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Abstract
Cancer is a highly heterogeneous group of diseases that 
despite improved treatments remain prevalent accounting 
for over 14 million new cases and 8.2 million deaths per 
year. Studies into the process of carcinogenesis are limited 
by lack of appropriate models for the development and 
pathogenesis of the disease based on human tissues. 
Primary culture of patient samples can help but is difficult 
to grow for a number of tissues. A potential opportunity to 
overcome these barriers is based on the landmark study by 
Yamanaka which demonstrated the ability of four factors; 

Oct4, Sox2, Klf4, and c-Myc to reprogram human somatic 
cells in to pluripotency. These cells were termed induced 
pluripotent stem cells (iPSCs) and display characteristic 
properties of embryonic stem cells. This technique has a 
wide range of potential uses including disease modelling, 
drug testing and transplantation studies. Interestingly 
iPSCs also share a number of characteristics with cancer 
cells including self-renewal and proliferation, expression of 
stem cell markers and altered metabolism. Recently, iPSCs 
have been generated from a number of human cancer 
cell lines and primary tumour samples from a range of 
cancers in an attempt to recapitulate the development 
of cancer and interrogate the underlying mechanisms 
involved. This review will outline the similarities between 
the reprogramming process and carcinogenesis, and how 
these similarities have been exploited to generate iPSC 
models for a number of cancers.
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Core tip: Human induced pluripotent stem cells (iPSCs) 
represent a novel method for studying the mechanisms 
of cancer development and progression. Recently, a 
number of studies have generated iPSCs from human 
cancer cells and cell lines, which can then be used as 
a model for carcinogenesis. This review outlines the 
similarities that exist between pluripotent and malignant 
cells and summarizes available studies that have 
generated iPSC models of cancer.
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INTRODUCTION
Cancer is a heterogeneous group of diseases that 
accounts for an estimated 14.1 million new cases and 
8.2 million deaths annually, with the number of cases 
expected to increase to 24 million annually by 2035[1]. 
Surgical removal, chemotherapy and/or radiotherapy 
have become the mainstay treatment for cancer. In 
recent decades research has focused on improving 
current drugs and developing targeted therapies 
specific to the defining biological properties of 
tumours. Despite the development of these therapeutic 
interventions, the death rate from cancer remains 
high. One major reason for this is the limitations of 
current representative pre-clinical models for human 
carcinogenesis, including the difficulty in growing 
and expanding primary cultures. Induced pluripotent 
stem cells (iPSCs) offer a relevant and unlimited 
system to study the development and progression of 
cancer. This review will discuss the current models for 
carcinogenesis, similarities between cancer and stem 
cells, and recent iPSC models of human cancers. 

CURRENT MODELS
Cell lines developed from human tumours are often 
used to study carcinogenesis. These are inexpensive 
and can be maintained over lengthy periods; however 
prolonged culture can alter the characteristics of cells 
resulting in them becoming less representative of 
primary tumours[2]. Alterations in gene expression 
with prolonged in vitro culture are also associated with 
the use of cell lines, with studies using microarray 
data from snap-frozen normal human tissue, primary 
tumour biopsy tissue and tumour-derived cell lines 
identifying that only 2% of tissue specific and 5% of 
tumour specific genes were expressed when compared 
to their equivalent tissue or tumour[3]. Primary cell 
cultures better represent inter-patient heterogeneity 
which exists due to differences in tumorigenic cell 
properties and numbers, variation in cell of origin 
and frequency of mutations[4,5], however cultures 
have a limited life span and are difficult to obtain, 
maintain and expand. A number of animal models 
for carcinogenesis exist and have greatly increased 
our knowledge of cancer. However, animal models 
are not fully representative of carcinogenesis in the 
human setting due to inherent species differences 
including organism size and longevity as well as cancer 
susceptibility[6]. 

STEM CELLS IN DISEASE MODELLING
Stem cells are defined by their ability for self-
renewal and differentiation into a range of cell types. 
Their ability to replicate indefinitely overcomes the 
limitations of current human tissue models as they 
are able to generate a limitless supply of human cells. 
Somatic stem cells are present within many organs 

and are defined by their ability for both self-renewal 
and differentiation to maintain homeostasis[7]. These 
cells could be used to model development and disease; 
however adult stem cells comprise rare populations 
that are not easily identifiable. 

The first human embryonic stem cell line was 
derived from human blastocysts in 1998 by Thomson 
et al[8]. Stem cells have two defining features; self-
renewal and indefinite proliferation, meaning a limitless 
supply of tissue can be derived from these cells. Due 
to these properties, it is hoped that stem cells can 
be used as a system for disease modelling and drug 
discovery. However, research using human embryonic 
stem cells (hESCs) is hampered due to the ethical 
issues surrounding ESCs and the stringent restrictions 
enforced as a result. 

An alternative to hESCs and adult stem cells are 
induced pluripotent stem cells (iPSCs), generated 
in a landmark study by Takahashi et al[9]. From a 
screen of 24 candidates, 4 factors were identified 
which were able to reprogram mouse somatic cells 
to pluripotency; Oct3/4, Sox2, c-Myc and Klf4. 
These cells showed characteristics of ESCs including 
morphology, marker expression and the ability to 
form all three embryonic germ layers[9]. Subsequently, 
the same four factors were shown to also have the 
ability to reprogram human adult dermal fibroblasts to 
iPSCs[10]. An alternative cocktail of factors consisting 
of Oct4, Sox2, Nanog and Lin28 was also shown to 
generate iPSCs from human fibroblasts[11]. Human 
iPSCs possess a number of features that are typical 
of ESCs including self-renewal and expression of 
ESC marker genes. Importantly, as for hESCs, iPSCs 
have the ability to differentiate both in vitro, via the 
formation of embryoid bodies (EBs) comprising all 
three germ layers and in vivo, as demonstrated by 
the formation of teratomas[10]. The use of iPSCs also 
resolves the ethical issues associated with hESCs, a 
controversial topic due to the use of blastocyst stage 
human embryos to derive the cells[12]. As iPSCs can 
be generated from somatic cells, they also show great 
potential for developing patient specific models of 
diseases, which can be used to study the underlying 
mechanisms of disease development and the efficacy 
of treatments[13].

REPROGRAMMING VS CARCINOGENESIS
A number of similarities exist between the processes of 
reprogramming and carcinogenesis. Cancer cells have 
a number of defined characteristics including sustained 
proliferative signaling and replicative immortality[14]. 
Stem cells also possess this intrinsic ability for both 
self-renewal and proliferation, highlighting their 
similarity to cancer cells.

Cancer stem cells
Tumours, like normal tissue, are heterogeneous 
populations of cells, varying in phenotype, function 
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and gene expression[15]. Furthermore, studies 
from a number of cancers have shown that not all 
cells can regenerate tumours upon injection into 
immunodeficient mice, a functional assay which is 
now used to identify cells termed cancer stem cells 
(CSCs)[16]. CSCs can be defined as tumour cells which 
have the ability for both self-renewal to maintain the 
stem cell pool, and differentiation to the heterogeneous 
cell types which maintain the tumour[17], and therefore 
share the quintessential properties of normal stem 
cells (Figure 1). Importantly, due to these properties, 
CSCs which survive chemotherapy are able to re-
establish tumours[18]. Whilst the origin of CSCs is 
not fully known, it has been suggested that CSCs 
could arise as a result of mutations in stem, transit-
amplifying, differentiated or cancer cells leading to 
acquisition of malignant and/or stem cell properties[19]. 
Understanding the process by which CSCs are 
generated and how they maintain tumours is critical to 
develop therapies which target this cell population and 
therefore prevent tumour recurrence.

CSCs were originally identified in acute myeloid 
leukemia, however putative CSCs have now been 
identified in solid cancers including breast, colon, 
brain, prostate, and lung cancer[20]. These cells could 
be used to study tumours however they are difficult 
to isolate, particularly in solid tumours which are very 
heterogeneous and therefore are not fully represented 
by tissue samples taken from a single site within 
the tumour[21]. Reprogramming of primary cells of 
interest derived from patients into iPSCs could allow 
generation of disease- and patient-specific models to 
study carcinogenesis and to further interrogate the 
CSC model. An interesting addition to the CSC model 
is the concept of tumour cell plasticity. A number of 
studies have shown that non-CSCs can dedifferentiate 
and acquire properties of stem cells, converting 
them to CSCs which can then maintain the tumour. 
In colorectal cancer, Wnt signaling induced by the 
tumour microenvironment activates CSC properties 
in differentiated cancer cells[22], whilst transformed 

human mammary epithelial cells can spontaneously 
convert to cells with a CSC phenotype both in vitro and 
in vivo[23]. 

Cell reprogramming, clonal expansion and evolution
Carcinogenesis is a multi-step process consisting of 
initiation, promotion, conversion to malignancy and 
progression[24]. Cancer is known to undergo clonal 
expansion throughout this process, resulting from an 
initial change or mutation in a single cell which confers 
a growth advantage allowing for enhanced proliferation 
and expansion of this population. Further mutations 
then occur within cells forming subpopulations which 
expand and continue to accumulate changes and 
mutations which further alter proliferation, cause 
loss of differentiation and enhance invasive potential, 
resulting in a malignancy which is genetically and 
phenotypically divergent from the normal tissue 
counterpart[25]. Clonality is also a defining feature of 
stem cells, and is often used to measure the ability of 
such cells to self-renew[26].

Role of epithelial-mesenchymal transition and its 
significance
Epithelial-mesenchymal transition (EMT) is defined as 
a conversion of cells from an epithelial to mesenchymal 
phenotype with loss of epithelial properties such as 
apical-basal polarization and cell-cell adhesion and 
gain of mesenchymal properties such as motility, 
degradation of the extracellular matrix and resulting 
invasiveness[27,28]. This process is critical for normal 
development- during gastrulation for formation of 
the mesoderm, and also at subsequent stages such 
as neural crest formation and heart development[29]. 
Similarly, EMT occurs during differentiation of 
ESCs[30], whilst its opposing process mesenchymal-
epithelial transition is necessary to reprogram cells 
to pluripotency[31]. EMT has also been implicated in 
cancer with roles in a number of cancer hallmarks. 
The EMT inducers SNAIL1 and SNAIL2 correlate with 
relapse and survival in breast, ovarian and colorectal 
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alterations in 14% of cancer samples[45]. Translocation of 
c-Myc from chromosome 8 to chromosome 2, 14 or 22 in 
Burkitt lymphoma cells was the first evidence for the role 
of Myc in cancer development[46]. Myc translocation is 
also common in multiple myeloma where the oncogene 
is fused to an IgH or IgL locus in early carcinogenesis[47]. 
Abnormalities at the c-Myc or l-Myc locus have been 
identified in 19/20 multiple myeloma cell lines and 50% 
of advanced primary cancers[48]. Finally, Myc has also 
been implicated as a downstream target of deregulated 
Notch signalling which is apparent in T cell leukaemia, 
with the two molecules concurrently regulating leukaemic 
cell growth and proliferation[49].

Myc has also been implicated in solid tumours. 
c-Myc amplification occurs in 25% of primary breast 
carcinomas with protein overexpression in 45% of 
breast tumours, and was significantly correlated 
with poorly differentiated and highly proliferative 
tumours[50]. Overexpression of c-Myc mRNA is also 
thought to occur in 60%-80% of human colorectal 
adenocarcinomas[51] and has been shown to enhance 
colon cancer cell angiogenesis via inhibition of HIF-1α 
degradation and promotion of VEGF expression[52].

Myc is overexpressed or activated in over 50% 
of human cancers, but in most human cells cannot 
independently induce tumourigenesis, instead cooperating 
with other events such as loss of p53 or overexpression 
of Bcl2 to bypass normal cell checkpoints and initiate 
carcinogenesis[53]. Interestingly, the level of Myc 
expression has been shown to produce varying effects, 
with low level deregulated Myc resulting in proliferation 
alone whilst high levels of Myc overexpression are 
required to activate tumour suppressor mechanisms 
such as ARF induction leading to cellular apoptosis[54]. 

As is the case with Oct4, Nanog expression 
correlates with poor survival in OSCC and also in 
nasopharyngeal carcinoma if co-expressed with 
Oct4[41,55]. High levels of Nanog expression are also 
present in breast, lung, ovarian and colon cancer 
cell lines, and furthermore in cervical cancer Nanog 
expression increases with progression from cervical 
intraepithelial neoplasia to invasive cervical carcinoma 
and is associated with poorer prognosis. Inhibition of 
Nanog by siRNA decreased proliferation in a mouse 
model of colon cancer, implicating Nanog as a potential 
therapeutic target in the disease[56]. 

Sox2 is contained within the most significantly 
amplified peak in lung and esophageal squamous cell 
carcinoma (SSC), identifying it as an oncogene for 
these cancers[57]. Sox2 is also expressed in both mouse 
and human pre-neoplastic skin lesions and squamous 
cell carcinomas, but not in normal epidermis. Deletion 
of Sox2 in melanoma or SSC caused regression of 
tumours, and identified a number of genes involved 
in proliferation, stemness and cell survival which are 
regulated by Sox2, providing further evidence of a role 
for Sox2 in carcinogenesis[58].

A number of studies have suggested a role for 

cancers, suggesting that EMT is associated with 
poor outcome[28]. Expression of EMT genes is also 
associated with cancer progression as these expression 
profiles are identified at the invasive front of a number 
of cancers including colon carcinoma, papillary 
thyroid carcinoma and some breast carcinomas[28]. 
Furthermore, an EMT expression profile was shown to 
associate with development of metastasis in cutaneous 
malignant melanoma[32].

TGFβ, an inducer of EMT, has a dual role in cancer, 
acting as a tumour suppressor and activator of 
apoptosis whilst also promoting immune tolerance, 
invasion and metastasis[33]. TWIST1/2 proteins, which 
also act as EMT inducers, are increased in a number 
of human cancers and prevent senescence in cancer 
cells by inhibition of the p53 and Rb pathways[34]. 
Finally, EMT has also been implicated in resistance 
to chemotherapies, with evidence that a number 
of chemoresistant cell lines are induced to undergo 
EMT[35,36].

Role of reprogramming factors in cancer
Transcription factors which play a critical role in 
reprogramming cells to pluripotency have also been 
identified in human cancers. Oct4 is a transcription 
factor with roles in embryogenesis[37] which is expressed 
in all testicular germ cell tumours and also pre-
malignant carcinoma in situ lesions[38], as well as in 
breast, pancreas and colon cancer cDNA panels[39]. 
Furthermore, induced expression of Oct4 in the 
somatic cells of mice results in epithelial dysplasia, 
providing further evidence of a role for stem cell genes in 
carcinogenesis[40]. 

Immunohistochemical staining of a panel of oral 
squamous cell carcinoma (OSCC) patients identified an 
increased incidence of Oct4 expression with advanced 
stages of the disease, with enhanced nuclear staining 
in higher grade oral cancers[41]. Transduction of primary 
human breast epithelial cultures with Oct4 generated 
colonies with self-renewal capacity, which similarly to 
oral squamous cells with overexpressed Oct4 showed 
enhanced expression of mesenchymal markers and a 
loss of epithelial markers. These cells were also highly 
tumorigenic, forming poorly differentiated, high grade 
tumours after injection into nude mice[42]. Oct4 has 
also been implicated in cervical cancer with increasing 
numbers of Oct4 expressing cells in both carcinoma 
in situ and invasive cervical cancer compared to 
normal cervical tissue, suggesting a role for Oct4 in 
the development of cervical cancer. Overexpression of 
Oct4 in cervical cancer cell lines resulted in increased 
tumour volume and weight upon injection into mice, 
and decreased apoptosis both in vitro and in vivo 
compared to controls[43]. 

MYC encodes the Myc transcription factor which 
regulates genes involved in cell growth and proliferation[44]. 
Myc is a known oncogene and one of the most commonly 
altered genes in human cancers with copy number 
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typical stem cell genes in carcinogenesis. An 11-gene 
stem cell-like signature found in primary prostate 
tumours can be used as a predictive tool for prostate, 
breast and lung cancer patients, amongst other cancer 
types[59]. Construction of a gene module map by Chang 
et al[60] identified modules specific to adult and murine 
ESCs and found that the ESC module was activated in 
human epithelial cancers. Activation of these genes was 
associated with poorly differentiated breast tumours 
with an increased risk of metastasis and death, and 
was also associated with an increased risk of death 
in lung adenocarcinomas. The c-Myc oncogene was 
subsequently shown to induce the ESC-like module 
both in vitro and in vivo[60], consistent with the well-
described role of c-Myc in stem cell self-renewal[61]. An 
ESC signature developed by Weinberg’s group showed 
enrichment of stem cell genes in poorly differentiated 
and larger breast tumours and again this was associated 
with a poorer survival. The ESC signature was also 
associated with high grade gliomas and bladder 
carcinomas[62]. 

Metabolism
Altered metabolism has been implicated in cancer 
due to the “Warburg effect” whereby cancer cells 
use glycolysis for energy production rather than 
mitochondrial oxidative phosphorylation[63]. Aerobic 
glycolysis occurs in cultured cancer cells and pluripotent 
stem cells[64]. This is mediated by uncoupling proteins 
(UCPs) which uncouple oxidative phosphorylation 
from glycolysis, including UCP2 which is thought to be 
important for pluripotency[65] and is also increased in 
most human color cancers[66] as well as showing high 
expression in 90% of ovarian carcinomas and 94% of 
breast carcinomas[67]. Recent studies have found that 
during induction of pluripotency in somatic cells, genes 
involved in glycolysis are upregulated whilst those 
involved in oxidative pathways are downregulated, 
mediating a switch from oxidative phosphorylation 
to glycolysis[68] in a similar manner to that seen in 
carcinogenesis.

CURRENT MODELS OF CARCINOGENESIS
The generation of iPSCs from human somatic cells 
heralds a new era in disease modelling, allowing the 
development of patient specific models. As previously 
mentioned, despite improvements in cancer treatment 
the disease is still a major cause of morbidity and 
mortality. The lack of a relevant model to study the 
development of cancers and their progression has 
limited research which is suitable for translation to 
the clinical setting. Generation of iPSCs from human 
cancer cells represents an opportunity to develop in 
vitro models of carcinogenesis for specific cancer types 
(Figure 2). 

Recently, a number of studies have generated 
iPSCs from cancer cells with the hope of developing 
such a model (summarized in Table 1). One of the 
earliest attempts to generate iPSCs from malignant 
cells used retroviral transduction of Oct3/4, Sox2, Klf4 
and c-Myc into cancer cell lines from pancreatic, liver, 
stomach and colorectal cancers. These cancer-derived 
iPSCs had slower proliferation and increased sensitivity 
to chemotherapeutic agents in comparison to their 
parental cells[69]. 

iPSCs and chronic myeloid leukemia 
Carette et al[70] generated iPSCs from the KBM7 
chronic myeloid leukemia (CML) cell line. Interestingly, 
despite the sensitivity of the KBM7 cell line to imatinib, 
the iPSCs generated lost their BCR-ABL dependence 
and became resistant to imatinib[70], the tyrosine 
kinase inhibitor which targets the BCR-ABL protein 
which defines CML[71]. In a further study, Kumano 
et al[72] derived iPSCs from primary cultures from 
two CML patients and showed stem cell morphology 
and markers along with the ability to differentiate 
into haematopoietic progenitors which expressed 
the BCR-ABL fusion protein. Again, these iPSCs 
were generated from imatinib-sensitive patients but 
became resistant. Once differentiated, immature cells 
(CD34+38-90+45+) were identified which were resistant 
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to imatinib and demonstrated phenotypic similarities 
to CML stem cells. This cell population may therefore 
be useful to interrogate the role of stem cells in CML 
and the mechanisms underlying the development of 
resistance[72]. 

iPSCs and pancreatic ductal adenocarcinoma
iPSCs have also been used to study pancreatic ductal 
adenocarcinoma (PDAC), which currently has no 
suitable model. iPSC lines were generated from human 
tumours and injected into immunodeficient mice. 
After 3 mo, pancreatic intraepithelial neoplasia-like 
structures could be identified in 9 out of 10 teratomas, 
and by 9 mo solid tumours were present, suggesting 
that PDAC derived iPSCs can capture the process 
of carcinogenesis from pre-malignant lesions to the 
malignant phenotype. In vitro 3D culture of cells 
harvested from mice at 3 mo identified 25 proteins 
which were secreted by all teratomas, of which 8 
have been previously reported in PDAC, pancreatic 
epithelial neoplasia or intraductal papillary mucinous 
neoplasms[73]. However, although 9 patient samples 
were used in the study, only 1 iPSC line with a cancer 
genotype was generated from a single patient, which is 
consistent with other studies suggesting the difficulty 
of reprogramming malignant cells[74].

iPSCs and juvenile myelomonocytic leukemia 
A model of juvenile myelomonocytic leukemia using 
iPSCs derived from two patients has also recently 
been generated. Cells were able to differentiate to 
myeloid cells which showed phenotypic similarities to 
the primary tumours including enhanced proliferation, 
suggesting they could be a useful resource to model 
the disease[75].

Gastrointestinal cancer and glioblastoma
iPSCs have also been generated from a number of 
gastrointestinal cell lines using retroviral transduction. 
These cancer-derived iPSCs showed reduced tumourigenic 
potential in vivo as well as increased sensitivity to anti-
cancer drugs and decreased proliferative rate[69]. This 
decrease in tumour forming ability is a concern for 
the use of cancer-derived iPSCs as it is thought that 
reprogramming cells removes epigenetic marks which are 
important for lineage identity and malignancy. However, 
lineage specificity may remain due to incomplete 

reprogramming and can also be induced by differentiation. 
For example, in iPSCs derived from glioblastomas both 
lineage and cancer associated methylation marks were 
reset however during differentiation along the neural 
lineage cells maintained their malignant phenotype[76,77]. 

Modelling carcinogenesis using non-malignant cells
An alternative method to study carcinogenesis using 
iPSCs is to reprogram normal cells to pluripotency and 
follow their development to interrogate the processes 
which contribute to cancer development (Figure 2). 
iPSCs are able to differentiate into all adult cell types 
and can therefore be used to model development of 
human tissues[78]. iPSC models of organ and tissue 
development can then be monitored in real-time to 
identify any changes which may induce the onset of 
carcinogenesis. Recently, an in vitro model of skin was 
developed using iPSCs differentiated to keratinocytes 
and fibroblasts, providing an iPSC-generated in vitro 
model of a human organ[79].

Alternatively, iPSCs from normal somatic cells 
could also be manipulated to study carcinogenesis 
through overexpression or silencing of oncogenes, 
tumour suppressor genes and other factors thought 
to play a role in carcinogenesis, or alteration of the 
microenvironment. The response of cells to these 
changes can then be studied to determine the roles of 
such factors in cancer initiation and progression. 

CONCLUSION
Pluripotent cells and cancer cells share a number 
of characteristics including the ability for continual 
proliferation and self-renewal. iPSCs offer an 
opportunity to develop disease-specific models for 
carcinogenesis by reprogramming malignant cells. 
A number of studies have successfully generated 
iPSCs from human tumours and cancer cell lines and 
used them to study the underlying mechanisms of 
cancer. Generation of iPSCs from other cancer types 
is necessary to develop relevant in vitro models for 
carcinogenesis. 
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