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Abstract
Anaemia and thrombocytopenia are haematological 
disorders that can be detected in many human immu-
nodeficiency virus (HIV)-positive patients during the 
development of HIV infection. The progressive decline 
of erythrocytes and platelets plays an important role 
both in HIV disease progression and in the clinical and 
therapeutic management of HIV-positive patients. 
HIV-dependent impairment of the megakaryocyte and 
erythrocyte lineages is multifactorial and particularly af-
fects survival, proliferation and differentiation of bone 
marrow (BM) CD34+ haematopoietic progenitor cells, 
the activity of BM stromal cells and the regulation of 
cytokine networks. In this review, we analyse the ma-

jor HIV-related mechanisms that are involved in the 
genesis and development of the anaemia and thrombo-
cytopenia observed in HIV positive patients.
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INTRODUCTION
Human immunodeficiency virus (HIV) is the causative 
agent of  acquired immunodeficiency syndrome (AIDS), 
which is characterised by the progressive and fatal im-
pairment of  immune system function and the occurrence 
of  opportunistic infections and tumours[1]. Although 
the dysfunction of  the immune system and the decline 
in the number and activity of  CD4+ T cells represent 
the hallmark of  HIV infection, it is noteworthy that 
HIV can also interfere with other cell lineages and tis-
sues[2-5]. In addition to progressive depletion of  CD4+ T 
lymphocytes, peripheral blood cytopenias, such as anae-
mia, neutropenia and thrombocytopenia, occur in most 
patients with AIDS[6,7] and in some HIV-positive naive 
individuals during the early phases of  disease progres-
sion, especially when high plasma levels of  HIV RNA 
are detectable. Interestingly, isolated thrombocytopenia 
can represent the first clinical manifestation in otherwise 
asymptomatic HIV positive patients[8] whereas anaemia 
and neutropenia are more common in the late stages of  
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HIV disease[9]. These peripheral blood cytopenias have 
been observed even in the absence of  tumours, chemo-
therapeutic treatment or opportunistic infections suggest-
ing that HIV infection may be directly associated with the 
induction of  these haematological abnormalities[10]. The 
progressive depletion of  these cell lineages in the blood 
has been related to several HIV-driven mechanisms: (1) 
the impairment of  survival and proliferation of  haemat-
opoietic progenitor cells (HPCs); (2) the inhibition of  the 
differentiation of  HPCs into certain cell lineages or direct 
action on mature cells; (3) the impairment of  stromal 
cells; and (4) the dysregulation of  cytokine production 
and the appearance of  autoimmune responses. In this 
report, we analyse several aspects of  these major HIV-
related mechanisms that are involved in the impairment 
of  the erythrocyte and megakaryocyte (MK) lineages. 

HIV AND CD34+ HPCs
The bone marrow (BM) forms a suitable environment 
for stem cell survival, growth and differentiation. The 
cellular components of  BM include HPCs, HPC-derived 
cell lineages and stromal cells. HPCs represent a hetero-
geneous CD34+ cell population in the BM that includes 
the most primitive CD34+ haematopoietic stem cells 
(HSCs), which are characterised by pluripotency and a 
high capacity for self-renewal, and the CD34+ multi-po-
tent progenitors (MPPs), which originate from HSCs and 
are multipotent but have a more limited capacity for self-
renewal (Figure 1). MPPs can differentiate into common 
lymphoid progenitors (CLPs) and common myeloid pro-
genitors (CMPs). CLPs can differentiate into B and T cells, 
natural killer cells and plasmacytoid dendritic progenitor 
cells. T cell differentiation occurs in the thymus whereas 
CMPs differentiate in the BM, through specific differentia-
tion stages, into several cell lineages including granulocytes, 
erythrocytes, MKs and monocytes[11]. CMP-derived cell lin-
eages migrate into the blood with the exception of  MKs, 
which are maintained in the BM. The differentiation of  
HSCs is regulated by specific haematopoietic growth fac-
tors that induce the survival, proliferation and maturation 
of  specific cell lineages. These factors share several com-
mon properties and act hierarchically at different stages of  
differentiation, and they often show synergistic or additive 
interactions with other growth factors. Stromal cells are 
the major source of  these factors with the exceptions of  
erythropoietin (EPO) and thrombopoietin (TPO), which 
are largely produced in the kidneys and the liver, respec-
tively. 

The incidence of  peripheral blood cytopenias in HIV 
positive individuals has led to hypothesis that HIV can 
impair BM homeostasis and affect the biology and ac-
tivity of  HPCs. Early studies have observed that HIV 
infection is correlated with the depletion of  HPCs and a 
significant reduction in the in vitro growth of  HPCs that 
have been purified from HIV-infected patients[12-17], sug-
gesting that the multiple peripheral cytopenias may be 
related, at least in part, to a productive HIV infection of  

BM HPCs. HIV infection may determine a progressive 
HPC depletion due to cell lysis, which in turn leads to the 
derangement of  the differentiation towards various cellu-
lar lineages. This hypothesis of  a potential HIV infection 
of  HPCs may further imply an important feature in the 
dynamics of  HIV disease: long-lived HPCs may harbour 
proviral HIV DNA genomes in their own genomes and 
act as an additional reservoir of  HIV. Interestingly, cel-
lular HIV receptors and co-receptors can be detected on 
HPC cell membrane. Flow cytometry analyses showed 
that 25%-65% of  CD34+ HPCs that had been puri-
fied from the BM of  healthy donors, expressed detect-
able levels of  CD4 protein on their cell membranes[18,19]. 
Moreover, the CD4 protein was functionally active, and 
it effectively bound the HIV-1 gp120 anti-receptor[19]. 
The major co-receptors CXCR4 and CCR5 were also 
expressed on HPC cell membranes[20-22], and CXCR4 and 
CCR5 proteins were expressed in 53% and 35% of  iso-
lated CD34+ HPCs, respectively[23]. However, the analysis 
of  CXCR4 and CCR5 expression was dependent on 
the differentiation stage. When the expression levels of  
CXCR4 and CCR5 were determined in CD34+/CD38- 
and CD34+/CD38+ HPC subsets, the CXCR4 protein 
expression level was relatively constant in both subsets 
whereas CCR5 was detected in 2% of  more primi-
tive CD34+/CD38- cells and in 35% of  more mature 
CD34+/CD38+ subset, which indicated that CCR5 but 
not CXCR4 is up-regulated during differentiation from 
HSC into MPP[23]. The expression of  HIV receptors and 
co-receptors on the cell membranes of  CD34+ HPCs 
suggested that these cells could be considered a possible 
target of  HIV infection.

To explore this hypothesis, two major experimental 
approaches were undertaken by several groups: (1) the 
challenge of  BM or cord blood CD34+ HPCs, isolated 
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Figure 1  Human haematopoiesis. HSC: Hematopoietic stem cell; MPP: 
Multipotent progenitor; CLP: Common lymphoid progenitor; CMP: Common my-
eloid progenitor; GMP: Granulocyte/macrophage progenitor; MEP: Megakaryo-
cyte/erithrocyte progenitor; BFU-E: Burst forming unit-erythroid; CFU-E: Colony 
forming unit-erythroid; CFU-MK: Colony forming unit-megakaryocyte.
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from uninfected donors, with HIV strains; and (2) the 
detection of  HIV nucleic acids and/or viral proteins in 
BM CD34+ HPCs isolated from HIV-positive patients. 
These studies were based on the isolation and purifica-
tion of  CD34+ HPCs that represent a heterogeneous 
cell population[24,25] because the CD34+ marker could be 
detected not only on HSCs and MPPs but also on more 
committed myeloid progenitors such as CFU-GEMM, 
CFU-GM, BFU-E and CFU-MK progenitors.

Several reports showed that CD34+ BM HPCs, pu-
rified from uninfected donors, were resistant to HIV 
infection. Polymerase chain reaction (PCR) or reverse 
transcriptase-PCR analysis of  proviral HIV DNA or HIV 
RNA in HPCs that had been challenged with different 
HIV-1 strains did not reveal significant evidence of  HIV 
infection[9,12,26-29]. In partial contrast to these data, Chelucci 
and coworkers[30] have purified CD34+ HPCs from the 
peripheral blood of  healthy donors, cultured them with 
EPO + granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), interleukin-3 (IL-3) and SCF and then 
challenged with different HIV-1 strains. The analysis of  
p24 protein showed that 12% of  CFU-GM and less than 
1% of  BFU-E colonies were positive whereas the CFU-
GEMM progeny were negative.

Interestingly, early stem cells in the CD34+ HPCs, 
which are arrested in the G0 phase of  the cell cycle, were 
not permissive for HIV infection[23], and other reports 
showed that the more primitive CD34+/CD38- HPC 
subset was not susceptible for HIV-1 or HIV-2 infec-
tion[31,32]. However, a limited infection was revealed in 
the first weeks of  long-term culture in CD34+/CD38+ 
HPCs, which suggested that HIV infects at low extent 
only the more committed HPC subset but not the more 
primitive HPCs[31].

The analysis of  HIV infection in BM HPCs, purified 
from HIV-positive patients, was carried out to determine 
whether these patients could harbour proviral HIV DNA 
in HPCs. Two studies[33,34], based on PCR assays to detect 
proviral HIV DNA in BM HPCs, reported that 1 out of  
14 patients and 1 out of  11 patients, respectively, were 
HIV DNA positive. Similar percentages of  HIV provi-
ral DNA positive samples were detected in subsequent 
reports[12,13,35]. In contrast with these results, a higher 
percentage of  HIV-1 infection of  CD34+ HPCs was ob-
served in some groups of  HIV-1 positive individuals es-
pecially in patients with the more advanced stages of  the 
disease[36,37]. This discrepancy could be related to the use 
of  different PCR assays with different sensitivities, and 
the possible presence of  contaminating HIV-infected BM 
stromal cells. 

Notwithstanding these controversial results, the con-
sensus on HPC susceptibility to HIV infection, was that 
in vitro infection of  HPCs occurred, under some experi-
mental conditions, in a low fraction of  HPCs, and these 
HPCs were the more committed HPCs, whereas the more 
primitive HPCs were not considered a significant HIV 
target. Moreover, in vivo infection of  HPCs was infrequent 
suggesting a negligible role of  HIV-infection of  HPCs in 

BM derangement and the induction of  cytopenias[7]. 
Several mechanisms have been proposed to explain 

HPC resistance to HIV infection. HPCs secrete the 
CCR5 ligands macrophage inflammatory protein-1α 
(MIP-1α), MIP-1β, and regulated on activation normal 
T cell expressed and secreted (RANTES)[37,38] and the 
CXCR4 ligand stromal-derived factor 1 (SDF-1)[22], which 
may compete with R5- or X4-tropic HIV-1 strain infec-
tion by interfering with gp120/co-receptor-binding. In 
addition, an analysis of  the interference between gp120 
and mAb directed against CXCR4 in HPCs, suggested 
the lack of  a real CD4/CXCR4 complex on HPC mem-
branes, which excluded the formation of  the trimeric 
complex with gp120, essential for HIV binding and in-
fection[22]. Zhang and coworkers have also showed that 
the cellular cyclin-dependent kinase inhibitor p21 protein 
restricts HPC infection and interferes with the integration 
of  the proviral HIV-1 genome[39]. 

However, recent studies have challenged the con-
sensus about HPC resistance to HIV infection[40-44]. A 
report has described the HIV-1 subtype C infection in 
CD34+ HPCs, and the analysis of  proviral HIV DNA 
in peripheral blood CD34+ cells showed that 12 out of  
19 patients were positive. Interestingly, HIV-1 subtype B 
strains were not able to infect HPCs, suggesting that only 
specific HIV subtypes could be associated with direct 
infection of  HPCs[40]. Carter et al[41] challenged purified 
HPCs with a molecular HIV clone p89.6 derived from the 
dual tropic HIV strain 89.6. A small percentage (1%-6%) 
of  HPCs exhibited HIV-1 gag protein expression 72 
h post infection. A similar infection rate was found, in 
contrast with previous studies, even in the more primi-
tive CD133+CD34+CD38- HPC subset. However, the 
methodological approach of  this study was subsequently 
criticised for the choice of  the sole criterion of  gag 
analysis, the infection protocol and the pseudo-viruses 
that were used[45]. These results were substantially con-
firmed by the same group in a subsequent study[42] that 
showed HIV infection in approximately 2% of  primitive 
CD133+CD34+high HPC subset cells. HIV infection was 
detectable when X4-tropic HIV subtype B strains were 
used, whereas R5-tropic HIV strains were ineffective on 
CD133+CD34+CD38- HPC subset cells, suggesting that 
the infection of  HPCs might be detectable when X4-
tropic HIV strains appear during the progression of  HIV 
infection. These X4-tropic HIV strains are generally ob-
served in the late stages of  HIV infection and are related 
to more rapid disease progression and a poorer prognosis. 

Carter et al[41] have also studied BM HPCs, isolated 
from six HIV-positive patients with high HIV RNA load. 
HIV-1 gag protein was detected in three of  the six sam-
ples. When these cells were cultured with GM-CSF and 
tumour necrosis factor-α (TNF-α) to induce myeloid dif-
ferentiation, all six of  the samples were positive for the 
gag protein. In the same report, fresh BM HPCs, isolated 
from nine combination antiretroviral therapy (cART)-
treated HIV positive individuals with undetectable viral 
loads for longer than 6 mo, were analysed using a quan-
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titative real time PCR assay for integrated proviral HIV 
DNA. Four of  the nine samples were positive with the 
number of  proviral HIV genomes ranging between 2.5-40 
copies/10000 CD34+ HPCs. These data suggested a new 
interpretation of  the interaction between HIV and HPCs, 
in which a low number of  HSCs and HPCs are suscepti-
ble to HIV infection and may represent an HIV reservoir. 
The rate of  infection could be under-recorded because 
the data from Carter et al[41] indicate that HIV challenge is 
cytotoxic for HPCs. Moreover, their studies showed that 
even HIV-1 subtype B strains could infect these HPC 
subsets, which is in contrast to the previous study indi-
cated above[40], suggesting that the HIV-1 subtype B cy-
totoxicity could explain this phenomenon. The infection 
of  HPCs indicated that these cells could be a reservoir 
of  HIV. Unfortunately, the hypothesis of  HPCs as a viral 
reservoir was not confirmed by two subsequent analyses 
on proviral HIV-1 DNA in HPCs[46,47]. In these studies, 
CD34+ HPCs were purified from 11 and 8 HIV-positive 
patients treated with long-term suppressive cART. High 
sensitivity PCR assays demonstrated no HIV-1 proviral 
DNA in these cells[46,47]. 

Altogether, these recent studies have reconsidered 
the relationship between HIV infection and HPCs, but 
the data still remain controversial and further studies are 
needed to evaluate whether HIV infection of  HPCs may 
be associated with the onset of  blood cytopenias or may 
represent an additional HIV infection reservoir.

In addition to analyses of  the direct infection of  HPCs 
by HIV, several studies have been performed on granulo-
cyte-macrophage CFUs (CFU-GMs), mixed lineage CFUs 
(CFU-GEMMs) or erythroid burst-forming units (BFU-
Es). In this context, HPCs from HIV-1 infected patients, 
showed impaired in vitro BFU-E, CFU-GM and BFU-
MK growth[12,25,27,34,36,48,49]. These results were confirmed 
even in HPCs purified from HIV-negative individuals 
and challenged with HIV even though other studies did 
not observe growth inhibition[26,30,50,51] probably due to 
the different HIV strains and cell culture conditions that 
were used. The significant reduction of  CFU-GEMM, 
CFU-GM, BFU-E, and BFU-MK growth suggested an 
alteration of  HPC proliferation with the possible involve-
ment of  apoptosis in the induction of  cytopenias. Apop-
tosis plays an important role in the depletion of  CD4+ T 
lymphocytes even through the interaction of  HIV gp120 
and CD4. HIV gp120 is also able to induce the activation 
of  apoptosis in endothelial cells, osteoblasts, and neu-
rons[52-54], and several studies have been performed on the 
effects of  heat-inactivated HIV and certain viral proteins 
such as gp120 and Tat on the myelosuppression ob-
served in HIV-positive patients. HIV-1 gp120 and heat-
inactivated HIV-1[28,31,55,56] impaired the in vitro clonogenic 
capacity and induced apoptosis. This negative regulation 
of  proliferation and survival was associated with trans-
forming growth factor β1 (TGFβ1) increased production 
by HPCs and the occurrence of  a Fas-dependent mecha-
nism[57,58]. This reduction in survival and proliferation due 
to apoptosis could at least partially explain the decrease 

of  HPCs and circulating precursors that has been noted 
in HIV-positive patients[13,34,36,56-62]. 

HIV AND BM STROMAL CELLS
The cellular components of  the BM include HPCs at all 
stages of  differentiation and stromal cells. BM stromal 
cells are a mixed population composed of  mesenchymal 
stem cells (MSCs), endothelial cells, macrophages, fibro-
blasts, adipocytes, osteoblasts and osteoclasts, as well as 
dendritic cells and B and T lymphocytes that migrate 
from the blood to the BM. Stromal cells are essential 
for proper homeostasis and the regulation of  BM hae-
matopoiesis through a complex cellular cross-talk that is 
modulated by cytokines. In vitro experiments using long-
term BM cultures showed that HIV-infected BM stroma 
was unable to support uninfected CD34+ HPC growth 
and differentiation compared to uninfected cultures[49,63,64]. 
In addition, the stromal structure of  the BM in HIV 
patients shows morphological variations including an in-
creased number of  macrophages and a decreased number 
of  fibroblasts[10,65]. This impairment of  stromal activity 
and structure affects HPC differentiation and growth and 
it is due to the complex interaction between HIV and the 
different BM stromal cells that lead to a derangement of  
cytokine regulation. In particular, certain cell types, such 
as T cells, MSCs, macrophages and endothelial cells, are 
targeted, directly and indirectly, by HIV and its proteins 
including Tat and gp120[66-69]. BM MSCs can differentiate 
towards several cell lineages such as osteoblasts, adipo-
cytes, fibroblasts, etc. In vitro experiments have demon-
strated that HIV, gp120 and Tat can elicit a derangement 
of  the clonogenic capacity of  BM MSCs. In particular, 
the osteoblast differentiation is inhibited whereas adi-
pocyte differentiation is increased. The alteration of  the 
clonogenic activity may also explain the decreased num-
ber of  fibroblasts that are detectable in the BM of  HIV 
patients[10,65]. T cells, macrophages, endothelial cells and 
MKs are productively infected by HIV to different de-
grees in the BM. Endothelial cells are permissive for HIV 
infection and BM endothelial cells are infected in HIV 
patients at every stage of  HIV disease. Endothelial cell 
infection was related to BM impairment in HIV-positive 
subjects because they exhibited a reduced ability to re-
spond to BM micro-environmental regulatory signals that 
positively up-regulated the number of  blood cells[69].

CD4+ T cells and macrophages are the major targets 
of  HIV replication, and the release of  specific cytokines 
and haematopoietic factors is affected by HIV infection. 
TNFα, TGFβ1, interferon-γ (IFN-γ), IL-1, IL-6, IL-10, 
IL-18, TNF-related apoptosis-inducing ligand and mono-
cyte colony-stimulating factor are dysregulated by HIV 
in T cells and monocyte models[70-75]. Similarly, viral pro-
teins such as Tat and/or gp120 increase the expression 
of  IL-6, TNFα and IL-1[76-81]. The impairment of  several 
cytokines during HIV infection was confirmed by clini-
cal studies in which higher levels of  IL-1, IL-18, TNFα 
and IL-6 in the plasma of  HIV-positive patients were 
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detected compared to uninfected individuals[82-85]. It is 
noteworthy that the pro-inflammatory cytokines TNFα, 
IL-1, and IL-6 and the chemokines MIP-1α, MIP-1β and 
RANTES were up-regulated in the BM of  HIV-positive 
patients[65,86]. TNFα involvement in the HIV-1-induced 
suppression of  haematopoiesis, was also suggested in 
neutralisation studies[87]. Tat is able to elicit a significant 
activation of  the TGFβ1 expression in macrophages that 
have been isolated from BM. BM macrophage culture su-
pernatants were added to BM HPC cultures thus induc-
ing an inhibition of  HPC growth in the liquid cultures[88]. 
This chronic derangement of  cytokine modulation can 
elicit several negative effects on HPCs and their dif-
ferentiation into various cell lineages, cooperating in the 
pathogenesis of  anaemia and thrombocytopenia in HIV-
infected patients.

HIV AND THE MK LINEAGE
Chronic thrombocytopenia is detectable during HIV dis-
ease in approximately 10% of  HIV positive patients and 
15%-60% of  patients with AIDS[89-92]. This haematologi-
cal disorder may represent the first manifestation of  HIV 
infection and it may progress over time and lead to severe 
bleeding[91]. HIV-associated thrombocytopenia is related 
to reduced platelet survival, ineffective platelet produc-
tion and the impairment of  the survival of  BM MKs 
and their precursors. HIV targets the MK cell lineage by 
interfering throughout the differentiation of  mature MKs  
(Figure 2A). As described above, HIV decreases the number 
and activity of  HPCs and induces a growth deficit in 
CFU-MKs in HIV patients. An analysis of  the impact 
of  HIV-1 and gp120 during TPO-induced cord blood-
derived HPC differentiation into MKs has demonstrated 
that gp120 treatment led to the induction of  apoptosis in 
the CD41+ and CD61+ subsets due to TGFβ1 increase 
and APRIL down-regulation[55]. These data confirmed the 
induction of  apoptosis through the gp120 engagement of  
CD4, observed in BM GPⅡb/Ⅱa+ (CD41+) megakary-
ocytic cells and in megakaryocytic cell line models[93-95]. 
Moreover, a reduction of  c-mpl expression in the MK 
lineage due to V3 loop region of  gp120 was observed in 
MK lineage thus indicating a further mechanism involved 
in the impairment of  megakaryocytopoiesis[96]. 

HIV and gp120 altered the maturation of  MKs, and 
decreased the number of  MKs with higher ploidy[55]. 
Electron microscopy analysis of  MKs from HIV-infected 
individuals with thrombocytopenia clearly demonstrated 
ultrastructural abnormalities, such as blebbing of  the 
surface membrane and vacuolisation of  the peripheral cy-
toplasm[97]. Mature MKs can be infected by HIV through 
binding the CD4 receptor[97-102], and HIV genomes have 
been detected in MKs purified from BM of  HIV-positive 
patients[103]. The infection of  MKs is not strain-restricted 
because both R5- and X4-tropic HIV-1 strains are able to 
infect MKs thus indicating that the infection may occur 
early in the development of  HIV infection[99]. In addition 
to these direct effects of  HIV on the MK cell lineage, 

HIV also supports chronic thrombocytopenia through 
autoimmune mechanisms[89-92], particularly evident in early 
stages of  the disease[104,105]. Autoimmune mechanisms are 
related to anti-HIV antibodies cross-reacting with platelet-
membrane glycoproteins, supporting the basic role of  mo-
lecular mimicry in the induction of  these antibodies[106-110]. 
In particular, an autoantibody directed against integrin GP
Ⅲa49-66 induced a platelet lysis[110] and cross-reacted with 
some peptides derived from Nef  and gp120[111]. The anti-
GPⅢa49-66 antibody isolated from HIV-1 patients down-
regulated MK proliferation in in vitro culture of  human 
cord blood CD34+ cells driven by TPO[112].

Platelets can bind HIV-1 gp120 through its CXCR4 
and fibronectin surface receptors, and platelet-bound 
HIV may infect permissive cells suggesting a possible 
role for platelets as carriers in the spread of  HIV infec-
tion[113]. The interaction between platelets and HIV leads 
to the activation of  platelets and an altered platelet mor-
phology, which is likely due to CXCR4 binding because 
this protein is the receptor of  SDF-1, a factor involved in 
enhancing platelet activation by agonists[114]. Platelet ac-
tivation was detected in HIV patients and the degree of  
activation in circulating platelets was higher in AIDS pa-
tients than patients in earlier stages of  HIV infection[115]. 
Activated platelets also represent a source of  some pro-
inflammatory cytokines. Their activation led to a strong 
induction of  IL-1β and IL-18 secretion eliciting a further 
cytokine regulation derangement[114,116]. These alterations 
of  platelet activity were also related to the impairment of  
coagulation homeostasis, thus increasing the complexity 
of  the HIV/MK/platelet/coagulation interactions. These 
studies demonstrated that the MK lineage is a direct and 
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indirect target of  HIV and its proteins throughout their 
entire differentiation and development. This targeting 
affects platelet maturation and activity, explaining why 
thrombocytopenia is a major cytopenia in HIV-positive 
patients.

HIV AND THE ERYTHROCYTE CELL 
LINEAGE
Anaemia is a clinical complication detectable in many HIV 
patients[117]. The overall incidence of  anaemia in HIV-
positive individuals is 10% in asymptomatic patients and 
up to 92% in patients with AIDS[6,117]. cART treatment 
has reduced but not solved the problem of  anaemia in 
HIV patients. In a cohort of  1624 patients in the Eu-
roSIDA study, the prevalence of  anaemia during HAART 
decreased from 65% in naive patients to 53% after 6 mo 
of  therapy and 45% after 1 year of  therapy[118]. Although 
anaemia does not generally cause death in HIV patients, 
it is well known that anaemia can increase morbidity in 
these subjects. HIV patients with anaemia have a higher 
risk of  reduced survival compared to non-anaemic in HIV 
positive patients[117,119]. The symptoms of  anaemia during 
HIV infection are not different from the symptoms that 
are observed in HIV negative patients, and the diagnosis 
of  anaemia is often a laboratory diagnosis based on a re-
duction of  the haemoglobin (Hb) value and erythrocyte 
count. The anaemia is generally mild with Hb concen-
trations between 8-14 g/dL for men and 8-12 g/dL for 
women, although the degree of  anaemia is dependent 
on the immunosuppressive context and disease stage[120]. 
The erythrocyte morphology does not exhibit consist-
ent variations in the peripheral blood[121]. Microcytosis is 
rarely observed, whereas macrocytosis is found in HIV-
positive patients treated with zidovudine (AZT). AZT 
treatment was related to BM suppression, and the HER 
and WIHS studies observed a significant increase in anae-
mia in AZT-treated patients[122,123]. Some reports indicated 
the presence of  poikilocytosis, anisocytosis and ruleaux 
formation, but, in general, HIV-associated anaemia is 
characterised by normocytosis, low reticulocyte counts 
and an ineffective erythropoiesis with an hyporegen-
erative BM[6,124]. The pathogenesis of  anaemia in HIV-
positive patients is multifactorial (Figure 2B): the different 
mechanisms that are involved in the anaemia induction 
are characterised by the impairment of  erythrocyte pro-
duction and increased erythrocyte destruction[120]. HIV is 
directly involved in the induction of  anaemia even though 
neoplastic diseases, vitamin deficiencies, iron metabolism 
impairment, pharmacological treatments and opportunis-
tic infections are implicated in anaemia onset during HIV 
infection. The involvement of  HPCs in the cytopenias 
has been illustrated above, however, it is noteworthy that 
Cleveland and coworkers observed the expression of  
CD4 on the cell membranes of  erythroid differentiating 
cells. The co-expression of  CD4 and glycophorin A indi-
cates that some erythroid-committed cells could represent 
a target for HIV infection[125]. In addition, the expression 

of  functional CXCR4[37] was detected in CD34+ BFU-
Es even though its expression level decreased during 
erythroid differentiation. Interestingly, Tat treatment of  
cord blood-isolated HPCs up-regulated CXCR4 protein 
expression indicating a complex effect of  HIV activity on 
erythrocyte lineage survival and differentiation[126]. Moreo-
ver, the dysfunction of  erythroid differentiation could be 
related to BM microenvironment damage and stromal 
cell impairment[7,71]. IL-1β, IFN-γ, TGFβ1 and TNFα 
suppress the growth of  progenitor cells in vitro and may 
play an important role in the induction of  HIV-associated 
anaemia[116,126,127]. Some papers have suggested that HIV 
could impair the EPO-related feedback mechanisms that 
regulate the red blood cell homeostasis. Decreasing the 
Hb concentration induces EPO production, whereas in 
many HIV patients the presence of  anaemia is coupled 
with a decrease in the serum EPO concentration that is 
independent of  kidney damage[121,128,129]. Moreover, in vitro 
experiments demonstrated that HIV-1 reduced EPO syn-
thesis[130]. Different mechanisms have been considered to 
explain this EPO reduction. HIV-related up-regulation of  
pro-inflammatory cytokines IL-1β and TNF-α directly 
down-regulates EPO expression in vitro[131] through the 
cytokine-mediated formation of  reactive oxygen spe-
cies, which in turn impair the binding affinities of  EPO-
inducing transcription factors. In addition, circulating 
antibodies to EPO are detectable in approximatively 23% 
of  HIV-infected patients, and a prospective study on 
113 patients showed that anti-EPO antibodies could be 
considered an independent risk factor for anaemia[132,133]. 
The presence of  these auto-antibodies, directed against 
several targets, was associated with molecular mimicry 
and the dysregulation of  the immune system. Recent 
reports demonstrated that the anti-EPO antibodies rec-
ognised three major EPO molecule epitopes that span 
three regions including the amino acids domains 1-20 
(EP1), 54-72 (EP5) and 147-166 (EP12) of  which EP1 
and EP12 are the domains that are involved in the EPO-
EPOR interaction[134]. The region corresponding to EP1 
shows a 63% sequence homology with the 34-52 amino 
acid sequence of  HIV gag p17, and a cross-reaction be-
tween anti-EP-1 auto-antibodies and the gag fragment 
was detected suggesting a role for mimicry by this protein 
in the occurrence of  anaemia[134]. HIV-associated anaemia 
could also be induced by haemolysis. In HIV patients, 
cases of  haemolysis have been observed that are linked to 
CID, glucose-6-dehydrogenase deficiency, auto-antibodies 
against red blood cells, thrombotic thrombocytopenia 
purpura and pharmacological treatment. Furthermore, 
some HIV positive patients exhibited the presence of  a 
broad panel of  specific and non-specific anti-erythrocyte 
antibodies, and, in some cases, erythrocyte lysis was me-
diated by complement activation. Although consistent 
haemolysis is rare in HIV patients, the damage and lysis 
of  red blood cells by auto-antibodies can be considered an 
additional mechanism of  HIV-associated anaemia[135-137].

In conclusion, the occurrence of  thrombocytopenia 
and anaemia represent major pathological manifestations 
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in HIV patients. The pathogenesis of  these cytopenias 
is multifactorial, and several targets such as HPCs, cell 
lineage differentiation, cytokine dysregulation and stro-
mal cell impairment cooperate in the occurrence of  
these haematopoietic defects. The investigation of  the 
different mechanisms that are involved in the genesis 
of  these cytopenias has provided important findings on 
HIV pathogenesis even though some pivotal items such 
as the susceptibility of  HPCs to HIV infection and their 
role as HIV infection reservoirs are still under debate and 
deserve additional experimental analysis. Further studies 
will be essential to better characterise these mechanisms 
and to identify useful targets for supportive therapy and 
management of  HIV-positive patients.
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