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Abstract
Low back pain is a common clinical problem, which 
leads to significant social, economic and public health 
costs. Intervertebral disc (IVD) degeneration is accepted 
as a common cause of low back pain. Initially, this 
is characterized by a loss of proteoglycans from the 
nucleus pulposus resulting in loss of tissue hydration 
and hydrostatic pressure. Conservative management, 

including analgesia and physiotherapy often fails and 
surgical treatment, such as spinal fusion, is required. Stem 
cells offer an exciting possible regenerative approach 
to IVD disease. Preclinical research has demonstrated 
promising biochemical, histological and radiological results 
in restoring degenerate IVDs. Cell tracking provides an 
opportunity to develop an in-depth understanding of 
stem cell survival, differentiation and migration, enabling 
optimization of stem cell treatment. Magnetic Resonance 
Imaging (MRI) is a non-invasive, non-ionizing imaging 
modality with high spatial resolution, ideally suited for stem 
cell tracking. Furthermore, novel MRI sequences have the 
potential to quantitatively assess IVD disease, providing 
an improved method to review response to biological 
treatment. Superparamagnetic iron oxide nanoparticles 
have been extensively researched for the purpose of cell 
tracking. These particles are biocompatible, non-toxic 
and act as excellent MRI contrast agents. This review will 
explore recent advances and issues in stem cell tracking 
and molecular imaging in relation to the IVD.
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Core tip: Mesenchymal stem cell (MSC) transplantation 
shows exciting promise for the future regenerative 
approach to intervertebral disc (IVD) disease. Extensive 
preclinical research has demonstrated benefits from MSC 
treatment in disc degeneration. Cell tracking, with iron 
oxide nanoparticles and MRI, provides an opportunity to 
develop an in-depth understanding of stem cell survival, 
differentiation and migration, enabling optimization of 
stem cell treatment. This review summarizes the current 
literature relating to MSC tracking in the IVD, which is 
limited to short term monitoring. Medium to long-term 
cell tracking is required to accelerate translation of MSC 
treatment in the IVD to clinical practice. 
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INTRODUCTION
Low back pain is the leading cause of  disability in the 
developed world[1]. Lifetime prevalence is 75%-80%[2], with 
the annual cost in the United States alone estimated to be 
as high as $500 billion[3]. Low back pain is strongly linked 
to disc degeneration, with a two-fold increase in chronic 
lower back pain in patients with radiological evidence of  
degeneration[4,5].  

Current treatments, including analgesia, physiotherapy 
and spinal fusion only address symptoms, not the underlying 
disease. Regenerative strategies, such as stem cell therapy, 
provide an exciting future in the treatment of  intervertebral 
disc (IVD) disease. Tracking and long term monitoring of  
these cells is essential to develop an understanding of  their 
survival, migration, proliferation and differentiation in vivo, 
which will enable optimization of  this promising therapy. 
Magnetic resonance imaging (MRI) combined with contrast 
agents is the modality of  choice for cell tracking. This 
review will summarize recent advances in stem cell tracking, 
current problems and their application to the treatment of  
IVD disease. 

PATHOLOGY OF BACK PAIN
The intervertebral disc is composed of  3 main regions: the 
tough annulus fibrosis (AF), peripherally, the amorphous 
nucleus pulposus (NP), centrally, and cartilaginous 
endplates which bind the disc to the adjacent superior and 
inferior vertebral bodies[6]. With ageing and degeneration, 
significant cellular and matrix changes occur within the 
IVD. An early hallmark of  disc degeneration is the loss of  
proteoglycans (PG), and associated water molecules, from 
the NP and AF, accompanied by structural changes to the 
lamellae of  the AF[7-11]. With the loss of  the water binding 
PGs from the disc, its functional capacity as a hydroelastic 
cushion is diminished, leading to additional mechanical 
stresses acting on the fibrocartilagenous AF. With time, 
these events can result in the presence of  concentric and 
radiating tears in the lamellae of  the AF that may eventually 
extend into the NP[7,8,11-13]. In addition, there is emerging 
evidence that damage to the cartilaginous endplate plays a 
role in the pathophysiology of  degenerative disc disease, 
up-regulating matrix degrading enzymes and inflammatory 
cytokines in the NP[14]. Structural deficiencies in the NP are 
considered to provoke neovascularisation and growth of  
nerve fibers, normally confined to the periphery of  the AF, 
to the deeper regions of  the disc[13,15]. The establishment of  
these extended nerve fibers has been cited as a major cause 
of  chronic lower back pain in degenerate discs[15-17]. 

CURRENT TREATMENT OF BACK PAIN
Current strategies to treat low back pain fail to regenerate 

the intervertebral disc or even reverse the degenerative 
process. Analgesics, non-steroidal anti-inflammatory drugs, 
physical therapies and other multimodal palliative modalities 
represent the mainstay of  conservative therapy for low 
back pain[18-20]. There is no evidence, however, that any of  
these therapies provide long-term benefit by improving 
the underlying pathobiology of  disc degeneration. In fact, 
recent research has demonstrated simple analgesia does not 
improve recovery time from acute low back pain[21]. When 
non-operative treatments fail, surgical interventions such 
as spinal fusion or total disc arthroplasty are commonly 
undertaken. These interventions aim to remove the pain 
generator, however, many patients remain with chronic pain 
and disability. Furthermore, spinal fusion has biomechanical 
consequences, which accelerates degeneration at adjacent 
levels[22-24].  

REGENERATIVE STRATEGIES FOR THE 
INTERVERTEBRAL DISC
Recent research suggests novel biological therapies can 
provide restorative treatment of  disc degeneration. Cell 
types investigated include NP cells[25-29], chondrocytes[30-33] 
and mesenchymal stem cells (MSC)[29,30,34-43]. MSCs, initially 
isolated from bone marrow, can also be derived from a 
range of  tissues, including adipose and synovial[44,45]. In 
addition, MSCs are reported to be non-immunogenic 
and, in contrast to embryonic stem cells, cannot under-
go malignant transformation[46,47]. Moreover, MSCs have 
the capacity for self-renewal, enabling maintenance of  
an undifferentiated phenotype in multiple subcultures[48]. 
However, in the appropriate environment, MSCs are 
capable of  differentiating into multiple cell types including 
chondrocytes, osteocytes, tenocytes and adipose cells[44,45]. 

There are numerous preclinical studies investigating the 
use of  MSCs in rat, rabbit, goat and porcine models[29,30,34-43]. 
MSC implantation in the rabbit model has resulted in an 
increase in PG content, partial restoration of  disc height and 
disc hydration[42,43]. In the ovine model, intra-discal MSCs 
treatment has been shown to restore disc extracellular matrix, 
increase disc height and reduce radiological and histological 
grading scores 6 mo following injection[49,50]. How stem 
cells produce these effects remains unclear from current 
preclinical studies.

Early clinical research has been promising. Yoshikawa 
et al[51] reported two cases of  autologous MSC implantation 
in markedly degenerate intervertebral discs. Symptomatic 
and radiological improvement was demonstrated without 
significant adverse effects[51]. A larger series of  10 patients 
treated with autologous MSCs demonstrated improvement 
in pain, disability and disc hydration[52]. Prior to translation 
to clinical practice, greater understanding of  the mechanism 
of  action of  these cells is required.

NEED FOR CELL TRACKING
Longitudinal tracking of  MSCs is necessary to ensure 
survival, evaluate distribution and assess if  cells migrate to 
affected pathological sites in the IVD. Previous methods, 
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based on histological analysis provide a snapshot view of  
the cells at a set time point. This is useful at the end of  a 
scientific study but these methods cannot be translated 
to the clinical setting. Cellular labeling provides a non-
invasive technique to assess the cells in vivo at any given 
time point. Thus, it can assess cell viability, track cell 
migration patterns and provide some information on 
efficacy. It may provide an understanding on mechanism 
of  action, for example, potentially being able to determine 
whether cells differentiate into chondrocytic cells or act 
to modulate the resident native cell population through 
paracrine actions. In addition, cell tracking is required to 
ensure MSCs retention, as leakage of  transplanted cells 
outside the disc has been reported to induce osteophyte 
formation[53]. 

CURRENT IMAGING TECHNIQUES
In vivo, non-invasive techniques are required for cell tracking 
in the research and clinical setting. Multiple imaging 
modalities have been utilized, including MRI[54-58], positron 
emission tomography (PET)[59-62], single photon emission 
computed tomography[63], bioluminescence imaging[64,65], 
fluorescence imaging[66-72] and computed tomography 
(CT)[73]. MRI has been accepted as the best modality given 
its high spatial resolution (< 100 microns), prolonged 
effective imaging window, lack of  ionizing radiation and 
ability to provide detailed anatomical information[74,75]. 
There are now very high resolution MRI machines available 
such as 9.4 Tesla which provides high quality images (Figure 
1). 

CELL LABELING FOR MRI
The ideal contrast agent would be highly sensitive, 
biocompatible, non-toxic, easily taken up by the targeted 
cells and provide clear contrast between the labeled cells 
and surrounding tissue. Due to their superior sensitivity 
and excellent biocompatibility, iron oxide nanoparticles 
are the preferred contrast agent for cell labeling[76]. 
Superparamagnetic iron oxide nanoparticles (SPIONs) 
consist of  an iron oxide core, usually magnetite (Fe3O4) or 

maghemite (γFe2O3) and a biocompatible coating. Coating 
substrates include dextran, carboxydextran, polyethylene 
glycol (PEG), polystyrene and silica[77]. Iron oxide 
nanoparticles can be subdivided into standard SPION, 60 to 
150 nm in size, and ultrasmall superparamagnetic iron oxide 
nanoparticles (USPION) which measure 10 to 20 nm[78,79]. 
The type of  coating, size and method of  synthesis affect the 
SPIONs biocompatibility and magnetic properties[80].

MRI generates images by utilizing the differences in 
proton density and the local magnetic environment of  
hydrogen atoms[75]. There are two MR relaxation time 
constants, T1 and T2. Commonly used contrast agents, 
paramagnetic gadolinium analogues, alter longitudinal 
(T1) relaxation time of  hydrogen protons and appear 
hyperintense. The abovementioned, superparamagnetic 
nanoparticles, affect the transverse (T2) relaxation time of  
hydrogen protons and appear hypointense. Due to their size, 
USPION demonstrate additional T1 effects[75]. Iron oxide 
nanoparticles can be detected at micromolar concentrations 
and offer sufficient sensitivity to be identified on T2* 
weighted imaging[81]. 

MR cell labeling requires the transfer of  particles 
from extracellular to intracellular. The simplest method is 
spontaneous uptake of  particles by phagocytic cells such 
as macrophages. While enhanced with an appropriate 
biocompatible coating, iron oxide nanoparticles are not 
efficiently taken up by stem cells[82,83]. However, labeling 
can be facilitated by incubation with cationic transfection 
agents, including poly-L-lysine and protamine sulfate[82,84-86]. 
If  extended incubation time is not appropriate, other rapid 
techniques, magnetoelectroporation or magnetosonoporation, 
can be employed[87,88]. 

A number of  contrast agents have been approved 
for clinical use in medical imaging. Previously, the most 
commonly used iron oxide nanoparticle for cell labeling was 
Feridex®, which contains an iron oxide core and dextran 
coating[77]. Dextran coated SPIONs have been shown to 
be biocompatible and biodegradable via iron metabolism 
through Kupffer cells, located in the liver[89]. Another 
widely used SPION, Resovist®, has a carboxydextran 
coating[90,91]. Both these products have been discontinued 
from production by the pharmaceutical companies[77,92]. 
Other commercial products continue to be utilized, such as 
SiMAG®, an SPIO with an unmodified silica surface. For 
example, Markides et al[93] labeled MSCs with SiMAG® in a 
rheumatoid arthritis mouse model. 

Extensive research has been devoted to designing 
novel iron oxide nanoparticles for the purpose of  stem 
cell labeling[92]. van Buul et al[94] demonstrated ferumoxides 
(Endorem®) complexed with protamine sulfate are superior 
to ferucarbotran particles for cell labeling. Subsequently, this 
group demonstrated safety and efficacy of  the ferumoxide-
protamine sulfate complex for MSC labeling in articular 
cartilage repair[95]. USPION have also been investigated 
recently. Coated with dextran and PEG and combined 
with protamine sulfate, USPIONs have been cultured with 
human Adipose Derived Stem Cells (hADSCs) within 
a three dimensional scaffold[96]. In vitro, no effect on cell 
viablilty or osteogenic differentiation was seen from cell 
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Figure 1  9.4 Tesla magnetic resonance imaging-Gradient Echo 2* weighted 
image of ovine lumbar intervertebral disc (normal control). Image obtained 
from our group 2014/02/18, not previously published.



from unlabeled cells on T1 weighted imaging[105]. This 
group also demonstrated SPION labeled cells, loaded in 
a fibrin gel and injected via fluoroscopic guidance, could 
be identified ex vivo within the IVD of  excised rat tails[105]. 
Further research by Prologo et al[62] imaged MSCs labeled 
with a radioactive marker (iodine-124 2’fluoro-2’-deoxy-
1β-D-arabinofuranosyl-5-iodouracil) using CT and PET. 
Four female pigs had approximately 100000 labeled MSCs 
injected under fluoroscopic guidance to the NP of  discs 
which had degeneration induced 10 d prior. CT and PET 
were performed immediately following and three days 
after cell delivery. One animal was inaccurately injected. 
Results from the other three demonstrated accurate delivery 
and maintenance of  labeled cells at three days[62]. While 
demonstrating useful preclinical results, using radioactive 
cell labeling in conjunction with CT and PET requires a 
significant amount of  ionizing radiation, a consideration if  
used in clinical practice. 

Recently, Barczewska et al[106] developed a technique 
for real time non-invasive monitoring of  minimally 
invasive MSC delivery. IVD degeneration was induced in 
porcine discs of  3 animals via a fluoroscopic guided IVD 
vaporization procedure. Subsequently, the animals were 
placed in a 3T MRI scanner and 3 × 106 SPIO labeled 
MSCs were injected into the IVD through a plastic 
catheter in two divided injections. T2 weighted imaging 
was performed prior to, and following, each injection. 
Results demonstrated a statistically significant difference 
in signal intensity between both SPIO labeled MSCs 
compared with unlabeled MSCs and SPIO compared with 
control discs[106]. 

Although limited, current research has demonstrated 
MRI is a suitable modality for detecting SPION labeled 
MSCs in the IVD. Current data, utilizing both MRI 
and CT/PET, provides only short term tracking of  
labeled cells, demonstrating adequate initial placement of  
transplanted cells. Further research is required to monitor 
long-term retention of  MSCs in the IVD. Moreover, 
longitudinal tracking of  injected cells is required to improve 
understanding of  the therapeutic mechanism of  action of  
MSCs in IVD disease. 

ADDITIONAL BENEFITS OF MRI IN CELL 
TRACKING
In addition to monitoring labeled MSCs, MRI has the 
potential to non-invasively measure response to biological 
therapies in IVD disease. Several techniques have been 
developed to classify disc degeneration by MR image 
criteria[107-110]. All are based on conventional T2 weighted 
sagittal imaging characteristics, which correspond to 
later morphological changes in IVD degeneration. The 
Pfirrmann classification system is the most widely used 
in the literature, utilizing an algorithm to generate five 
morphological grades[107]. Research has demonstrated 
acceptable intra and inter-observer variability for 
grading systems[107,109]. Ultimately, however, each is based 
on qualitative assessment and prone to inter-observer 

labeling. The USPIONs were effectively internalized by the 
hADSC and demonstrated T2* signal change. Hypointense 
regions, representing labeled cells, were seen in vivo 28 d 
following implantation[96]. Further research is required to 
optimize SPIONs for cell tracking.

ISSUES WITH CELL LABELING
Transfection agents are potentially toxic and, furthermore, 
there is capacity for iron oxide nanoparticles in vivo 
to cause toxicity to other organs, including liver and 
spleen[97,98]. Small polyhedral SPIONs with a silica coating 
have shown efficient MSC labeling without the need for a 
transfection agent and may offer a solution[99]. 

T2 signal change is due to the overall effect of  magnetic 
nanoparticles rather than total number of  cells[100]. Typically, 
a few hundred cells are required for detection with 
conventional MRI sequences[77]. Stem cells are known to 
proliferate following transplantation, leading to dilution of  
the iron oxide label and loss of  MR signal over time[77]. If  
cells divide asymmetrically, with one daughter cell receiving 
the majority of  nanoparticles, rapid dilution of  signal 
can occur to an undetectable level[101]. Labeled cells could 
also become undetectable if  they migrate in small rather 
than large groups. Sensitivity may be improved with post 
acquisition software analysis or a higher magnetic field 
strength. 

A number of  endogenous substances produce negative 
(or hypointense) MR signal, such as blood products 
containing haemosiderin or methaemoglobin. This leads 
to challenges differentiating blood product from labeled 
cells in an injured IVD. Novel MRI methodology has 
been adopted to help differentiate the labeled cells from 
endogenous substances, such as Inversion-Recovery 
With ON-Resonant Water Suppression, which delineates 
SPION labeled cells as positive contrast[102]. Further novel 
sequences are being developed to provide an exciting 
possibility to enhance non-invasive cell tracking. 

Iron oxide nanoparticles fail to differentiate between 
live and dead cells. SPION signal has been demonstrated 
in the CNS long after cell death[103]. Multimodal imaging 
may be required to ensure cellular function, such as 
combining MRI with PET imaging. A study investigating 
iron oxide labeled stem cells in hemi-Parkinsonian rats 
used this multi modal technique. MRI visualized stem cells 
in the striatum and PET confirmed cellular viability[104].

CELL LABELING IN THE INTERVERTEBRAL 
DISC
To date, there is limited published research tracking MSCs 
in the IVD and this is summarized in Table 1. Saldanha et 
al[105] demonstrated feasibility by imaging MSCs labeled with 
SPION (Feridex®) in vitro to quantitatively characterize signal 
intensity loss using T1, T2 and T2* relaxation parameters. 
T2* weighted gradient echo (GRE) images demonstrated 
the most significant loss of  signal intensity from labeled 
cells. Conversely, SPION labeled cells were indistinguishable 
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variability. In addition, conventional MRI sequences lack 
sufficient sensitivity to identify early disc biochemical 
changes[111].

Novel MRI sequences have the potential to quantitatively 
assess early IVD degeneration. T1ρ MRI uses long 
duration, low power radiofrequency, or spin-lock (SL) 
pulses, applied on-resonance to lock magnetization in the 
transverse plane. Spin-locked magnetization relaxes with 
the time constant T1ρ, spin lattice relaxation in the rotating 
frame[112,113]. Post acquisition computer software analysis can 
be utilized to generate a quantitative T1ρ measurement for 
a region of  interest, such as the NP. T1ρ has been shown 
to be sensitive to PG content in articular cartilage and the 
IVD[114,115]. Furthermore, Borthakur et al[112] demonstrated 
T1ρ values in IVDs correlate with low back pain. Another 
quantitative method recently developed is the NP voxel 
count, which has been shown in vivo to quantitatively 
assess disc degeneration. This assesses nuclear size and 
hydration with T2-relaxation time measurements[116]. These 
imaging techniques have the potential to non-invasively, 
quantitatively, monitor response to biological treatments, as 
well as diagnose early IVD degeneration. 

SUMMARY AND EXPERT OPINION
MSC transplantation shows exciting promise for the 
future regenerative approach to IVD disease. Cell labeling 
techniques are integral to ongoing research, to ensure 
accurate delivery and long-term retention of  cells. Current 
research is limited to only short term monitoring. A greater 
understanding of  the mechanism of  action is required, with 
longitudinal tracking of  implanted MSCs. Further research 
is required to discover if  cells remain in situ long term, if  
they remain viable and if  they track to sites of  pathology in 
the IVD. MRI, with SPIONs as contrast agents, provides 
an excellent imaging modality for cell tracking. Some issues 
remain, such as dilution of  signal through cell division or 
migration and differentiating labeled cells from intrinsic 
negative signal. These may be addressed with stronger 
magnetic fields, post-processing analysis and novel MRI 
techniques. Furthermore, novel MRI sequences can non-
invasively quantify early biochemical changes in disc 

degeneration. In conjunction with conventional MRI, this 
provides a mechanism for measuring response to biological 
therapy, in both the research and clinical setting. Ongoing 
effective research will facilitate the translation of  MSC 
treatment for IVD disease to clinical practice. 	
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Table 1  Review of stem cell tracking in the intervertebral disc in animal models reported in the literature

Ref. Animal model Cell type Label Imaging Results

Saldanha et 
al[105], 2008 

Rat tail (ex vivo) Human MSCs
(Loaded in fibrin 
gel-Tisseel)

FE-Pro (Feridex and Proatmine 
Sulphate)

3T MRI No significant effect of labeling on MSC viability
Hypointensity (signal loss) seen in discs injected with 
labeled cell

Prologo et al[62], 
2012 

Porcine n = 4 Human MSCs Iodine-124 2’fluoro-2’-deoxy-
1b-D-arabinofuranosyl-5-
iodouracil

PET/CT Inaccurate delivery in 1 animal
Three animals showed persistence and containment of 
labeled cells 3 d following injection

Barczewska et 
al[106], 2013 

Porcine Porcine MSCs Molday 
ION 
USPION

3T MRI Ex vivo-Injected labeled cells clearly visualized 
n = 1 (ex vivo)
n = 3 (in vivo)

In vivo-hypointense regions identified immediately 
following injection of labeled cells. Histopathology 
performed 2 wk later confirmed the presence of MSCs 
in the disc

MSC: Mesenchymal stem cell; MRI: Magnetic resonance imaging; USPION: Ultrasmall superparagmetic iron oxide nanoparticle; PET/CT: Positron emission 
tomography/computed tomography.
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