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Abstract
Failure of arteriovenous fistulas (AVF) to mature and 
thrombosis in matured fistulas have been the major 
causes of morbidity and mortality in hemodialysis 
patients. Stenosis, which occurs due to adverse remode
ling in AVFs, is one of the major underlying factors under 
both scenarios. Early diagnosis of a stenosis in an AVF 
can provide an opportunity to intervene in a timely 

manner for either assisting the maturation process 
or avoiding the thrombosis. The goal of surveillance 
strategies was to supplement the clinical evaluation 
(i.e. , physical examination) of the AVF for better and 
earlier diagnosis of a developing stenosis. Surveillance 
strategies were mainly based on measurement of 
functional hemodynamic endpoints, including blood flow 
(Qa) to the vascular access and venous access pressure 
(VAP). As the changes in arterial pressure (MAP) affects 
the level of VAP, the ratio of VAP to MAP (VAPR = VAP/
MAP) was used for diagnosis. A Qa < 400-500 mL/min or 
a VAPR > 0.55 is considered sign of significant stenosis, 
which requires immediate intervention. However, due to 
the complex nature of AVFs, the surveillance strategies 
have failed to consistently detect stenosis under 
different scenarios. VAPR has been primarily developed 
to detect outflow stenosis in arteriovenous grafts, 
and it hasn’t been successful in accurate diagnosis of 
outflow lesions in AVFs. Similarly, AVFs can maintain 
relatively high blood flow despite the presence of a 
significant outflow stenosis and thus, Qa has been found 
to be a better predictor of only inflow lesions. Similar 
shortcomings have been reported in the detection of 
functional severity of coronary stenosis using diagnostic 
endpoints that were based on either flow or pressure. 
This limitation has been associated with the fact that 
both pressure and flow change in the presence of a 
stenosis and thus, hemodynamic diagnostic endpoints 
that employ only one of these parameters are inherently 
prone to inaccuracies. Recent attempts have resulted 
in development of new diagnostic endpoints that can 
combine the effects of pressure and flow. These new 
hemodynamic diagnostic endpoints have shown to be 
better predictors of functional severity of lesions as 
compared to either flow or pressure based counterparts. 
In this review article, we discussed the advantages 
and limitations of current functional and anatomical 
diagnostic endpoints in AVFs. 
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Core tip: Current surveillance strategies are based on 
either flow (Qa) or pressure (VAPR) measurements. 
The Qa has only shown to be a good predictor of inflow 
stenosis in arteriovenous fistulas (AVFs). The VAPR 
was primarily developed to detect outflow stenosis 
in arteriovenous grafts and has shown to be a poor 
predictor of stenosis in AVFs. These limitations have 
been associated with the fact that both pressure and 
flow change in the presence of a stenosis and thus, 
hemodynamic diagnostic endpoints that employ only one 
of these parameters are inherently prone to inaccuracies. 
Thus, diagnostic endpoints that can combine both effects 
of pressure and flow can provide better assessment of 
stenosis severity in AVFs.
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INTRODUCTION
Around 600000 Americans have end-stage renal disease, 
among whom approximately 415000 patients are being 
treated by hemodialysis through surgically created 
vascular access (VA)[1]. Failure in maintaining a functional 
VA has been the leading cause of hospitalization in the 
hemodialysis population and has resulted in more than 
$1 billion annual cost to the health care system in the 
United States[1]. The most preferred form of the VA is the 
arteriovenous fistula (AVF); however, this type of access 
has still a significantly high failure rate (20% to 50% in 
the United States). AVF failure requires placement of 
central venous catheter which is the least desirable form 
of VA due to its significant morbidity and mortality[2,3]. 

Thrombosis is the major cause of failure in AVFs, 
which requires endovascular or surgical intervention of 
the access[4-7]. The majority of AVFs with thrombosis 
had an underlying stenosis[8-10]. A developing stenosis 
gradually reduces the blood flow to the access and alters 
the pressure in the AVF. The National Kidney Foundation 
Kidney Disease Outcomes Quality Initiative (NKF-
KDOQI)[11,12] has recommended routine surveillance to 
detect the stenosis early enough to allow preemptive 
interventions. Current surveillance strategies[13] include 
device-based measurements, such as blood flow to AVF 
or venous access pressure. Under the current KDOQI 
guidelines[12], an AVF with blood flow rate < 400-500 mL/
min or a ratio of venous access pressure to main arterial 
pressure > 0.55 has to be referred to fistulography for 
assessing the grade and location of the stenosis. 

The accuracy of the current surveillance strategies for 
detecting a stenosis is debatable, especially in AVFs[14-17]. 
These limitations can be associated with specific 
pathophysiology of AVFs[8,10]. AVFs can have a significant 
stenosis and still maintain a relatively high blood flow[18]. 
In such scenarios, blood flow to AVF gradually reduces 
over time. Thus, sequential (longitudinal) measurements 
of Qa over time were expected to provide better clinical 
decision making than a single Qa measurement. Also in case 
of a significant outflow stenosis, the venous access pressure 
may retain its normal levels at the cannulation site due to 
development of downstream collateral pathways[8,10,15,19]. 
It is noteworthy that similar shortcomings have also been 
reported in functional (hemodynamic) diagnosis of coronary 
stenosis. Such diagnostic endpoints for coronary artery 
disease were either based on pressure or flow; however 
this neglects the fact that both flow and pressure change in 
the presence of a stenosis. Recent studies have attempted 
to shift the current paradigm into introducing new 
diagnostic endpoints that can account for both pressure 
and flow variation for assessing the functional severity of a 
stenosis[20-24]. This review article describes the advantages 
and limitations of current surveillance strategies including 
functional and anatomical diagnostic endpoints in AVFs. 

This review has covered the most important and 
pioneering studies that have reported the use of hemo
dynamic and anatomical endpoints for assessing the 
AVF functionality. We performed a literature search 
using PubMed, Medline, and Google Scholar for studies 
written in English from 1995 to 2014. We used the follow
ing search terms: arteriovenous fistula; surveillance 
strategies; stenosis; flow rate; pressure; coronary flow 
reserve; fractional flow reserve; pressure drop coefficient; 
resistance index, in combination with the exploded term 
“diagnosis”. The references were included based on 
their relevance and contribution to address the cha
llenges and future directions in the diagnostic field of 
stenosis linked to AVF. 

AVF MATURATION, FUNCTIONALITY, 
AND DYSFUNCTION
According to the guidelines of NKF-KDOQI[11,12], the 
venous segment of a matured AVF should follow the 
rules of sixes: a blood flow > 600 mL/min, a diameter > 
6 mm, a depth of around 6 mm, and at least 6 cm of a 
straight segment for cannulation. Normally, a minimum 
of 28 d (d: days) should be allowed for AVF maturation 
before performing the first needling; however, this time 
could be extended if the AVF fails to mature. Once an 
AVF is used for cannulation, it should be able to provide 
a minimum flow rate of 350-450 mL/min during 3-5 h of 
dialysis without recirculation, a characteristic that defines 
a functional AVF. A dysfunctional AVF is, however, defined 
as an access that is not able to provide the minimum 
flow during dialysis and is clinically identified by varia
tions in thrill/bruit, difficult cannulation, recirculation, 
excessive bleeding from the venopuncture sites and 
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ultimately thrombosis. Thrombosis, the main cause of 
access failure, is usually preceded by the development 
of an underlying stenosis. Consequently, the detection of 
stenosis in AVFs before thrombosis could offer a strategy 
to improve AVF survival by early intervention. 

Stenosis in vascular access
Stenosis in vascular access can be categorized into two 
main groups of inflow and outflow stenoses[9,25]. An 
inflow stenosis is a lesion that occurs around the anas
tomosis and proximal to the venous needle, while an 
outflow stenosis is located further from anastomosis 
and distal to the venous needle. The stenosis location 
has been shown to be dependent on the type of access. 
Radio-cephalic AVFs are more prone to inflow stenosis, 
whereas outflow stenosis is more likely to occur in 
the brachio-cephalic AVFs. In contrast to AVFs, the 
arteriovenous grafts (AVGs) mostly develop outflow 
stenosis[26]. Figure 1A[27] and 1B[27] show the schematics 
of an inflow and outflow stenosis with respect to the 
anastomosis and cannulation sites, respectively, while 
Figure 1C[25] shows an angiographic picture of an AVF 
with multiple inflow and outflow lesions. All the clinical 
monitoring and surveillance programs have been de
signed to predict the development of a significant 
stenosis early enough to allow preemptive corrections 
of AVFs. Despite the importance of stenosis severity, its 
definition is still controversial[27,28]. A significant stenosis 

has been defined as a local reduction of > 50% in luminal 
diameter as compared to the adjacent normal vessel. 
This definition is inherently biased and is dependent 
on the location of the reference cross-section in the 
adjacent normal vessel (Figure 2[27]). Also, imaging tech
niques such as Doppler ultrasound only provides a 2D 
illustration of a 3D lesion, while other imaging modalities 
such as computed tomography (CT)-scan or magnetic 
resonance imaging (MRI) are expensive and not readily 
accessible. Despite these drawbacks, the stenosis 
severity still serves as the most important endpoint to 
direct the clinical decision making for the timing of fur
ther interventions.

MONITORING AND SURVEILLANCE 
PROGRAMS 
Monitoring strategies mainly include physical examination 
(PE) and other clinical evidences of access dysfunction 
for stenosis detection, while surveillance programs were 
intended to supplement clinical monitoring by measuring 
variations in blood flow rate and venous access pressure. 
The PE, backbone of all screening programs, is a readily 
available and cost-effective tool to detect inflow and 
outflow stenosis in AVFs. PE has proved to be an accurate 
predictor of venous stenosis, and several studies have 
concluded that PE should be the part of all screening 
programs[29]. The only drawback of PE is the need for 
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Figure 1  Schematic of the locations of (A) inflow stenosis, and (B) outflow lesion with respect to the anastomosis and cannulation sites[27]. The (green) 
arrows in A and B represent the direction of blood flow within the arteriovenous fistulas (AVF) and the dialysis needles; B: Depicts a recirculation condition under which 
due to significant outflow stenosis the blood flow from dialysis machine returns back to dialyzer; C: An angiographic picture of an AVF with multiple inflow stenoses (single 
head arrows) and outflow stenosis (double head arrow and the arrow head). Reprinted from Asif et al[25] and Fahrtash et al[27], with permission.
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the threshold for intervention. Under current KDOQI 
guidelines, an AVF should be referred for fistulogram 
when Qa < 400-500 mL/min. 

Polkinghorne et al[15] looked at the effectiveness of 
the KDOQI guideline for Qa (< 500 mL/min) to detect 
a significant stenosis in 137 patients with AVF. These 
patients were randomly assigned to a control group 
receiving standard-of-care clinical treatment and Qa 
surveillance group that received the same treatment 
as the control group plus monthly Qa measurement. 
Under the normal treatment, an AVF was referred to 
fistulography if any of the following occurred: (1) raised 
venous dynamic pressure; (2) reduced blood pump 
flow; or (3) excessive bleeding from venopuncture site. 
They showed that the likelihood of stenosis detection 
in the Qa surveillance group was two times but 
insignificant in relation to the control group, with a trend 
for a significant stenosis to be detected earlier. However, 
they also showed that over reliance on only blood flow 
threshold < 500 mL/min could misdiagnose some cases 
with positive sign of stenosis under standard-of-care 
treatment and angiography. They concluded that this 
misdiagnosis could be due to lack of understanding of 
the relationship between the blood flow in the vascular 
access and a developing stenosis. 

Tessitore et al[33] tested different surveillance tech
niques such as PE, venous access pressure ratio, re
circulation, and Qa on a random population of 119 ma
tured AVFs to find the ability and accuracy of these 
methods in detecting a significant stenosis. In addition 
to the surveillance methods, all patients underwent 
angiography to identify the grade of stenosis in the 
AVFs. Almost 50% of the AVFs had a significant stenosis 
either upstream of venous needle (inflow stenosis) or 
downstream of venous needle (outflow stenosis) or 
at both sites. A combination of PE and Qa < 650 mL/
min was able to provide a moderate-to-excellent tool 
to detect inflow stenosis with sensitivity of 85% and 
specificity of 89%. However, Qa was not determined 
to be an adequate predictor of outflow stenosis. There
fore, they concluded that accuracy of Qa to detect a 
significant stenosis is strongly dependent on the location 
of lesion. 

Moreover, a randomized study[36] on 58 patients 
showed that preemptive intervention for AVFs with a Qa 
> 500 mL/min results in 3-fold reduction in thrombosis 
and loss of vascular access as compared to the KDOQI 
guideline (Qa < 400-500 mL/min) that is more suitable 
to detect a hemodynamically significant stenosis. 
Therefore, the current Qa surveillance for AVF needs 
modification for improved detection of a significant 
stenosis well before it adversely affects the functional or 
hemodynamic condition. 

Pressure surveillance
Besarab et al[37,38] proposed the use of venous access 
pressure to predict the stenosis severity in AVGs. Figure 
4[38] shows the schematic for the measurement of venous 
access pressure using pressure transducers at the 

trained and experienced dialysis personals, leading to 
variability in decision making. 

FUNCTIONAL (HEMODYNAMIC) 
ENDPOINTS
A developing stenosis eventually reduces blood flow 
and alters pressure profiles in the vascular access. 
Effects of stenosis on hemodynamic (blood flow and 
pressure) profiles are dependent on the type of vascular 
access (AVF or AVG) and the location of stenosis (inflow, 
outflow, or both). Therefore, monitoring the changes 
in flow and pressure can provide useful functional infor
mation on the severity of the underlying stenosis. NKF-
KDOQI guidelines have recommended that both AVGs 
and AVFs undergo routine surveillance for blood flow 
and venous access pressure measurements.

Flow surveillance
The blood flow (Qa) measurement is currently the gold 
standard of all surveillance programs. The Qa mea
surement has been shown to be fairly reproducible both 
within and between the dialysis sessions. Blood flow 
rate can be measured by either indirect techniques such 
as ultrasound dilution or direct methods such as Doppler 
ultrasound, or MRI. The latter can provide valuable 
information about the location and severity of stenosis; 
however, it has the disadvantage of being more 
expensive and time consuming. Figure 3[8,9] shows a 
sample velocity pulse obtained from Doppler ultrasound 
as well as an example of detected stenosis using such 
technique. Although Qa has been widely used as the 
most reliable surveillance strategy, there are numerous 
different Qa thresholds for clinical decision makings in 
AVFs[30]. A wide range of Qa from 300 mL/min to 900 
mL/min[31-35] has been reported in different studies as 
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cf adjacent vein A/C → 75%
cf outflow vein A/D → 30%
cf inflow vein A/E → 0%
cf inflow artery A/F → -25%

Figure 2  Dependency of stenosis severity to the location of reference cross 
sec-tion[27]. In this figure stenosis is located at A. Depending on the location of the 
reference cross-section, one can calculate a stenosis severity ranging from -25% 
to 75%. The -25% diameter changes represents a case in which the minimum 
diameter in the arteriovenous fistulas circuit has happened elsewhere than cross-
section A. Reprinted from Fahrtash et al[27], with permission.
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venous needle and also at the drip chamber of dialysis 
circuit. Further with the development of this technique, 
the ratio of venous access pressure (VAP) to the mean 
arterial pressure (MAP) was used for detecting the 
stenosis severity (VAPR = VAP/MAP). A VAPR > 0.55 was 
associated with a clinically significant stenosis. In a pro
spective study, Besarab et al[39] monitored the variation 
of VAPR on 832 patients among whom 80% of accesses 

were AVG. The VAPR > 0.55 was found to be an excellent 
criterion for angiographic referral and intervention of a 
clinical stenosis in AVGs. It should be noted that VAPR 
was primarily developed to detect outflow stenosis in 
AVGs and by design was unable to detect an inflow 
stenosis[10]. It should be noted that AVGs are more prone 
to develop an outflow stenosis than an inflow lesion. In 
case of an inflow stenosis pressure drops in the access 
and consequently, VAPR remains below the cut-off level. 
Thus VAPR has been unsuccessful to detect the inflow 
lesions in AVGs. 

Although, the VAPR is a promising parameter in 
AVGs[13,18,39,40], it has failed to show much advantage in 
assessing the functionality of AVFs[8,9,15]. This assertion 
originates from the fact that there is a fundamental 
difference between AVFs and AVGs. The AVG is ess
entially a single tube that connects the artery to vein, 
and thus, all the blood that enters the arterial anas
tomosis has to exit from the venous anastomosis. 
Therefore, any abnormal elevation in the pressure can 
be associated with the formation of stenosis mainly 
in the outflow segment. In contrast, the VAPR may 
show lesser variation while a stenosis is developing in 
an AVF because of the collateral pathways (accessory 
or collateral veins) that provide an alternative route to 
bypass the significant stenosis. Consequently, the flow in 

Figure 3  (A) Velocity pulse from Doppler ultrasound, and (B) detection of stenosis and estimating its grade using Doppler ultrasound[8,9]. AVF: Arteriovenous 
fistula. Reprinted from Campos et al[8] and Feddersen et al[9], with permission.
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Figure 4  Schematic for measurement of venous access pressure in an arte­
riovenous graft using pressure transducers located at the venous needle 
and drip chamber[38]. Reprinted from Besarab et al[38], with permission.
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the upstream venous segment of AVFs may not change 
even in the presence of downstream significant stenosis. 
In other words, the VAPR may undergo minimal changes 
as the flow can occur due to presence of downstream 
collateral channels. 

The effect of stenosis on the flow and pressure fields 
is dependent on the location of stenosis. In general, 
an outflow stenosis causes an increase in the venous 
access pressure, while the access flow decreases over 
time. This is particularly more evident in an AVG than an 
AVF. In such scenario, an AVF can maintain a relatively 
high flow rate with almost unchanged pressure levels 
due to the development of collaterals. In the case of an 
inflow stenosis venous access pressure either remains 
stable or can decrease with the reduction in access 
flow under adverse remodeling. Therefore, pressure 
monitoring alone may not be able to detect such inflow 
stenosis, while it can be detected by sequential flow 
measurements and PE. 

ANATOMICAL ENDPOINTS
Once an access is diagnosed for a significant stenosis 
either based on the standard-of-care clinical treatment 
or any of the functional surveillance strategies, a fistu
logram is acquired to determine the grade and location 
of stenosis. However, as discussed earlier, there are a 
few criticisms to the current measurement protocol of 
the stenosis severity based on a fistulogram. These 
include: (1) fistulogram provides only a 2D illustration 
of 3D vessel; and (2) stenosis definition is biased to the 
location of the reference cross-section in the adjacent 
normal vessel for which the diameter varies a lot. 

For example in a recent study, Fahrtash et al[27] 
criticized the current definition of stenosis severity and 
showed that, stenosis can have a wide range of severity 
from -25% to 75% reduction in luminal diameter based 
on the location of reference cross-section (Figure 2). 
Therefore, they hypothesized that a significant stenosis 
can be determined based on the absolute minimum 
diameter in the AVFs. They divided 170 radio-cephalic 
AVFs into two groups: dysfunctional (n = 93) and 
functional (n = 77) AVFs. The absolute minimum 
diameters of two groups were measured using grayscale 
and color ultrasound. They found that a diameter of 
2.7 mm can be a good cutoff value to distinguish a 
functional radio-cephalic AVF from a dysfunctional one 
with 90% sensitivity and 80% specificity. Thus, it was 
concluded that a minimum diameter can be a more 
accurate measure to decide on the dysfunctionality of 
an AVF. However, this study was limited to only radio-
cephalic AVFs and thus, more studies are needed to 
determine the critical minimum diameter for other types 
of AVFs.

Other studies[19,41-43] have primarily introduced the 
diameter as a pre-operative factor to predict if an AVF 
will mature. Current guidelines suggest a minimum 
diameter of 2 mm for successful AVF creation at wrist, 

but agreement on minimal diameter for other sites is 
lacking[19]. Lauvao et al[42] evaluated 158 patients under
going initial dialysis access creation with native AVF. 
Three types of AVFs were created in these subjects 
including posterior radiocephalic AVF (n = 24), wrist 
radiocephalic AVF (n = 72), and brachiocephalic AVF (n 
= 62). Using multivariate logistic regression analysis, 
a vein diameter > 4 mm was found to be the only inde
pendent predictor of AVF maturation. However, a pre
vious study by Wong et al[44] on 46 patients with initial 
radio-cephalic fistula suggested a diameter > 1.6 
mm as the predictor of successful maturation of AVF. 
Therefore, despite its significance, there is still not a 
uniform agreement on the minimum diameter of AVF 
that can assist the clinical decision makings. 

OTHER FUNCTIONAL ENDPOINTS
In addition to flow, pressure, and anatomical end
points, wall shear stress has also been shown to have 
a strong correlation with functionality of AVFs. A multi-
fold increase in blood flow rate after the AVF placement 
results in an extensive raise in the wall shear stress 
(WSS) levels acting on the luminal surface of the fistula. 
In order to accommodate for the marked increase in 
the hemodynamic stresses, the arterial and venous 
segments of the AVFs undergo structural changes 
such as vasodilation and wall hypertrophy[45-48]. These 
compensatory responses, also known as remodeling, 
attempt to regain the baseline levels of hemodynamic 
stresses (pre-surgery condition) in the vessels. Arterial 
remodeling in AVFs is mainly characterized by dilation 
and intima-media hypertrophy (outward hypertrophic 
remodeling)[49]. However, this adoptive remodeling in 
the venous segment can be interrupted by aggressive 
formation of neointimal hyperplasia, which can result 
in an undesired hypertrophy (thickening of the venous 
wall in the inward direction) and later venous stenosis, 
the major cause of failure in the AVFs. Therefore, 
monitoring the WSS levels can provide useful information 
on the functionality status of the AVFs. 

Rajabi-Jaghargh et al[50] studied the linkage between 
the longitudinal changes in WSS and the luminal dil
ation for the AVFs in a pig model. Changes in the WSS 
levels within the AVFs were evaluated from the com
putational fluid dynamics models of the fistulas that 
were developed based on the acquired CT-scan and 
Doppler ultrasound data of the pigs at 2 d, 7 d, and 
28 d post surgery time points. It was found that the 
slope of changes of WSS over time [τ ’ = (WSS28 d or 7 d 
- WSS7 d or 2 d)/(time difference)] can be used to assess 
the functionality status in AVFs. The τ ’ for the AVFs 
with favorable remodeling (FR), as shown in Figure 
5A[50], was negative between all the successive time-
points representing a consistent decrease in the WSS 
levels over time. In contrast, for the AVFs with adverse 
remodeling (AR), Figure 5A, the τ ’ at all the successive 
time-points were positive showing that WSS levels were 
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increasing over time for this group. These opposite 
patterns of WSS over time were accompanied with 
distinct remodeling behaviors within the two groups. 
The luminal area of the venous segment for the FR 
increased over time (Figure 5B), while for the AR the 
luminal area remained unchanged or reduced. 

Also, in another study[51] by the same group, they 
showed that the temporal changes in shear stress 
can be correlated with morphological changes in the 
venous segment (Figure 6A). The morphological 
changes were quantified with the ratio of differences 
in diameter between successive time points (ΔDh) by 
the amount of intima media thickness (IMT). The IMT 
was obtained from histology analysis (Figure 6B). The τ ’ 
showed distinct correlation between the AVFs with FR as 
compared to the ones with AR (Figure 6A). The positive 
τ ’ in the AR group was associated with the largest 
amount of IMT and lowest or negative ΔDh, which also 
revealed stenosis formation in the venous segment. In 
contrast, the negative τ ’ was shown to be associated 

with relatively larger ΔDh and larger IMT. This showed 
that the IMT in the AVFs with FR was in the outward 
direction as compared to the inward hypertrophy in AR 
group. Therefore, it was concluded that the increase in 
WSS of the venous segment of an AVF over time can 
be associated with adverse remodeling and reduced 
functionality, while the decrease in WSS over time can 
be considered a sign of favorable remodeling. 

Although WSS has a key role on remodeling beha
vior and functionality of AVFs, the complexities and 
limitations associated with the accurate calculation of 
WSS under clinical settings have made it an undesirable 
clinical endpoint for surveillance strategies. Therefore, 
the main focus of this review is to introduce new diag
nostic tools that can be readily available under current 
clinical settings such as flow, pressure, and anatomical 
endpoints. These endpoints, especially flow and pre
ssure, have also been the main focus of surveillance 
strategies. However, as mentioned earlier the ability of 
current surveillance strategies to predict the functionality 

τ'
 (

dy
ne

/c
m

2  p
er

 d
ay

)

B

Ar
ea

 (
cm

2 )

0             5             10           15            20            25           30

1.2

1.0

0.8

0.6

0.4

0.2

0.0

t /d

FR                 AR

7                                          28

P  < 0.052.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

P  = 0.07

FR                 AR
A

t /d

Figure 5  Variation in (A) temporal gradient of wall shear stress and (B) temporal gradient of luminal area of the venous segment for arteriovenous fistulas with 
favorable remodeling and adverse remodeling over time[50]. FR: Favorable remodeling; AR: Adverse remodeling. The t/d in the x axis stands for time (days). Reprinted from 
Rajabi-Jagahrgh et al[50], with permission.

Δ D
h /

IM
T 

(m
m

/u
ni

ts
)

-3           -2           -1             0             1             2            3

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

τ ' (dyne/cm2 per day)

r = -0.78

r = 0.65

FR         ARA

90

180

270

0

B

Figure 6  (A) Variation in morphological changes of the venous segment with respect to corresponding temporal gradient of wall shear stress (τ ΄) for 
arteriovenous fistulas with favorable remodeling and adverse remodeling[51]. Morphological changes were quantified by calculating the ratio of differences 
in luminal diameter of venous segment over time (ΔDh) to the corresponding amount of intima-media thickening (IMT). The IMT was calculated from (B) histology 
analysis using hematoxylin and eosin (H and E). The IMT was calculated as the average of intima-media thicknesses at four quadrants of each H and E staining slide. 
FR: Favorable remodeling; AR: Adverse remodeling; AVFs: Arteriovenous fistulas. Reprinted from Rajabi-Jagahrgh et al[51], with permission.

Rajabi-Jaghargh E et al . Functional diagnostic endpoints for arteriovenous fistula



13 February 6, 2015|Volume 4|Issue 1|WJN|www.wjgnet.com

status of AVFs has been controversial. This limitation 
can be associated with the fact that Qa is based on 
only flow measurements, while the VAPR is a pressure 
based parameter. However, it may be noted that both 
flow and pressure change under a developing stenosis. 
Therefore, relying on parameters that are either based 
on pressure or flow can result in inaccurate and less 
than optimal decision making outcomes. Consequently, 
there is a need for new functional diagnostic endpoints 
that can combine both effects of pressure and flow. 

FUNCTIONAL DIAGNOSTIC 
PARAMETERS FOR CARDIOVASCULAR 
AND RENAL STENOSIS
Adequacy of diagnostic tools that are based on either 
pressure or flow has been one of the major challenges 
for assessing the functional severity of stenosis in vas
culatures such as coronary and renal arteries[52,53]. In 
this section, the limitations of current hemodynamic 
(pressure or flow) based endpoints for detecting the 
cardiovascular and renal stenoses will be discussed. 
Also, the combined functional (pressure and flow) end
points for better detection of stenosis in vasculatures 
will be introduced. 

Existing cardiovascular and renal diagnostic endpoints
Currently, fractional flow reserve (FFR; a pressure ratio) 
and coronary flow reserve (CFR; a flow ratio) are the 
two gold standards to assess the functional severity of a 
stenosis in coronary arteries[54]. FFR is the ratio of mean 
pressure distal to a stenosis to the mean proximal 
pressure under hyperemic condition. CFR is the ratio of 
blood flow rate to a diseased vessel under hyperemic 
condition to the corresponding basal (non-hyperemic 
or resting) flow. The values of FFR and CFR decrease 
as the stenosis severity increases. However, both FFR 
and CFR are affected not only by the stenosis severity 
but also by distal microvascular flow resistance that 
can increase under left ventricle hypertrophy, chronic 
or acute ischemia, diabetes mellitus, and other disease 
conditions[55-57]. If microvascular resistance is abnormal 
(high), then CFR decreases while FFR tends to increase. 
Under such scenario, FFR may be incorrectly above 
the cut-off (0.75-0.8) range despite the existence of 
a significant stenosis[58,59]. This may lead to inaccurate 
diagnosis which can result in either delay or missing 
of intervention procedure. Similar limitations exist for 
current KDOQI surveillance strategies to detect an 
outflow stenosis. Also, in the presence of collateral 
channels both CFR and FFR increase which result in 
uncertainty in diagnostics[60]. This is also similar to 
the scenario of an outflow stenosis with developed 
collateral channels in AVFs. These limitations have been 
associated with the inherent inaccuracies of current 
diagnostic parameters to detect stenosis severity that 
are based on either pressure or flow measurements. 

Such gap has resulted in recent attempts to introduce 
better diagnostic tools that can combine the effects of 
pressure and flow[61-64]. The new diagnostic endpoints 
rely on fluid dynamics principals that are based on non-
linear relationship between pressure and flow in the 
presence of a developing stenosis.

Pressure-flow relationship in stenosed vessels
Based on fluid mechanics fundamentals, pressure drop 
for an incompressible (blood) flow inside a vessel is a 
function of frictional forces (viscous losses) and losses 
due to momentum changes. The latter can be induced 
by variation in luminal diameter (or area) of the vessel 
(i.e., as a result of a stenosis), or presence of bends, 
bifurcations, anastomosis, and, etc. The viscous for
ces are linear function of flow, while the momentum 
changes have quadratic (non-linear) relationship with 
flow. In general, the pressure drop-flow relationship can 
be written as below:

                                 Δp = Av + Bv2                        (1)
where A and B represent the coefficients of viscous los
ses, and losses due to momentum changes, respectively. 
Equation 1 can be also written in a more general form as 
below:

                                     Δp = kvn                             (2)
where n can vary between 1 and 2. The exponent in 
this relationship is of specific importance. For a fully 
developed laminar flow in a straight vessel, viscous losses 
are the main component of pressure drop. For such 
flows, n is nearly equal to 1. However, if the momentum 
of flow changes due to change in luminal diameter (i.e., 
as a result of a stenosis), or due to existence of bends, 
bifurcations, or anastomosis, then the exponent of Δp-v 
relationship will become greater than 1. As the exponent 
becomes closer to 2, the contribution of momentum 
changes to pressure drop become more pronounced. 

Using analytical formulations, Rajabi-Jaghargh et 
al[65] have shown that at early stages of stenosis, viscous 
losses are the most dominant component of pressure 
drop and n stays closer to 1. However, as the stenosis 
severity increases from 64% to 90% area stenosis the 
contribution of momentum changes to pressure drop 
becomes more pronounced and n will be > 1.5. Figure 
7[65] shows the contribution of viscous losses and losses 
due to momentum changes to the total pressure drop 
in a stenosed artery with the increase in the percentage 
area stenosis. The n is equal to 1.5 at the point where 
the viscous losses and momentum changes contribute 
equally to the total pressure drop. For n < 1.5, the 
contribution of viscous losses are more, while losses due 
to momentum changes are more pronounced for n > 1.5. 
In case of an AVF, anastomosis segment imposes a local 
pressure loss due to momentum changes (blood flow 
acceleration in the bend), and thus Δp-v relationship is 
expected to have an exponent > 1. Although the Δp-v 
relationship does not directly help us to evaluate the 
functionality of an AVF, analyzing the exponent of Δp-v 
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relationship can identify the contribution of viscous or 
momentum losses to the total pressure drop and the 
underlying geometrical variations (diameter or area 
change) in the AVF.

COMBINED FUNCTIONAL DIAGNOSTIC 
ENDPOINTS 
Based on the pressure-flow relationship in stenosed 
vessels, the new functional diagnostic parameters can 
be defined as (1) resistance index, which represents 
the linear scaling of pressure drop with the velocity 
at the proximal artery (R = Δp/v); and (2) pressure 
drop coefficient, which is a pressure drop normalized 
by the dynamic pressure at the proximal artery (Cp = 
Δp/(0.5pv2), where ρ is blood density). The resistance 
index would be more helpful to predict a developing 
stenosis in early stages where n is closer to 1, while the 
pressure drop coefficient becomes more important as 
the stenosis becomes more severe over time in which 
case n is closer to 2. Both R and Cp have been shown 
to be better predictors of the functional severity of 
coronary stenosis under the limiting scenarios (i.e., micro
vascular disease and collateral channels) as compared 
to FFR and CFR, the current gold standards[66-69]. 

Combined functional diagnostic endpoints in AVFs
The new functional diagnostic endpoints (resistance 
index, R, and pressure drop coefficient, Cp) have been 
recently[70] used in a pilot study on a pig model. It was 
shown that these parameters are capable of detecting 
the very early signs of a developing stenosis in AVFs. In 

this study, six AVFs were created between the femoral 
arteries and veins of 3 pigs, each pig having two AVFs on 
either limb. The variation in flow rates and geometries of 
the AVFs were studied at three post-surgery time points 
(2 d, 7 d, and 28 d) over about one month using Doppler 
ultrasound and CT-scan techniques. Also, computational 
fluid dynamics were used to calculate the pressure and 
velocity profiles for all the AVFs at every time points. 
Time averaged pressure difference between the proximal 
artery and outflow vein in conjunction with the average 
velocity at proximal artery were used to calculate Cp 
and R in AVFs. During the first week, all AVFs attained 
favorable remodeling[50,51] characterized by dilation, 
significant increase in flow rate, unchanged pressure 
drop, reduction in severity of local stenosis, and some 
amount of thickening due to the development of intimal 
hyperplasia. These changes were associated with the 
reduction in Cp and R levels over the first week (Figure 8). 

In contrast, from 7 d to 28 d some of the AVFs show
ed significant dilation, while others experienced minimal 
changes in the mean diameter. During this period, the 
amount of thickening was also doubled in all the AVFs. 
Therefore, the minimal dilation and high amount of IMT 
from 7 d to 28 d for some AVFs resulted in adverse 
remodeling characterized by inward hypertrophy in 
those AVFs. On the other hand, the AVFs with significant 
dilation and venous wall thickening underwent positive 
remodeling with outward hypertrophy. Over this time 
period (7 d-28 d), the increase in average diameter and 
flow rate were minimal as compared to the first week, 
while the pressure drop increased for 50% of its baseline 
value. Also, the severity of the local stenosis, measured 
by area reduction, in AVFs (Figure 8A[70]) increased to 
41.7% ± 8.3% which was below the clinically significant 
level (= 75% area stenosis). Corresponding to these 
changes, Cp and R (Figure 8B[70]) increased considerably 
over this time period. It was concluded that assessing 
the AVF functionality based on only diameter or flow 
rate could be misleading because they may not reveal 
complete information regarding the developing stenosis. 
However, Cp and R significantly increased over this time 
period and showed better delineation of stenosis severity. 
Thus, Cp and R could better assess the functionality of 
an AVF. However, this study was limited to relatively 
small number of data points and thus, studies with 
larger population and longer duration are needed to 
better determine advantages of the new combined 
pressure-flow diagnostic endpoints over the current gold 
standards. 
 
Bedside measurement of new functional diagnostic 
endpoints
It should be noted that all the pressure-flow parameters 
that are needed to calculate Cp or R can be measured 
under current clinical settings. Velocity at the proximal 
artery can be measured through Doppler ultrasound 
probes and the pressure drop can be measured from 
the pressure readings at the cannulation sites during 
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the dialysis treatment. In the case of an inflow stenosis 
both R and Cp increases as pressure drop increases and 
flow rate decreases. Thus, both R and Cp are capable of 
detecting a developing inflow stenosis. If stenosis occurs 
downstream of the venous cannula (outflow stenosis) 
in AVFs, the pressure readings can show either lower 
or unchanged values of pressure drop over time, which 
does not reflect the presence of downstream stenosis. 
This is because of the development of collateral ch
annels at the outflow stenosis area in AVFs. This shor
tcoming has been the major criticism to the current 
pressure surveillance program in which the AVF patency 
is assessed based on only pressure ratios at the outflow 
venous cannula and proximal artery. In such scenarios, 
if the venous flow rate decreases, both Cp and R begin 
to increase. It is noteworthy that irrespective of Δp 
status (numerator), as Cp has inverse quadratic relation 
with flow, any reduction in flow shows non-linear and 
pronounced increase in Cp as compared to R. Therefore, 
R and Cp are also capable of detecting an outflow 
stenosis. Thus, combining the flow and pressure data 
in the functional diagnostic endpoints could improve the 
ability of these parameters in assessing the patency of 
AVFs. 

Limitations
The new functional diagnostic endpoints have not 
been tested for patient population. Thus, multi-central 
randomized studies on human subjects are needed to 
evaluate the potential advantages of the proposed dia
gnostic parameters for longitudinal assessment of AVF 
functionality. 

CONCLUSION
According to KDOQI guidelines, a blood flow (Qa) < 
400-500 mL/min and a ratio of venous access pressure 
to main arterial pressure (VAPR) > 0.55 are associated 
with the existence of a significant stenosis which needs 
immediate interventional care. However, an AVF can 
maintain a relatively high blood flow rate and a normal 
VAPR despite the presence of a significant stenosis. The Qa 

has shown to be a strong predictor of an inflow stenosis, 
whereas VAPR has shown to be a poor predictor of 
stenotic lesions in AVFs. These shortcomings have been 
mainly attributed to the fact that under a developing 
stenosis both pressure and flow profiles change, and 
thus, relying on only one of these parameters to detect 
a significant stenosis could be inadequate. Similar 
shortcomings also have been reported in detection 
of coronary and renal stenosis based on diagnostic 
endpoints that are either based on flow or pressure. In 
the context of coronary or renal stenosis, it has been 
shown that the diagnostic endpoints that combine 
the effects of pressure and flow can better predict the 
functional severity of a stenosis. This similarity inspired 
us to bridge between the advances in diagnostic field 
of coronary and renal stenosis with the diagnosis of 
stenotic lesions in AVFs. The new functional diagnostic 
endpoints are based on fundamental fluid dynamics 
concepts and are primarily presented in two major 
forms including: (1) resistance index (a ratio of pressure 
drop by flow); and (2) pressure drop coefficient (the 
pressure drop normalized by the dynamic pressure). 
We believe that these endpoints are capable of better 
distinguishing changes in the hemodynamic variations 
(pressure and flow) and thus, could be promising 
diagnostic tools to detect the functional severity of 
stenosis in AVFs. 
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