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Abstract
In facing the mounting clinical challenge and suboptimal 
techniques of craniofacial bone defects resulting from 
various conditions, such as congenital malformations, 
osteomyelitis, trauma and tumor resection, the ongoing 
research of regenerative medicine using stem cells and 
concurrent advancement in biotechnology have shifted 
the focus from surgical reconstruction to a novel stem 

cell-based tissue engineering strategy for customized 
and functional craniofacial bone regeneration. Given the 
unique ontogenetical and cell biological properties of 
perinatal stem cells, emerging evidence has suggested 
these extraembryonic tissue-derived stem cells to be a 
promising cell source for extensive use in regenerative 
medicine and tissue engineering. In this review, we 
summarize the current achievements and obstacles 
in stem cell-based craniofacial bone regeneration and 
subsequently we address the characteristics of various 
types of perinatal stem cells and their novel application 
in tissue engineering of craniofacial bone. We propose 
the promising feasibility and scope of perinatal stem 
cell-based craniofacial bone tissue engineering for future 
clinical application.
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Core tip: Given the unique ontogenetical and cell biological 
properties of perinatal stem cells, emerging evidence 
has suggested these extraembryonic tissue-derived stem 
cells to be a promising cell source for extensive use in 
regenerative medicine and tissue engineering. In this 
review, we summarize the current achievements and 
obstacles in stem cell-based craniofacial bone regeneration 
and subsequently we address the characteristics of various 
types of perinatal stem cells and their novel application 
in tissue engineering of craniofacial bone. We propose 
the promising feasibility and scope of perinatal stem cell-
based craniofacial bone tissue engineering for future 
clinical application.
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INTRODUCTION
The craniofacial bone has an essential role in supporting 
the adjacent soft tissues, providing anchorage for dental 
structures, maintaining structural stability for many physical 
functions and composing the esthetics of  the human body. 
Craniofacial bone defects resulting from various conditions, 
such as congenital malformation, trauma, osteomyelitis and 
tumor resection, often lead to large psychomedical burdens 
as well as difficult reconstructive challenges for both patients 
and craniofacial surgeons[1-5]. Current treatments for such 
skeletal defects often require invasive and technically 
challenging operations such as alloplastic reconstruction, 
bone grafting from various anatomic areas like the iliac 
crest and fibula and microvascular free-flap techniques[3,4,6-8]. 
While these procedures have been proven to be reliable and 
effective, they also result in secondary donor site defects, 
associated intra- and post-operative complications and 
extended hospitalization. Furthermore, these techniques 
were largely limited by the scarcity of  donor bone graft 
volume and patient physical conditions and struggled 
to restore pre-operative form and function. Suggested 
by recent clinical studies, stem cell-based bone tissue 
engineering has been recognized as a promising strategy for 
both aesthetic and functional reconstruction of  craniofacial 
bone defects[9-14]. 

To date, several stem cell sources, such as adult 
mesenchymal stem cells or mesenchymal stromal cells 
(MSCs), embryonic stem cells (ESCs) and induced 
pluripotent stem cells (iPSCs), have displayed promising 
osteogenic potential in vivo and in vitro and thus have 
been proposed as a potential cell source for bone tissue 
engineering[9,11-13,15,16]. However, the limitations associated 
with these stem cell sources are also significant[13,17-20]. In the 
last decade, the list of  putative human stem cell sources was 
amended to include human perinatal extraembryonic tissues, 
such as amniotic fluid, fetal membranes (amnion and chorion) 
and umbilical cord[21-23]. Due to their unique ontogenetic 
relationship to fetal development, the extraembryonic 
perinatal stem cells represent an intermediate cell type 
which has recently been described to combine qualities 
of  both their adult stem cell counterparts and ESCs and 
possess immunoprivileged characteristics, as well as a 
broad multipotent plasticity[24-29]. Most importantly, these 
cells, simply isolated from extraembryonic tissues which 
are normally discarded after birth, effectively avoid ethical 
issue involvement. All these attractive characteristics make 
perinatal stem cells a promising and noncontroversial source 
of  stem cells for extensive use in craniofacial bone tissue 
engineering (CBTE).

In the present review, we summarize the current research 
progress on stem cell-based craniofacial bone regeneration 
and subsequently we address the characteristics of  various 
perinatal stem cells and their novel application in CBTE.

CRANIOFACIAL BONE TISSUE 
ENGINEERING AND STEM CELLS
Craniofacial bone tissue engineering
As an alternative to surgical reconstruction, multidisciplinary 
developments in cell and molecular biology, developmental 
biology, materials science and bioengineering promoted 
the tissue engineering approach, which was composed 
of  stem/progenitor cells, biocompatible scaffolds and 
biochemical signals, to regenerate large tissue defects[30]. 
The ongoing tissue engineering strategy offers several 
potential benefits, including the avoidance of  secondary 
donor site defect, reduction of  hospitalization and medical 
burdens and most importantly, the ability to closely restore 
the normal anatomic structure and function. Among the 
variety of  current tissue regenerative indications based on 
the tissue engineering strategy, craniofacial bone defect is 
particularly suited to be tissue engineered. In fact, stem 
cell-based bone tissue engineering has already entered 
many preclinical or clinical applications in the craniofacial 
region.

Adult MSC-based craniofacial bone tissue engineering
Currently, one of  the most well-defined and utilized stem 
cell types in CBTE is the adult MSCs. These stem cells 
have been isolated and identified from various tissues 
such as bone marrow, adipose, muscle, dental pulp and 
periodontal ligament[9,11,12,14,31,32]. In 2001, Shang et al[33] 
showed augmented healing of  sheep cranial defects with 
calcium alginate gel containing autologous bone marrow-
derived MSCs (BMSCs). In 2004, Cowan et al[34] first 
demonstrated that hydroxyapatite-coated polylactic-co-
glycolic acid scaffolds seeded with adipose-derive MSCs 
(AMSCs) promoted bone regeneration of  critical-size 
calvarial defects using a rodent model[34]. More recently, a 
stem cell-based temporomandibular joint (TMJ) condylar 
bone graft using a tissue engineering strategy was reported, 
which suggested the possibility of  generating an entire 
articular condyle in the same shape and dimensions of  a 
human TMJ in vivo, with both cartilage and bone layers 
from a single population of  MSCs[35]. These observations 
were constantly supported in various craniofacial defect 
models of  mouse, rabbit and canine, with the utilization 
of  different MSC and biomaterial scaffolds[9,11,12,14,36-42]. In 
clinical experiments, autologous BMSCs were seeded onto 
bioscaffolds and transplanted to repair the mandible or 
alveolar defect in patients and showed satisfied ossification 
at the regenerated site in terms of  both esthetic and 
functional outcome[10,43-45]. In 2009, Mesimäki et al[46] 
reported the first use of  a microvascular custom-made 
ectopic bone flap developed from a preformed titanium 
cage filled with autologous AMSCs, β-tricalcium phosphate 
(β-TCP) granules to reconstruct a maxillary defect. Most 
recently, Thesleff  et al[47] described a novel method to 
reconstruct critical-sized calvarial defects of  adult patients 
using autologous AMSC and β-TCP granules, providing 
evidence that AMSCs combined with β-TCP can be used 
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to regenerate calvarial bone, with favorable clinical results. 
Although there have been many reports of  preliminary 
success using adult MSCs both in the laboratory and clinic 
for craniofacial bone regeneration, these stem cell sources 
are still significantly limited by their scarcity, invasive cell 
collection and cell aging[15,16,19,48].

Pluripotent stem cell-based craniofacial bone tissue 
engineering
After the revolutionary discovery and characterization of  
ESCs and iPSCs, further advances have been made towards 
applying bone tissue engineering methods with these 
promising pluripotent stem cells[15,16,19,20,49]. Harkness et al[50] 
reported a subpopulation of  fibroblast-like ESCs which 
showed up-regulation of  osteogenic specific markers and 
production of  extracellular mineralization when cultured 
in osteogenic induction medium. The implantation of  
these cells in a critical-sized calvarial defect of  immune 
deficient mice resulted in promoted new bone formation 
and partial repair of  the calvarial defect[50]. More recently, 
Ye et al[13] demonstrated de novo osteogenesis of  iPSCs 
within a critical-sized calvarial bone defect[13]. However, 
the application of  ESCs and iPSCs in craniofacial 
regeneration are still at a preliminary stage and significantly 
limited by controversial political and ethical concerns, as 
well as genomic instability, tumorigenesis and immune 
rejection[16-18]. The drawbacks of  these stem cell types may 
restrict their utility and performance in further clinical 
practice, prompting increasing interest in alternative stem 
cell sources for bone tissue engineering.

PERINATAL STEM CELLS
Perinatal stem cell research has been attracting mounting 
interest worldwide in recent years. Various populations 
of  stem cells, most of  which are comprised within the 
category of  mesenchymal stem cells, have been isolated 
from different extraembryonic-associated tissues.

Amniotic fluid-derived stem cells
Amniotic fluid (AF) is the nourishing and protective liquid 
located within the fetal sac throughout the gestational 
stage which contains heterogeneous cells originating from 
embryonic and extraembryonic tissues[51,52]. Previously, 
cells obtained from AF were mostly used for diagnostic 
purposes, such as sex determination, detection of  fetal 
infections and genetic diseases. During the last decades, 
different groups of  researchers have provided evidence 
that human amniotic fluid could be a pool of  stem cells. In 
2003, Prusa et al demonstrated that a distinct subpopulation 
of  cells expressing OCT4, a key transcript factor for 
pluripotent human stem cells and preventing differentiation 
of  stem cells, can be found in human amniotic fluid. In 
the same year, In’t Anker et al[53] demonstrated that human 
amniotic fluid contained a fibroblast-shaped cell population 
positive for mesenchymal markers such as CD90, CD105, 
CD73 and CD166 but negative for the hematopoietic 
markers such as CD45, CD34 and CD14[53]. Notably, 

De Coppi et al[54] successfully isolated a multipotential 
subpopulation of  stem cells in the amniotic fluid by 
fluorescence-activated cell sorting for c-kit positive cells. 
These amniotic fluid-derived stem cells (AFSCs) maintain 
a round shape for 1 wk after isolation and begin to change 
to a fibroblastoid morphology from the second week. 
Long term culture shows a high self-renewal capacity of  
these cells with > 300 population doublings, far exceeding 
Hayflick’s limit. The doubling time of  the undifferentiated 
cells is noted to be 36 h, with little variation during 
passaging. Analysis of  stem cell markers shows that the 
AFSCs express pluripotent markers SSEA4 and OCT4, 
as well as typical mesenchymal markers, but they did not 
express the full complement of  pluripotent markers, such 
as SSEA1, SSEA3, TRA1-60 or TRA1-81, indicating that 
AFSCs are not as primitive as ESCs and yet maintain 
greater potential than most adult MSCs[54-56]. Later, the 
existence and multi-differentiation capabilities of  AFSCs 
into cells and tissues from all three embryonic germ layers 
was widely confirmed by various independent reports[54,57-63]. 
Promising results in terms of  structural and functional 
outcomes highlight the true clinical potential of  AFSCs in 
cell-based therapies and tissue engineering perspectives.

Amnion-derived stem cells
The amniotic membrane is the innermost fetal layer of  
the placenta which lines the amniotic cavity and assures 
the normal growth and development of  the fetus during 
gestation. Normally, two types of  stem cells can be 
isolated from the amniotic membrane through mechanical 
separation and the subsequent enzymatic digestion, 
namely amniotic epithelial cells (AECs) and the amniotic 
mesenchymal stem cells (AMMSCs)[64]. What makes these 
cells especially attractive is that large amounts can be isolated 
from an uncontroversial material that is usually discarded 
after birth. AECs, developing from the central region of  the 
epiblast, build a single layer adjacent to the amniotic fluid 
and display a cobblestone-like epithelial morphology[64,65]. 
While AECs reside in the innermost layer of  the amnion, 
AMMSCs differentiated from somatopleuric mesodermal 
cells reside in the stromal matrix of  the amniotic 
membrane and exhibit a fibroblastoid morphology[66-68]. 
Given their different ontological and cell biological 
characteristics, subpopulations from both cell types have 
been confirmed to express a wide range of  pluripotency 
markers, such as OCT4, SOX2, SSEA4, SSEA3, as well 
as typical mesenchymal markers[65-70]. Further in vitro and 
in vivo studies confirmed their multilineage differentiation 
potential into cells derived from all three germ layers, 
such as neuron-like cells, cardiomyocytes, chondrocytes, 
osteocytes and hepatocytes[69,71-81]. Most importantly, the 
immunomodulatory capacity and immunoprivileged status 
of  amnion-derived stem cells make them a promising 
candidate for allogeneic transplantation and stem cell based 
therapies[2,25-27,82-91]. However, standardized collection, quality 
control and further preclinical and clinical research are 
still needed before safe amnion-derived stem cell banking 
products can be achieved[92].

151 January 26, 2015|Volume 7|Issue 1|WJSC|www.wjgnet.com

Si JW et al . Perinatal stem cells and CBTE



to resemble adult BMSCs while retaining some specific 
characteristics. In vitro, UCMSCs appear with a fibroblastoid 
morphology and display a greater expansion capacity and 
faster doubling time than adult BMSCs. Their morphology 
and proliferative characteristics did not change even after 
30 passages[100,101]. These cells consistently express typical 
mesenchymal markers as well as α-smooth muscle actin and 
low levels of  pluripotency markers, such as Oct4, Sox2 and 
Nanog[100,104,105]. Moreover, UCMSCs express a lower level 
of  HLA-ABC than BMSCs and were negative for CD31, 
CD34, CD45, HLA-DR, CD80 and CD86[106]. In vitro and 
in vivo studies confirmed their multi-differentiation potential 
of  mesodermal lineages, such as osteocytes, chondrocytes 
and cardiomyocytes, as well as other lineages such as 
neuron-like cell and hepatocytes[100,107-111]. Most importantly, 
UCMSCs possess immunomodulatory effects in vitro and in 
vivo and have been shown to be well tolerated in allogeneic 
transplantation experiments[28,106,112]. Promising results of  
preclinical and clinical studies using UCMSCs for treatment 
of  liver fibrosis, systemic lupus erythematosus, Sjogren’
s syndrome and GVHD have been reported which will 
further promote the therapeutic application of  UCMSCs in 
cell-based regenerative medicine[112-115].

APPLICATION OF PERINATAL STEM 
CELLS IN CRANIOFACIAL BONE TISSUE 
ENGINEERING
Due to their same ontogenetic origin, perinatal stem cells 
isolated from different extraembryonic tissues possess 
similar phenotypic and functional properties. In fact, 
AFSCs, AECs, AMMSCs, CMSCs and UCMSCs have 
been shown to exhibit osteogenic differentiation capacity 
both in vitro and in vivo[77,93,97,116-119]. In limited comparative 
studies, perinatal stem cells such as AFSCs and UCMSCs 
have been shown to display lower basal levels of  bone-
related genes, higher proliferation rate and much later 
senescence than BMSCs, resulting in a delayed but robust 
osteogenic differentiation capacity, which render them a 
promising candidate for cell banking and stem cell-based 
bone tissue engineering[120-122]. 

In face of  the mounting clinical demand and suboptimal 
techniques for craniofacial skeleton reconstruction, perinatal 
stem cells may be particularly useful for autologous or 
allogeneic CBTE for newborns and children and may also 
be used for adult patients after banking at later stages of  
life (Figure 1). Although preclinical applications of  perinatal 
stem cells in craniofacial bone regeneration are still limited, 
recent research progress of  these cells revealed multiple 
possibilities for their potential applications in CBTE.

One of  the most advanced applications of  perinatal stem 
cells in CBTE was demonstrated by the use of  UCMSCs in 
restoring rat cranial defects. Chen and colleagues investigated 
the in vitro and in vivo bone regenerative performance 
of  human UCMSCs and BMSCs with RGD-modified 
macroporous calcium phosphate cements (CPC), using 
a critical-sized athymic rat parietal bone defect (8 mm in 

Chorion-derived mesenchymal stem cells
The chorionic membrane of  human term placenta is 
a rich source of  stem cells from which mesenchymal 
stem cells from chorionic villi and chorionic plate can be 
isolated[24,93]. Notwithstanding the potential contamination 
of  decidual maternal stem cells suggested by many studies 
of  term chorionic cells with both fetal and maternal 
origin, or even pure maternal origin cells only, previous 
studies of  these chorion-derived mesenchymal stem 
cells (CMSCs) have been focused on primary isolation 
and limited cell characterization[24,66]. Like their stem 
cell counterparts from the placenta, CMSCs participate 
in placental tissue generation, maintenance, repair and 
possess a intermediate phenotype of  adult MSCs and 
pluripotent stem cells[93-95]. In vitro, the CMSCs have 
been reported to be more primitive than adult MSCs 
with evidence of  greater self-renewal and potential 
to differentiate beyond mesenchymal cell lineages to 
other lineages such as hepatocyte-like cells and neuron-
like cells[24,93,95-98]. In vivo, the CMSCs have recently been 
reported to have a therapeutic effect on liver injury and 
osteogenesis imperfecta through not just direct hepatocyte 
and osteocyte differentiation, but also secretion of  
cytokines and inhibition of  donor cell apoptosis[97,98]. Very 
recently, Jones et al[99] reported that CMSCs isolated from 
first trimester but not term human placenta accelerated 
tissue repair in dermal excision skin wounds and improved 
bone quality and plasticity in osteogenesis imperfecta of  
mice. Interestingly, the first trimester CMSCs showed 
an earlier state of  stemness, such as smaller size, faster 
kinetics, unique formation of  embryoid bodies and higher 
expression levels of  NANOG, SOX2, c-MYC and KLF4, 
than its term isolated counterparts. However, collection 
of  CMSCs in the first trimester is technically challenging 
and usually requires early termination of  pregnancy, an 
ethical obstacle to clinical applications.

Umbilical cord-derived mesenchymal stem cells 
The umbilical cord (UC) is an elastic cord that connects 
the fetus to the placenta during pregnancy. Anatomically, 
the UC consists of  two umbilical arteries (UA) and one 
umbilical vein (UV) embedded in a mucous connective 
proteoglycan-rich matrix called Wharton’s jelly (WJ). Since 
more than a decade ago when two independent teams 
reported their successful isolation of  mesenchymal like cells 
from porcine and human umbilical cord respectively[100,101], 
there has been increasing interest in studying the potential 
of  umbilical cord-derived mesenchymal stem cells 
(UCMSCs) for regenerative medicine. Generally, UCMSCs 
have been reported to be isolated from different parts of  
the UC such as UA, UV, WJ, umbilical-lining membrane 
and umbilical cord blood (UCB)[102]. Based on the 
optimized methods to isolate, culture and cryopreserve 
human UCMSCs, a human UC-MSC bank complying with 
good manufacturing practices has been established[103]. 
Given the controversy that exists on whether UCB or 
umbilical vessel-derived MSCs can be isolated, MSCs 
isolated from these various parts of  UC have been shown 
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diameter) model[123]. They observed similarly high expressions 
of  osteogenic specific genes and high percentages of  live 
cells and cell density on CPC for UCMSCs and BMSCs. 
After implantation for 24 wk, the new bone tissue of  
UCMSC-CPC and BMSC-CPC groups in vivo exhibited 
similarly higher bone mineral density, new bone amount and 
vessel density compared to the CPC control group. Notably, 
this observation was in agreement with a former study by Liu 
et al[124] using human UCMSCs and partially demineralized 
bone matrix for reconstruction of  critical-sized parietal bone 
defects (5 mm in diameter) in athymic rats. Interestingly, 
Barboni et al[125] reported AEC-enhanced bone regeneration 
using an ovine maxillary sinus augmentation model. Calcium-
phosphate synthetic bone substitutes, alone or engineered 
with ovine AECs, were grafted bilaterally into maxillary 
sinuses of  six adult sheep. After implantation, the scaffold 
integration and bone deposition are positively influenced 
by allotransplanted AECs. Sinus explants derived from an 
AEC-scaffold group displayed a reduced fibrotic reaction, a 
limited inflammatory response and an accelerated process of  
angiogenesis compared with the control group. In addition, 
a direct osteogenic differentiation of  ovine AECs in vivo was 
observed at 45 d post operation, suggested by the presence 
of  AECs-derived osteocalcin-expressing osteocytes entrapped 
within the newly deposited bone matrix. The general concept 
of  perinatal stem cell-based bone tissue engineering has also 

been validated using ASCs in several craniofacial bone defect 
models. A commercial magnesium-enriched hydroxyapatite 
(MgHA)/collagen-based scaffold seeded with or without 
ovine AFMCs was implanted in the bilateral maxillary 
sinus of  sheep models for up to 90 d. Results showed that 
application of  AFMCs increased new bone deposition and 
stimulated a more rapid angiogenic reaction[126]. In another 
study, researchers developed two combined constructs by 
seeding dental pulp stem cells (DPSCs) and AFSCs onto silk 
fibroin scaffolds respectively. The AFSCs-scaffold construct 
as well as DPSC-scaffold construct promoted early bone 
regeneration in the critical-sized rat parietal bone defects 
compared with scaffold alone[127]. However, the relative long-
term outcome of  AFSCs in craniofacial bone repair was still 
in question and the optimal scaffold composition for this 
particular application remains to be defined[128,129]. In addition, 
suggested by most of  the discussed studies, perinatal stem 
cells may play an essential role in new vessel formation in the 
regeneration site, which indirectly promotes the restoration 
of  craniofacial bone defects[123,125,126,128].

CONCLUSION
The ontological and anatomical origins of  stem cells 
have profound influences on their biological properties 
and performance in regenerative medicine. Promoted 
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Figure 1  Schematic illustration of the 
perinatal stem cell-based craniofacial bone 
tissue engineering. Generally, perinatal stem 
cells are easily harvested with no harm to the 
baby or mother and hold a most promising 
perspective for extensive application in tissue 
engineering. In the most visionary view, through 
sophisticated control of perinatal stem cells, 
biocompatible scaffolds and a signaling system, 
we will finally be able to bring the perinatal stem 
cell-based bone tissue engineering strategy to the 
customized and functional clinical reconstruction 
of craniofacial bone defects resulting from 
congenital malformations, osteomyelitis, trauma 
and tumor resection.



by the developments in cell and molecular biology, 
developmental biology and tissue engineering, the unique 
and advanced properties of  perinatal stem cells have been 
largely unveiled within the last decade: (1) the collection, 
preparation and application of  perinatal stem cells are 
scarcely involved with ethical issues; (2) most perinatal 
stem cells are easily harvested and manipulated with no 
harm to the baby or mother; (3) compared to adult MSCs 
which decreased in cell number, proliferation ability and 
differentiation capacities with age, perinatal stem cells are 
initially available in substantial numbers and exhibit greater 
proliferative activity than BMSCs, indicating the advantage 
for rapid expansion and consequent downstream application; 
(4) with an intermediate multipotency between pluripotent 
stem cells and adult MSCs, perinatal stem cells do not form 
a teratoma while maintaining a broad multi-differentiation 
capacity in vitro and in vivo; and (5) in terms of  their 
involvement in materno-fetal immunotolerance, perinatal 
stem cells exhibit low immunogenicity and potentially 
high immunomodulatory capacity, indicating a clinical 
prospective of  allogeneic cell transplantation. However, 
the mechanisms underlying the immunoprivileged and 
immunosuppressive effects of  perinatal stem cells have 
not yet been clearly defined.

Despite the problems researchers still face in translating 
scientific concepts from the bench to the bedside, these 
exciting experimental and preclinical achievements from 
intense research efforts suggest perinatal stem cells may 
offer a most promising scope and will continue to produce 
new and exciting progress for the novel cell-based CBTE in 
the future.
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