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Abstract
The pharmacological interventions currently available 
to control type 2 diabetes mellitus (T2DM) show a wide 
interindividual variability in drug response, emphasizing 
the importance of a personalized, more effective medi-
cal treatment for each individual patient. In this con-
text, a growing interest has emerged in recent years 
and has focused on pharmacogenetics, a discipline 
aimed at understanding the variability in patients’ drug 
response, making it possible to predict which drug is 
best for each patient and at what doses. Recent phar-
macological and clinical evidences indicate that genetic 
polymorphisms (or genetic variations) of certain genes 
can adversely affect drug response and therapeutic 
efficacy of oral hypoglycemic agents in patients with 
T2DM, through pharmacokinetic- and/or pharmacody-
namic-based mechanisms that may reduce the thera-
peutic effects or increase toxicity. For example, genetic 
variants in genes encoding enzymes of the cytochrome 
P-450 superfamily, or proteins of the ATP-sensitive po-
tassium channel on the beta-cell of the pancreas, are 

responsible for the interindividual variability of drug re-
sponse to sulfonylureas in patients with T2DM. Instead, 
genetic variants in the genes that encode for the or-
ganic cation transporters of metformin have been relat-
ed to changes in both pharmacodynamic and pharma-
cokinetic responses to metformin in metformin-treated 
patients. Thus, based on the individual’s genotype, the 
possibility, in these subjects, of a personalized therapy 
constitutes the main goal of pharmacogenetics, directly 
leading to the development of the right medicine for 
the right patient. Undoubtedly, this represents an inte-
gral part of the translational medicine network.
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Core tip: Type 2 diabetes mellitus (T2DM) is a het-
erogeneous complex disorder, in which predisposing 
genetic variants (polymorphisms) and precipitating 
environmental factors interact synergistically in the 
development of the disease. Besides being useful in 
identifying individuals at risk for T2DM, knowledge of 
the polymorphisms associated with T2DM is also useful 
in pharmacogenetics for correlating individual variants 
with individual responses to anti-diabetic drugs. To 
date, a wide variety of genes that influence pharma-
cogenetics of anti-diabetic drugs have been identified. 
However, with few exceptions, drug therapy has not 
taken into account the individual genetic diversity of 
treated patients, representing, this, a substantial limi-
tation of pharmacogenetics. This review focuses on 
clinically important polymorphisms affecting a patient’s 
response to diabetic medications. 

Brunetti A, Brunetti FS, Chiefari E. Pharmacogenetics of type 2 
diabetes mellitus: An example of success in clinical and transla-
tional medicine. World J Transl Med 2014; 3(3): 141-149  Avail-

MINIREVIEWS

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.5528/wjtm.v3.i3.141

141 December 12, 2014|Volume 3|Issue 3|WJTM|www.wjgnet.com

World J Transl Med  2014 December 12; 3(3): 141-149
ISSN 2220-6132 (online)

© 2014 Baishideng Publishing Group Inc. All rights reserved.

World Journal of
Translational MedicineW J T M



able from: URL: http://www.wjgnet.com/2220-6132/full/v3/
i3/141.htm  DOI: http://dx.doi.org/10.5528/wjtm.v3.i3.141

INTRODUCTION
The common observation that patients with type 2 dia-
betes mellitus (T2DM) show a great variability in the 
individual response to the same drug treatment suggests 
the importance of  a personalized care approach, in which 
the most appropriate treatment is indicated by the ge-
netic peculiarities of  each individual[1]. The introduction, 
in 2007, of  genome-wide association study (GWAS) has 
greatly enhanced the number of  genes that are known 
to be associated with common diseases. Applied to mil-
lions of  people, this method has allowed the identifica-
tion of  several genetic variants which are associated with 
T2DM[2]. However, similarly to other complex diseases, 
none of  the individual variants identified so far is in itself  
sufficient to cause the disease, but most of  the genetic 
risk for T2DM is mediated by the combined influence 
of  more genetic variants that individually have only a 
small degree of  risk[3,4]. This combination (haplotype) 
defines the genetic profile of  the individual. The fact that 
the pathogenesis of  T2DM requires the involvement of  
multiple genes in different combination is in line with the 
assumption that T2DM, far from being a disease geneti-
cally identifiable in a few specific forms, actually consists 
of  a large number of  rather different disorders[3,4], each 
of  which is associated with a specific disease phenotype 
only apparently identical to one another, and in which 
inter-individual variability in drug response can be identi-
fied both in terms of  drug efficacy and undesired drug 
reactions.

Therefore, clarifying the molecular mechanisms by 
which genetic variations may cause differences in pheno-
typic traits and in individual drug response is essential not 
only to determine the etiological role of  gene variants, 
but also to identify new personalized medical solutions. 
Personalized therapy, based on the genetic diversity of  
each individual, is one of  the most fascinating challenges 
of  modern medicine, representing an integral part of  the 
translational medicine effort, whose ultimate goal is to 
translate advances in biomedical research into new medi-
cal treatments and improvements in patient care (Figure 
1). Herein, we provide an overview of  this area and its 
relevance to clinical practice in T2DM. 

PHARMACOGENETICS AND GENE 
POLYMORPHISMS
Pharmacogenetics is defined as the influence of  varia-
tions in DNA sequence on drug response (www.ema.
europa.eu). Its relevance arises from the clinical obser-
vation that patients suffering from the same disease do 
not necessarily respond to the same drug treatment in 
terms of  therapeutic efficacy as well as adverse effects. 
The principal aim of  pharmacogenetics is to provide 

personalized medicine, tailored to an individual’s genetic 
makeup, in order to optimize the effectiveness and safety 
of  drug treatment. Although elements of  pharmacoge-
netics can be traced back to ancient Greece (510 years 
BC), when it was already known the risk of  hemolytic 
anemia in certain individuals in response to the ingestion 
of  uncooked fava beans[5], the term “pharmacogenet-
ics” was first coined by Vogel[6] in 1959 to indicate the 
importance of  genetic polymorphisms on the disposi-
tion and action of  drugs. The first evidence on the role 
of  genetic variants in drug response back to the ‘70s 
and refers to cytochrome P-450 2D6 (CYP2D6), an en-
zyme of  the hepatic P-450 microsomal enzyme system, 
which is involved in the metabolism of  numerous drugs. 
Studies of  the genetic variations within the P-450 fam-
ily of  enzymes provided the first direct evidence for the 
genetic contributions to drug therapy and efficacy, and 
these studies continue to be an active part of  the basic 
and clinical research performed today. In fact, numerous 
other genetic variations have been identified in subse-
quent years, within the P-450 family of  enzymes, includ-
ing the biotransformation enzymes CYP3A4/5 and the 
CYP2C9 enzyme. It has been shown that individuals 
carrying genetic variants of  CYP2D6 (and other P-450 
isoforms resulting in poor enzymatic activity), who are 
concomitantly taking medications that are influenced 
by these enzymes, are at risk for increased or prolonged 
drug effect, influencing the speed and effectiveness of  
drug metabolism[7]. However, there is no doubt that the 
greatest contribution to pharmacogenetics has come 
from the sequencing of  the entire human genome in 
2003, showing that over 99% of  DNA is identical in 
all humans and that, therefore, phenotypic differences 
among individuals, as well as differences in disease sus-
ceptibility and the inter-individual variability in drug 
response, are the result of  sequence polymorphisms that 
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Figure 1  From bench to bedside. Translational medicine is a discipline of 
biomedical research that attempts to connect basic research with clinical care.



affect less than 1% of  3 billion bases of  human DNA. 
In most cases, these variants consist of  the exchange of  
single nucleotides in both coding and noncoding DNA 
regions and are defined as single nucleotide polymor-
phisms (SNPs) (Figure 2). The ability of  the SNP to 
influence drug response and therapeutic efficacy may 
rely on the capacity of  the variant to induce changes in 
the expression of  proteins that may influence either the 
pharmacokinetic and/or pharmacodynamic profile and 
hence the clinical efficacy of  the drug. On the basis of  
these acquisitions, recent GWAS have identified several 
SNPs that can affect both the therapeutic efficacy and 
the occurrence of  adverse reactions after drug intake[8-10]. 

PHARMACOGENETICS IN T2DM 
TREATMENT
Pharmacogenetics of sulfonylureas
In Caucasians, sulfonylureas are metabolized primarily 

in the liver by CYP2C9 to active metabolites, which are 
ultimately excreted by the kidney[11]. In previous work, it 
was demonstrated that polymorphisms of  the CYP2C9 
gene significantly affect the pharmacological response 
of  diabetic patients to sulfonylureas[12], due to the reduc-
tion of  the catalytic activity in the metabolism of  these 
drugs[13-16], with a consequent increase in drug bioavail-
ability. In particular, in certain diabetic patients with the 
variants Ile359Leu (isoleucine changes to leucine in exon 
7 position 359) and Arg144Cys (arginine changes to cys-
teine in exon 3 position 144) in the CYP2C9 gene, the 
clearance of  glibenclamide was reduced by 30%-80%, 
allowing the use of  lower doses of  this drug to limit the 
risk of  hypoglycemia[12,17-20]. The risk of  hypoglycemia in 
sulphonylurea treated patients was confirmed in a study 
with a larger population, in which the simultaneous pres-
ence (or the presence in homozygosity) of  the variants 
Ile359Leu and Arg144Cys in the CYP2C9 gene was as-
sociated with the improvement in markers of  glycemic 
control, including glycated hemoglobin A1c (HbA1c)[21]. 
Therefore, genotyping of  the CYP2C9 gene may pro-
vide important additional information in predicting the 
adverse effects of  these drugs and to assist physicians in 
prescribing oral hypoglycemic agents.

The ATP-sensitive potassium [ATP-sensitive K+ (K-
ATP)] channel plays a central role in mediating glucose-
stimulated insulin release from pancreatic beta-cells 
(Figure 3). In physiological conditions, the rapid entry 
of  glucose into the beta-cell results in an increase in the 
intracellular concentration of  ATP, which promotes the 
closure of  the K-ATP channel with consequent opening 
of  the voltage-dependent calcium channel, elevation of  
intracellular calcium ion concentration and insulin secre-
tion. The K-ATP channel is composed of  two subunits: 
the sulphonylurea receptor (SUR1) and the pore-forming 
inward rectifier K+ channel Kir6.2[22,23]. Genetic variants 
inactivating the KCNJ11 (potassium inwardly-rectifying 
channel, subfamily J, member 11) gene, which encodes 
for the protein Kir6.2, and the ATP-binding cassette, sub-
family C (CFTR/MRP), member 8 (ABCC8) gene, which 
encodes the SUR1 protein, are responsible for neonatal 
diabetes mellitus; conversely, activating mutations of  
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Figure 2  Single nucleotide polymorphism. As the most common type of variant, a single nucleotide polymorphism is characterized by a single DNA base pair sub-
stitution at a specific location in a gene. SNP: Single nucleotide polymorphism.

Figure 3  The ATP-sensitive K+ channels regulate insulin release in beta-
cells. Single nucleotide polymorphism in SUR1 and/or Kir6.2 genes may cause 
functional abnormalities of the ATP-sensitive K+ channel on the pancreatic β-cell 
membrane, leading to abnormalities in insulin secretion.
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HbA1c and fasting plasma glucose was higher in diabetic 
patients carrying either GG or CC genotypes[31-33]. In con-
trast, diabetic patients with the TT genotype in both the 
rs7903146 (G > T) and the rs7903146 (C > T) variants 
showed a lower response to sulfonylureas and appeared 
to be more prone to therapeutic failure[31-33].

Pharmacogenetics of metformin
Metformin, in use for control of  diabetes since 1950s, 
is the first-line pharmacological therapy for T2DM. 
After oral administration, the drug is absorbed into the 
blood via the gastrointestinal tract, rapidly distributed 
in body tissues by travelling through specific transport 
proteins [including the organic cation transporters 1 
(OCT1) and OCT2, the multidrug and toxin extrusion 1 
(MATE1) transporters and MATE2-K, and the plasma 
membrane monoamine transporter (PMAT)] located 
on the cytoplasmic membrane of  many cells, especially 
intestinal cells, liver cells and kidney cells[34], and ex-
creted in the urine almost unchanged from the original 
drug. The individual’s response to metformin is highly 
variable with less than 2/3 of  treated patients achiev-
ing glycemic control[35]. Thus, identification of  genetic 
variants that may influence the interindividual variability 
to metformin would be of  major importance for the 
effective treatment of  these patients. However, studies 
on the pharmacogenetics of  metformin are relatively 
limited, mainly because its mechanism of  action is still 
poorly defined. So far, most of  the studies on this topic 
have involved the solute carrier family 22A1 (SLC22A1) 
gene, which by coding for the OCT1 transport protein, 
plays a key role in the cell absorption of  the drug[36], and 
is essential for the anti-gluconeogenic effect of  metfor-
min into the liver[37] (Figure 4). It has been shown that 
polymorphisms of  this gene (rs12208357; rs34130495; 
rs72552763; rs34059508), by reducing the functional ca-
pacity of  OCT1, can alter the bioavailability of  metfor-
min and mitigate its hypoglycemic response in healthy 
people carrying these gene variants[37-39]. Recently, two 
polymorphisms of  SLC22A1 (rs628031 and rs36056065) 
have been associated with gastrointestinal side effects 
in diabetic patients treated with metformin[40]. At the 
same time, other authors[41,42] have also reported that the 
bioavailability of  metformin was increased in healthy 
individuals carrying mutations of  the SLC22A2 gene, 
which encodes for the OCT2 transport protein. Vari-
ants of  this gene, by adversely affecting OCT2 function, 
may decrease the renal clearance of  metformin, and may 
contribute to increased plasma metformin levels with 
increased risk of  hypoglycemic events.

Interindividual variation in metformin response has 
been recently reported in subjects with genetic variations 
in SLC47A1 and SLC47A2 genes coding for MATE1 
and MATE2-K, respectively, which play important roles 
in the urine excretion of  metformin. A better glycemic 
response to metformin, with lower HbA1c levels, has 
been reported in association with the SLC47A1 gene 
variant rs2252281[43-46]. In contrast, the therapeutic re-
sponse to metformin was reduced in diabetic patients 

these two genes lead to hyperinsulinism and neonatal hy-
poglycemia[24]. As an example of  pharmacogenetics with 
important clinical implications, recent studies have found 
that diabetic patients carrying mutations in the KCNJ11 
gene respond better to treatment with sulfonylureas than 
to treatment with insulin[25-27].

Association of  the polymorphism Ser1369Ala (ser-
ine 1369 to alanine substitution) in ABCC8 with the 
antidiabetic efficacy of  gliclazide was found in patients 
with T2DM, after two months of  treatment[28]. In par-
ticular, patients with the genotype alanine/alanine had 
a greater reduction in either fasting plasma glucose or 2 
h postload plasma glucose during oral glucose tolerance 
test, and a greater decrease in HbA1c levels compared to 
patients with the Serine/Serine genotype[28]. The variant 
Ser1369Ala in ABCC8 is often associated in linkage dis-
equilibrium with a variant, Glu23Lys (glutamine to lysine 
variant at position 23), in the KCNJ11 gene, forming a 
haplotype that increases the risk of  developing T2DM[29]. 
It has been observed that this haplotype displays large 
differences to the therapeutic effects of  various sulfonyl-
ureas: greater to gliclazide, less apparent to tolbutamide, 
chlorpropamide and glimepiride, invariable in the glipi-
zide and glibenclamide treatment group[30]. 

Interesting results, in this context, have been ob-
tained from the study of  the transcription factor 7-like 
2 (TCF7L2) gene, which encodes a nuclear transcrip-
tion factor that appears to play a role in beta-cell func-
tion. Genetic variants of  TCF7L2 are associated with 
increased risk of  T2DM[3]. Recently, two variants of  the 
TCF7L2 gene, rs7903146 (G > T), and rs7903146 (C > 
T), have been shown to influence the therapeutic efficacy 
of  sulfonylureas[31-33]. In particular, the reduction in both 
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Figure 4  Organic cation transporter 1 plays a major role in drug uptake 
across the liver cell membrane. Single nucleotide polymorphism associated 
with organic cation transporter 1 may contribute to variation in response to met-
formin. AMPK: Adenosine 5’-monophosphate (AMP)-activated protein kinase; 
OCT1: Organic cation transporters 1.
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carriers of  the variant rs12943590 in the SLC47A2 
gene[45,46]. Therefore, these observations imply that ge-
netic variants of  MATE1 and MATE2-K are important 
determinants of  the therapeutic efficacy of  metformin 
in patients treated with this drug. The first GWAS on the 
efficacy of  metformin on glycemic control in diabetic 
patients resulted in the demonstration that a gene variant 
near ataxia telangiectasia mutated (ATM), rs11212617, 
is significantly associated with metformin treatment re-
sponse in T2DM, more frequently with HbA1c levels < 
7%[47]. The explanation of  this phenomenon lies in the 
role ATM, the protein product of  the ATM gene, plays 
in the context of  insulin signaling and insulin action[48].

Thus, genetic variants of  SLC22A1 and SLC22A2 
may be determinant in the therapeutic efficacy of  met-
formin. Furthermore, genotyping of  SLC22A1 and SL-
C22A2 is useful in the management of  diabetic patients 
under metformin theraphy.

Pharmacogenetics of thiazolidinediones
Genetic variants that can influence the pharmacogenet-
ics of  oral antidiabetic medications were also assessed in 
diabetic patients treated with pharmacogenetics of  thia-
zolidinediones (TZDs) (pioglitazone and rosiglitazone). 
As agonists of  peroxisome proliferator-activated recep-
tor gamma (PPAR-γ), TZDs act as insulin-sensitizing, 
thus reducing the release of  glucose from the liver and 
increasing glucose uptake in muscle[49]. The PPAR-γ  gene 
has been extensively investigated in pharmacogenetic 
studies of  TZDs, especially because genetic variants of  
this gene have been associated with an increased risk of  
T2DM[3]. However, pharmacogenetic studies with TZDs 
have shown conflicting results, probably due to insuf-
ficient sample size and low levels of  statistical power[50]. 
Furthermore, it is worthy noting that the retrospective 
study design used in the majority of  studies on pharma-
cogenetics has its own drawbacks, being able to expose to 
a variety of  confounding and bias, including age, gender, 
ethnicity, lifestyle, concomitant use of  other medications, 
etc. A similar discrepancy has emerged from studies on 
the genetic variants of  the CYP2C8 gene, which is re-
sponsible for metabolizing pioglitazone[50]. A reduction 
in the blood glucose-lowering effect of  pioglitazone was 
recently observed in diabetic patients carriers of  the trun-
cation variant, Ser447X, of  the lipoprotein lipase gene[51]. 
Another study has reported that the -420 C/G variant of  
the resistin gene promoter can also be used as an indepen-
dent predictor of  the reduction of  fasting plasma glucose 
and insulin resistance by pioglitazone in T2DM[52]. As it is 
known, side effects of  TZDs therapy include fluid reten-
tion and peripheral edema, worsening heart failure[53]. In 
this context, various genetic variations have been discov-
ered in genes known to be involved in sodium and water 
reabsorption. Among these, the aquaporin 2 (AQP2) 
rs296766 variant and the SLC12A1 rs12904216 vari-
ant, both of  which have been associated with edema in 
T2DM patients treated with a TZD[54]. AQP2 gene codes 
aquaporin-2, which function as a water channel in the 

collecting duct of  the kidney[55]. SLC12A1 encodes the 
kidney-specific sodium-potassium-chloride cotransporter 
(NKCC2), which plays an important role in both urine 
concentration and NaCl reabsorption[54,56]. Therefore, it is 
quite evident that these variants may represent both a risk 
factor for the development of  edema in diabetic patients 
during treatment with TZDs.

Pharmacogenetics of metiglinides
Metiglinides (repaglinide and nateglinide) are a class of  
rapid-acting, short duration insulin secretagogues that act 
in a manner similar to that of  the sulfonylureas[57]. Nateg-
linide is also metabolized by the CYP2C9 enzyme of  the 
cytochrome P-450 system, and gene variants of  CYP2C9 
are associated with variability in glucose-lowering effect 
of  nateglinide[58]. Repaglinide is metabolized by CYP2C8 
and to a lesser degree by CYP3A4[59]. Also in this case, 
gene variants of  CYP2C8 have been associated with 
increased clearance of  repaglinide, although with contra-
dictory results[60]. The solute carrier organic anion trans-
porter family member 1B1 (SLCO1B1) gene encodes for 
the organic anion transporting polypeptide, OATP1B1, 
which regulates cellular uptake of  various drugs, including 
statins by the liver. Recent studies have reported the role 
of  some variants of  SLCO1B1 in the pharmacokinetics 
of  metiglinides[61-64]. For example, a more effective hypo-
glycemic effect of  repaglinide was observed in diabetic 
patients carrying the Glu23Lys (E23K) polymorphism 
in the KCNJ11 gene[65], and the rs13266634 variant in the 
SLC30A8 gene[66]. Similarly, polymorphisms of  neuro-
genic differentiation 1 (NEUROD1), also called beta2 
(NEUROD1/BETA2), paired box gene 4[67] and uptake 
control 2[68] genes were also found to be associated with 
the hypoglycemic efficacy of  repaglinide. An association 
of  the variant G2677 T/A in the multidrug resistance 
gene, which encodes a multidrug efflux pump, with the 
variability in the pharmacokinetics of  repaglinide was 
found recently in a Chinese study in healthy volunteers[69].

Pharmacogenetics of incretins
Glucagon-like peptide-1 (GLP-1) is part of  the group of  
incretin hormones that are secreted from endocrine cells 
in the intestinal mucosa in response to meals. It medi-
ates insulin secretion in a glucose-dependent manner and 
is easily inactivated after being secreted by the enzyme 
dipeptidyl peptidase-Ⅳ (DPP-Ⅳ). Recent pharmacologi-
cal research has led to the development and synthesis of  
medications that are capable of  acting at this level as both 
GLP-1 agonists (exenatide and liraglutide) and DPP-IV 
inhibitors (gliptins)[70]. Variants of  the GLP-1 recep-
tor gene have been shown to be associated with altered 
sensitivity to GLP-1[71]. Furthermore, whereas variants 
in the TCF7L2 (rs7903146) and wolfram syndrome 1 
(rs10010131) genes have been associated with a reduced 
response to exogenous GLP-1, variations in the KCNQ1 
(rs151290, rs2237892, and rs2237895) gene appear to 
alter the secretion of  endogenous GLP-1[72]. The only 
significant study on the pharmacogenetics of  gliptins 

Brunetti A et al . Pharmacogenetics of T2DM



146 December 12, 2014|Volume 3|Issue 3|WJTM|www.wjgnet.com

showed that three novel genetic loci (transmembrane 
protein 114, carbohydrate sulfotransferase 3 and Chymo-
trypsinogen B1/2) were identified, which affect GLP-
1-induced insulin release during hyperglycemic clamp in 
nondiabetic Caucasian subjects[73].

CONCLUSION
Pharmacogenetics is an expanding area of  research which 
seeks to understand how variations in the genome influ-
ence medication response. Pharmacogenetics has gained 
increasing attention in the context of  translational medi-
cine, providing an opportunity for personalized treatment 
strategies based on an individual’s genetic makeup. The 
results obtained so far with the study of  genetic variants 
in patients with T2DM (and other common diseases) 
may be used for the realization of  a pharmacogenetic 
test, which can assist in making treatment decisions on 
the basis of  each patient’s genetic profile, thus improv-
ing the overall management of  the disease and ensuring 
better results in terms of  safety and therapeutic efficacy. 
The clinical use of  pharmacogenetics, through the iden-
tification of  individual genetic variants (genetic polymor-
phisms), can contribute to move to a more evidence-
based and less empiric clinical management of  patients, 
thereby avoiding treatment failures, while reducing the 
incidence of  adverse drug reactions (Figure 5).
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