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Abstract 
Cancers that develop after middle age usually exhibit 
genomic instability and multiple mutations. This is in 
direct contrast to pediatric tumors that usually develop 
as a result of specific chromosomal translocations and 

epigenetic aberrations. The development of genomic 
instability is associated with mutations that contribute 
to cellular immortalization and transformation. Cancer 
occurs when cancer-initiating cells (CICs), also called 
cancer stem cells, develop as a result of these mutations. 
In this paper, we explore how CICs develop as a result 
of genomic instability, including looking at which cancer 
suppression mechanisms are abrogated. A recent in vitro  
study revealed the existence of a CIC induction pathway 
in differentiating stem cells. Under aberrant differentiation 
conditions, cells become senescent and develop genomic 
instabilities that lead to the development of CICs. The 
resulting CICs contain a mutation in the alternative 
reading frame of CDKN2A  (ARF)/p53 module, i.e. , in 
either ARF or p53. We summarize recently established 
knowledge of CIC development and cellular immortality, 
explore the role of the ARF/p53 module in protecting 
cells from transformation, and describe a risk factor 
for genomic destabilization that increases during the 
process of normal cell growth and differentiation and is 
associated with the downregulation of histone H2AX to 
levels representative of growth arrest in normal cells. 
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Core tip: Cancer usually develops in conjunction with 
genomic instability and multiple genetic mutations. Only a 
small number of cells, called cancer-initiating cells (CICs), 
are the progenitors of cancerous tissue; but how genomic 
instability and genetic mutations prompt CICs to develop 
is still unclear. Recent investigations have uncovered the 
existence of a pathway that could be responsible. This 
review explores how that pathway might induce the 
development of CICs, the tumor suppression mechanisms 
that must be abrogated in order for malignancies to 
occur, and the role of the alternative reading frame of 
CDKN2A (ARF)/p53 module/p53 module in protecting 
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normal cells from oncologic transformation.
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INTRODUCTION
Somatic stem cells are responsible for the development 
and homeostasis of organs and other bodily tissues. 
Cancer-initiating cells (CICs), or cancer stem cells, 
are responsible for the development[1,2], metastasis, 
and drug resistance[3-6] of tumors. Although CIC 
characteristics are increasingly being well defined, how 
CICs develop remains unclear.

Unlike pediatric tumors, which usually develop as a 
result of very specific chromosomal translocations[7,8] 
and epigenetic aberrations[9,10], cancers that become 
more common around the age of 40 years exhibit 
extreme chromosomal instability (CIN) or microsatellite 
instability (MSI)[11-14]. MSI occurs in cells that do not 
have adequate mismatch repair systems[15-17], and 
CIN occurs in the presence of other types of repair 
deficiencies. The hereditary versions of myelodysplastic 
syndrome[18], breast and ovarian cancers[19-22], and skin 
cancers[23-25] are examples of CIN. CIN can even occur 
in normal senescent cells[26,27].

MSI and CIN usually do not occur together and are 
considered mutually exclusive. For example, 15% of 
colorectal cancers exhibit MSI, but most of the remainder 
exhibit CIN. There are also tumors that do not exhibit 
either MSI or CIN and result from DNA polymerase ε 
mutations, which interfere with proofreading functions 
and produce hypermutations[28,29]. Massive genomic 
rearrangements occur in a wide variety of cancers[30-32], 
and the unstable structures that result vary widely[33,34]. 
Since only a very small number of CICs are necessary 
to produce a malignancy, what causes CICs to develop 
in the first place is an important question[35,36].

In malignant cells, mutations in either alternative 
reading frame of CDKN2A (ARF) or p53 are common. 
The ARF/p53 module plays a major role in keeping 
normal cells from transforming into malignancies, so 
these mutations that interfere with ARF/p53 functioning 
show us how the barrier reactions performed by the 
ARF/p53 module normally work and the way genomic 
instability promotes the development of CICs. 

EFFECTS OF GENOMIC INSTABILITY
Like cancer cells that develop because of genomic 
instability in vivo[37-40], cells cultured in vitro can also be 
transformed and/or immortalized in association with 
either CIN- or MSI-type genomic instabilities[26] and 

mutations in the ARF/p53 module[41]. Following serial 
proliferation, normal mouse embryonic fibroblast cells 
(MEFs) stop reproducing after a growth arrest command 
issued by the ARF/p53 module[41]. This command 
prevents cells from immortalizing[27,42]; but immortality 
can develop if the genome is destabilized[43], clearly 
demonstrating that genomic instability is a triggering 
event in cellular immortalization.

Genomic instability probably contributes to the 
induction of mutations in the ARF/p53 module[27,42]. In 
MEFs, immortalization can result if genomic instability 
is induced and/or mutations occur in either ARF or p53 
(Figure 1), but is blocked in cells with stable genomes 
that are under the continuous regulation of the ARF/
p53 module[27]. Healthy ARF/p53 regulation is essential 
for the prevention of cellular transformation and 
immortalization, but which functions of ARF and p53 
are responsible for tumor suppression is controversial. 

It was generally believed that p53 suppresses 
tumors by inducing apoptosis and senescence[44-47], but 
recent studies have cast doubt on this hypothesis. For 
example, in multiple transgenic mouse models in which 
p53 cannot induce cell-cycle arrest and apoptosis 
after DNA damage, the number of malignancies 
that form as a result is not significantly higher than 
the rate of malignancies in normal mice[48-50]. These 
observations raise questions regarding the exact role 
of p53 in tumor suppression. One hypothesis is that 
p53 regulates metabolism by inhibiting glycolysis[51-53] 
and/or activating the mammalian target of rapamycin 
pathway[52,54,55].

EFFECT OF MUTATIONS IN THE ARF/P53 
MODULE
Because ARF and p53 are mutated in cancer cells in 
a mutually exclusive manner, it is likely that the p53 
functions that are essential for cancer suppression are 
expressed under the control of ARF[56]. Intriguingly, 
transgenic mice with an extra copy of Arf and p53 
(super-Arf/p53 mice) exhibit both reduced rates of 
cancer and slower overall aging[41]. Furthermore, 
MEFs derived from these mice rarely immortalize 
spontaneously. Therefore, it is likely that the roles of 
ARF and p53 in cancer suppression are involved in the 
maintenance of homeostasis in vivo and are primarily 
regulated at the level of individual cells. This cellular-
level protection against transformation is generally 
associated with growth arrest and low levels of the 
histone H2A variant H2AX[27,57], which is required for 
active cell growth[58].

The downregulation of H2AX is governed by the 
ARF/p53 module[27,42]. Growth-arrested cells in the 
liver, spleen, and other organs of healthy adult mice 
generally exhibit downregulated levels of H2AX, 
whereas immortalized/transformed cells, which have 
mutations in the ARF/p53 module, have normal H2AX 
levels and exhibit active growth[27,57].
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As described above, cellular transformation is 
suppressed primarily by the induction of growth arrest 
and the downregulation of H2AX under the control 
of the ARF/p53 module. It is promoted by genomic 
instability and the mutations it produces. Unfortunately, 
when H2AX is downregulated, the mechanisms that 
repair lesions fail and this is a risk factor for the 
genomic instability and tumorigenesis seen in many 
hereditary cancers[15-25]. Despite the aforementioned 
protective effect of H2AX downregulation, the risk of 
sporadic cancer development is probably due, in large 
part, to a reduction in H2AX levels and the associated 
repair deficiencies[27]. In fact, cells without H2AX 
exhibit faulty homologous recombination and non-
homologous end-joining during DNA repair[59,60], which 
results in elevated genomic instability[58].

CIC DEVELOPMENT IS DISTINCT FROM 
IMMORTALIZATION
Although immortalized MEFs develop in association 
with genomic instability and mutations in the ARF/p53 
module[26,41], the resultant cells do not exhibit robust 
tumor-forming ability unless they are pre-transformed 
by oncogenes[61,62]. This observation illustrates the 
difference between immortalized MEFs and CICs. MEFs 
are differentiated cells and do not exhibit stem cell 
characteristics, but CICs act like stem cells in cancer-
tissue development. In fact, CICs share a number of 
common characteristics with normal stem cells, including 
embryonic stem (ES) cells and induced pluripotent 
stem cells, but do not resemble immortalized MEFs 
with their high dependence on normal glycolysis[63,64], 
sphere-forming ability, and expressed stem cell marker 
genes[65-67]. Cancer tissues generally exhibit the “Warburg 
Effect” seen in normal stem cells that produce elevated 
glycolysis.

Transformation of normal stem cells into CICs after 
genomic destabilization
To truly understand cancer, we must discover how 

genomic instability promotes the development of CICs. 
CICs may develop via multiple pathways. A recent 
study using normal murine ES cells as a model showed 
that one of these possible pathways might be created 
when normal stem cells are developing under unstable 
genomic conditions. Under aberrant differentiation 
conditions, ES cells with the ability to form normal 
mice develop high levels of DNA lesions. These lesions 
induce cellular senescence and genomic instability, 
ultimately leading to renewed growth in cells that 
harbor mutations in the ARF/p53 module[68]. These 
cells exhibit a number of stem cell characteristics, 
including sphere formation and the expression of 
undifferentiated marker genes such as Nanog, Klf4, 
Oct3/4, and Sox2, even in a growth factor–poor 
medium containing 10% newborn bovine serum with 
no leukemia inhibitory factor. Furthermore, these cells 
possess tumor-forming ability and express c-Myc and 
CIC markers such as CD133, CD33, and CD34.

The fact that oncogenesis can be triggered by 
niche disruption supports this theory. For example, 
both leukemia and myelodysplasia develop after 
dysregulation of the stem cell niche[69], and cancers 
often develop from stem cells that are injected at 
heterotropic sites[70]. Stem cells growing in such an 
aberrant environment do not get what they need to 
maintain themselves properly and often transform into 
CICs[70]. Another example is embryonal carcinomas 
that can develop from cells transplanted from the 
inside of blastocysts and from primordial germ cells 
derailed from the migration track[71,72]. These in 
vivo and in vitro findings suggest that the genomic 
instability that leads to the development of CICs can 
be triggered by aberrations in the environment when 
stem cells are differentiating. 

Because cancer development is initiated by CICs, 
these cells are considered promising targets for 
chemotherapy aimed at either killing them directly 
or getting them to differentiate[73-75]. However, this 
strategy is not always successful, partly because CICs 
are so adaptable and plastic[76,77]. In one study in 
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Figure 1  Model of cellular immortalization in association with genomic instability. As illustrated in mouse embryonic fibroblasts, immortality is induced by genomic 
instability and mutation of either Arf or p53. Growth arrest and the downregulation of H2AX protect mouse embryonic fibroblasts against immortalization. Because H2AX 
downregulation is dependent on the ARF/p53 module, cells with mutations in this module recover H2AX expression and growth activity. CIN: Chromosomal instability; MSI: 
Microsatellite instability.
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somatic stem cell maintenance and differentiation and 
homeostasis (Figure 2A). The stem cell niche can be 
damaged by exogenous stresses that cause irregular 
stem cell differentiation, the accumulation of DNA 
damage, and the induction of senescence (Figure 2B). 
DNA damage often triggers genomic destabilization, 
which can promote the development of precancerous 
(Figure 2C) and cancerous (Figure 2D) lesions through 
the maintenance of small pockets of pluripotent stem 
cells that eventually become CICs. 

If stem cells start to differentiate under unfavorable 
differentiation conditions, they become senescent, 
but can start developing again and reacquire stem 
cell characteristics when conditions change. Stemness 
recovered under these circumstances is associated 
with robust plasticity and the ability of these cells to 
self-renew, even under conditions in which normal 
stem cells do not thrive. Unfortunately, such cells do 
not differentiate completely and remain permanently in 
less developed states that often lead to malignancies.
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Figure 2  Model of cancer-initiating cell development. A: In normal tissues, stem cells are maintained in a specific niche and the niche environment is important both 
for stem cell maintenance and organ homeostasis; B: Niche disruption deranges the differentiation environment of stem cells, leading to the accumulation of DNA lesions 
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