Tregs are also associated with cancer in the 
general population[143] and KTR[105].

TREGS IN CANCER AND IMMUNE 
SURVEILLANCE 
It has been shown that the percentage of CD4+CD25high
FOXP3+ Tregs and Tr1 cells are increased in Head and 
Neck Squamous Cell Carcinoma (HNSCC) patients in 
comparison to healthy controls[144,145]. Ectonucleotidase 
activity contributed by CD39 and CD73 is also increased 
on Tregs in this cohort[133]. CD39 has been shown to 
down-regulate IL-17 production, decreasing Th-17 cell 
linage. This particular Treg subtype, in the same study, 
has been shown to be down-regulated in autoimmune 
Multiple Sclerosis[132]. It has been shown that high levels 
of Treg in HNSCC patients from the general population 
associate with a poor prognosis[146-148]. 

Cancers and Tregs not only have commonalities 
between each other but they also promote each other. 
TGF-β and IL-10 secretions from tumours activate Th3 
and Tr1 regulatory cells respectively, consequently 
regulating surrounding cancer cytotoxic lymphocytes[145]. 

Also tumour cells recruit Tregs with a series of chemokines 
such as C-X-C Ligand 12 and C-C motif 20 and 22 
(CCL20/22)[100]. CD39 and CD73 have been shown to be 
expressed on Tr1 and tumour cells alike[129,149]. Cancer 
progresses by the tumours’ ability to secrete these soluble 
factors into its microenvironment. PGE2 is a product 
of Cyclooxygenase 2 (COX-2) and is involved in aiding 
immune escape. COX-2 is expressed on Tr1 and over-
expressed on cancer cells[145,150,151].

In a post-transplant cancer setting, it has been 
shown that Tregs (CD4+FOXP3+CD25hiCD127lo) in blood 
from KTR with a history of SCC can predict the risk of 
developing a subsequent SCC lesion[105]. Another study 
has shown that Tregs alone can predict cancer onset and 
associate to the severity of the cancer developed[108]. 
In this same study Hope et al[108] shows prospectively 
that Tregs increase in KTR when the cancer becomes 
apparent and then decreases post-resection of tumour 
tissue. 

NK CELLS IN CANCER AND IMMUNE 
SURVEILLANCE
Carroll et al[152] revealed that NK cells, which have 
cytolytic ability to kill cancerous and pre-cancerous cells, 
are decreased in KTR with cancer. NK cells are a part 
of the innate immune system that identify abnormal 
cells and supply the signals to undergo apoptosis thus 
“killing” abnormal cells. The identification process involves 
Major Histo-incompatibility Complex (MHC) class Ⅰ down 
regulation, which some viruses and cancerous cells 
adopted to avoid the adaptive immune system[153]. It is an 
important step in metastatic cells to successfully invade 
the host[154]. Once the cell has been identified the NK 
cell only activates if there is an imbalance of CD94:
NKG2A and the killer-cell immunoglobulin-like receptors 
(KIR) family. Once activated internal granules locate to 
the synapse that is created between the NK cell and 
target cell[152]. During the effector stage the granules are 
released out of the NK cell and into the synapse and onto 
the target cell. These proteins include Perforin, granzyme 
A and B. It is these proteins that play their role in the 
killer phase of NK cells[155]. Perforin creates pores in the 
membrane that granzyme B can enter and activate the 
caspase kinase pathway and cause the target cell to 
undergo apoptosis[155]. This cytotoxic ability to kill cancer 
cells can be inhibited by Tregs but also cancer cells 
themselves[156,157]. This NK-Treg interaction is a TGF-β and 
cell-cell contact mechanism of down-regulation NKG2D 
and induction of apoptosis, respectively[158,159]. This 
leads to decreased NK cell numbers and function in the 
peripheral blood of cancer patients that have elevated 
TGF-β[160,161]. There are two other types of NK cells: those 
that express CD1-d restricted T cell receptor, NK T cells 
and those that lack Fc receptor CD16 and over express 
CD56, CD56bright NK cells[162-164]. Both these cells can 
interact with the adaptive immune system and enhance 
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anti-tumour ability by direct and indirect mechanism 
respectively[162,164].

CD8 SUBSETS IN CANCER AND IMMUNE 
SURVEILLANCE
Another cell type with anti-tumour properties is CD8+ 
cytotoxic T lymphocytes (CTL). CD8+ CTL are in the 
effector arm of the adaptive immune system. CTLs use 
the ability to lyse tumour cells using Fas-Fas ligand as 
well as perforin-IFN-γ granules similar to NK cells[165]. It 
has been shown that antigen specific CTL are defective 
in cancer patients and that removal of Tregs can restore 
cytolytic function[166-168]. 

CD4 and CD8 T cells follow an immunogenic pathway 
to immune senescence. T cells exiting the thymus are naïve 
since they express both CD27 and CD28 co-stimulation 
molecules and home to the lymphoid organs[169,170]. When 
antigen is presented they become CTL, clear the threat, 
and the majority apoptose with the minority homing 
to lymphoid organs as central memory T cells or extra-
lympoid sites as effector memory T cells[169,170]. Upon 
subsequent exposures the cells become exhausted and 
lose expression of co-stimulation molecules and are termed 
T effector memory CD45RA+ or TemRA cells[169,171]. These 
cells are loosely phenotyped as CD8+CD28- and shown to 
be regulatory in cancer patients and may associate with 
poor prognosis[106]. Tumours themselves may induce this 
loss of CD28[106,172] and they are also expanded in patients 
with CMV infection[173]. It has been shown that Memory T 
cells and (NK cells have anti-tumorigenic properties and 
that Tregs regulate both of these lymphocyte subsets[158,174]. 
Thus, an excess of Tregs is associated with poor prognosis 
in cancer and is thought to aid cancer cells evade this 
immune surveillance. 

IMMUNE CELL FUNCTIONS
Kidney transplant recipients (KTR) with cancer have 
increased numbers and proportions of Regulatory T cells 
(Tregs) and decreased numbers and proportions of NK 
cells[105,108]. However, the immune system’s effectiveness 
cannot be gauged by cell numbers and proportions 
alone; this chapter investigates the immune function of 
KTR with cancer. 

It has been shown that Tregs isolated from tumour 
tissue and the peripheral blood of KTR with cancer have 
higher suppressive function than Tregs from the blood 
of normal donors[145,175,176]. Importantly, the stage and 
grade of HNSCC are associated with greater numbers 
and greater suppression capacity of the Tregs on a cell-
per-cell basis than healthy controls[177] and, as such, 
also associate with poor cancer prognosis in the general 
population[176]. 

In the Transplant population it is known that CNI 
regimens are associated with reduced numbers and 
proportions of Tregs and how mTORi maintain these 
Treg parameters[178,179]. Furthermore, Tregs numbers and 

proportions are increased by mTORi usage in KTR with no 
cancer and CNI usage decreases Tregs in KTR with cancer. 
A proposed mechanism is CNI’s ability to reduce Nuclear 
Factor of Activated T cells (NFAT), decreasing production 
of IL-2 which is vital for function and homeostasis, in 
mice[180]. Molecular interactions between NFAT and FOXP3 
show that NFAT acts as a molecular switch between 
immune stimulator and immune regulator, thus down 
regulation decreases FOXP3 expression and FOXP3’s 
ability to form these regulatory complexes[178,181]. Addi
tionally, FOXP3 mRNA transcription was decreased in CNI 
treated peripheral blood mononuclear cells compared 
to Rapamycin in an allo-stimulated mixed lymphocyte 
reaction[182]. There is also an inverse correlation to CNI 
level and Treg function[183]. 

Tregs promote cancer survival whereas NK cells have 
anti-cancer abilities. The function or dysfunction of NK 
cells plays an important role in the apoptosis of pre-
cancer and cancerous cells. Patients with genetically 
(MCM4 or GATA2 mutations) related NK cell deficiencies 
in either number or function, have increased risk of 
infections, in particular: Herpes viruses, HPV, CMV and 
EBV (reviewed elsewhere[184]).

NK cells are large granular lymphocytes that lack 
the CD3 T cell complex. They function by identifying 
and spontaneously causing apoptosis in cancerous and 
infected cells without prior antigen presentation[152,185]. 
The identification process requires abnormal cells to 
display stress signals such as down-regulation of “self” 
surface proteins: Major Histo-incompatibility Complex 
(MHC) class Ⅰ and regulatory KIR[154,155,186]. The down 
regulation of MHC-Ⅰ, reduces the effectiveness of 
cytotoxic CD8+ T cells and adaptive immune responses 
but makes the cells more sensitive to NK and innate 
immune responses[187]. Once an NK cell identifies this 
down-regulation, it binds and activates, expressing a 
type Ⅱ transmembrane glycoprotein CD69 and other 
surface markers of activation[188]. Internal granules 
locate to the immune synapse that is created between 
the NK cell and the target cell and the effector 
molecules (perforin, TNF-α, granzymes and interferons) 
are released into the synapse and onto the target cell. 
Upon degranulation, Lysosome-Associated Membrane 
Protein 1 (CD107a) is exposed on the surface of the NK 
cell[155]. The released perforin creates pores in the target 
cell membrane through which granzyme B can enter 
the target cell and initiate apoptosis via the caspase 
kinase pathway. Therefore there are several ways to 
measure NK cell activity including: CD69 up-regulation 
in the activation stage, CD107a in the effector stage, 
release of cytokines (perforin, granzyme B, IFN-γ) in the 
killing stage, and total cytolysis of the target cells. 

Cancer cells have greater metabolic demands than 
normal cells[189], utilising glycolysis and lactate pathways, 
via Lactate Dehydrogenase (LDH), causing an 18-fold 
increase in glucose utilisation, even under aerobic 
conditions[190]. This LDH can be measured as a cytotoxic 
assay (first described in 1988[191]). Additionally, in in 
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vitro assays, NK cells undergo apoptosis when they are 
exhausted from their last kill. Recently, it has been shown 
that the loss of NK cells from an in vitro assay with a set 
number of NK cells, can relate to the amount of target 
cells killed. This loss has been termed “target induced NK 
cell loss” (TINKL). These two assays have been chosen 
for clinical application. LDH is a single platform, self-
contained, non-radioactive, sensitive assay that can be 
used in any laboratory. TINKL is a flow-based assay that 
can be readily implemented in clinical flow laboratories. 

It is widely accepted that NK cell function is 
decreased in cancer patients however it is not reported 
if KTR with cancer have further reduced NK cell function. 
The effect immunosuppression has on NK cells have 
been investigated both in vitro and in vivo[192,193]. 
Immunosuppressive drugs: AZA, MMF, CNI, and pre
dnisolone all have individual effects. These effects depend 
on the how the NK cells are stimulated and how NK 
function is measured. One particular study showed only 
a decrease in NK function in short term KTR compared 
to healthy controls, which was not observed in long term 
KTR[192]. Both IFN-γ and CD107a expression have been 
shown to decrease when NK cells were co-cultured in the 
presence of clinically relevant concentrations of a variety 
of immunosuppressive drugs[193]. 

TREATMENT OPTIONS FOR KTR WITH 
CANCER
The aforementioned assays give clinicians the ability to 
objectively identify patients that may develop preme
tastatic cancer with relatively high sensitivity and specificity. 
However they do not inform clinicians if KTR will benefit 
from cancer prevention therapy.

A randomised control trial randomised pre-transplant 
KTR to a standard level CNI regimen and a CNI sparing 
regimen[72], thus investigating the benefit of reduced 
immunosuppression as primary cancer prevention. How
ever, those with reduced CNI had increases in rejection 
episodes[72]. Other studies investigated converting CNI 
based regimens to mTORi based regimens as secondary 
prevention therapy, as mTORi are used as anti-cancer 
therapies[194,195]. There was a benefit, however not all 
conversions were successful (30%) and an additional 
30% did not tolerate the mTORi side effects[14,196,197]. 
Furthermore, immune phenotype has revealed that those 
who maintain high levels of Tregs after mTORi conversion 
(> 20 Tregs/µL) do not benefit from conversion and may 
benefit from immunosuppressive drug reduction. To per
form immunosuppressive drug reduction as secondary 
cancer prevention, risk of graft rejection will need to be 
measurable.  

Pre-transplant anti-Human Leukocyte Antigen 
(HLA) and IFN-γ ELISPOT associate post-transplant with 
antibody and cellular mediated rejection episodes[198-200]. 
Monitoring HLA molecules and Donor Specific Antibodies 
(DSA) routinely has decreased antibody mediated 
rejection episodes dramatically[201,202]. IFN-γ ELISPOT 

has been used to predict 6-mo graft function and 
rejection episodes[200]. Additionally it has been used pre-
transplant to categorise patients into CNI or mTORi 
maintenance therapy[203]. These studies are limited in 
clinical application as donor specific cells were used to 
stimulate the mixed lymphocyte reactions, requiring use 
of precious or non-existent deceased donor material. 
This restricts the utility of ELISPOT to live recipient/donor 
pairs. An IFN-γ ELISPOT assay has been developed that 
utilises a variety of unrelated HLA disparate material 
to measure total allo-response and is termed “Panel of 
Reactive T cells”[204]. This assay has been shown to have 
potential to determine post-transplant risk of rejection 
when measured pre-transplant. However there are no 
current studies utilising IFN-γ post-transplant as a form of 
rejection prediction in long-term KTR. 

The IFN-γ ELISPOT may be extended to guide 
immunosuppression reductions[205,206]. There are a few 
studies utilising a viral peptide stimulated IFN-γ ELISPOT 
to discriminate KTR who may benefit from reduced 
immunosuppressive drugs as a form of treatment[205,206]. KTR 
with unresolved BK pathogenesis also had a non-signifi
cant decrease in EBV peptide and phytohaemagglutinin 
mitogenic IFN-γ ELISPOT responses[205,207]. This may share 
a link with development of malignancy as they are both 
considered manifestations of over-immunosuppression. 

When KTR have a cancerous lesion, surgical resection is 
the recommended treatment. There are no randomised 
control trials investigating the effect of tumour resection 
and minimal evidence of benefit in KTR when reducing 
immunosuppression. However, treatment in the general 
population is associated with a decrease in Tregs. Failure 
of Tregs to fall after tumour excision, chemo or immu
notherapy is due to incomplete resection or predicted 
relapse of disease[208,209].

When switching or reducing immunosuppression, 
adequate precautions must be used. Currently there are 
no assays that reliably determine cancer risk although 
there is an immune phenotype that can predict time 
to next tumour in KTR with a history of SCC[105]. CNI 
avoidance or reduction results in increases of rejection; 
one way to potentially avoid these rejection episodes is 
to identify those KTR with cancer who have evidence of 
a potential alloresponse and exclude them from dose 
reduction. In order to reduce immunosuppression safely, 
both the cellular and humoral alloresponses need to be 
assessed. 

PRE-TREATMENT ALLORESPONSE 
MEASURES 
Assessment of allo-responses would be needed to 
assess risk of rejection episodes for it to be possible to 
reduce immunosuppression. Currently cytokines and 
HLA antibodies can be measured by Enzyme Linked 
Immuno SPOT (ELISPOT) and Luminex technologies 
respectively[198,210]. Inflammatory cytokines such as IFN-γ 
are secreted by Th1 effector T cells and are a predictor of 
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acute rejection and infection[200,204]. A National Institute 
of Health funded Clinical Trials in Organ Transplant 
consortium approved ELISPOT has been able to detect 
6-mo post-transplant acute rejection in pre-transplant 
patients[211,212]. Additionally a similar assay has been used 
to run CNI avoidance maintenance therapy with a 3-fold 
reduction in acute rejection as shown in literature[203]. 
The humoral aspect of the immune system is already 
routinely assessed in most transplant programmes by 
solid phase alloantibody detection systems[202]. HLA DSA 
are clinically relevant and observed DSA presence has 
informed clinicians to alter immunosuppression regime of 
patients[199,201]. However both these techniques have not 
been measured in long-term kidney transplant recipients 
with a history of cancer.

CONCLUSION
Long-term immunosuppression increases the risk of 
cancer development. The dose of immunosuppression 
can be increased by closely monitoring graft function and 
survival. In this review we present that there are several 
emerging immune monitoring tools that are available 
to potentially help reduce immunosuppression. Future 
studies may be undertaken to determine if these assays 
can help identify those at risk of cancer development and 
if reduction of immunosuppression is of benefit.
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