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Abstract
Oxidative stress processes play a major role in the 
development of the complications associated with 
diabetes and other diseases via  non-enzymatic glycation, 
the hexosamine pathway, the polyol pathway and 
diacylglycerol-protein kinase C. Oxidative stress may 
lead to the production of hydroxyl free radicals, which 

can attack macromolecules, such as lipids, nucleic acids 
or amino acids. Phenylalanine (Phe) can be enzymatically 
converted to the physiological para-tyrosine (p-Tyr); 
however, a hydroxyl free radical attack on Phe may yield 
meta- and ortho-tyrosine (m- and o-Tyr, respectively) in 
addition to p-Tyr. Hence, m- and o-Tyr may be regarded 
as markers of hydroxyl free radical-induced damage. Their 
accumulation has been described; e.g. , this accumulation 
has been found in the urine of patients with diabetes 
mellitus (DM) and/or chronic kidney disease, in cataract 
lenses, in vessel walls, in irradiated food and in amniotic 
fluid, and it may serve as an indicator of oxidative stress. 
The use of resveratrol to treat patients with type 2 DM 
led to a decrease in the urinary excretion of o-Tyr and 
concomitantly led to an improvement in insulin signaling 
and insulin sensitivity. Literature data also suggest that 
m- and o-Tyr may interfere with intracellular signaling. 
Our group has shown that erythropoietin (EPO) has 
insulin-like metabolic effects on fat cells in addition to its 
ability to promote the proliferation of erythroid precursor 
cells. We have shown that the supplementation of cell 
culture medium with m- and o-Tyr inhibits erythroblast 
cell proliferation, which could be ameliorated by p-Tyr. 
Additionally, in vivo , the o-Tyr/p-Tyr ratio is higher in 
patients with renal replacement therapy and a greater 
need for EPO. However, the o-Tyr/p-Tyr ratio was an 
independent determinant of EPO-resistance indices in 
our human study. The o-Tyr content of blood vessel 
walls inversely correlates with insulin- and acetylcholine-
induced vasodilation, which could be further impaired 
by artificial oxidative stress and improved by the use 
of antioxidants. In rats that receive o-Tyr supplements, 
decreased vasorelaxation is detected in response to 
insulin. Additionally, o-Tyr supplementation led to the 
incorporation of the unnatural amino acid into cellular 
proteins and caused a decrease in the insulin-induced 
phosphorylation of endothelial nitric oxide synthase. 
Our data suggest that m- and o-Tyr may not only be 
markers of oxidative stress; instead, they may also be 
incorporated into cellular proteins, leading to resistance 
to insulin, EPO and acetylcholine.
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Core tip: Hydroxyl-free radical-derived amino acids, 
such as meta- and ortho-tyrosine (m- and o-Tyr, 
respectively) are regarded as free radical markers, 
but they may also be taken up and incorporated into 
blood vessel walls, erythroid precursors and endothelial 
cells. These pathological amino acids can induce 
vascular insulin and acetylcholine, as well as cellular 
erythropoietin resistance.
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OXIDATIVE STRESS IN THE OLD 
PERSPECTIVES
Oxidative stress plays a role in the pathogenesis of 
many diseases, such as diabetes mellitus (DM), chronic 
kidney disease (CKD) and inflammatory diseases, 
as well as in the development of the complications 
associated with these diseases. Oxidative stress, free 
radicals and reactive oxygen species (ROS) are tightly 
connected to DM in several ways. Hyperglycemia may 
lead to a shift in cellular metabolism toward the polyol 
pathway, which leads to an oxidative shift in the NADPH/
NADP ratio. NADPH is in turn required for antioxidant 
defense, e.g., for the reduction of oxidized glutathione 
by glutathione reductase. Furthermore, hyperglycemia 
activates the diacylglycerol-protein kinase C intracellular 
signaling pathway, which can activate NADPH oxidases; 
this oxidation leads to the translocation of nuclear factor 
κB into the nucleus and then to the transcription of 
proinflammatory cytokines, which results in increased 
oxidative stress. Additionally, hyperglycemia increases 
the rate of non-enzymatic glycation, which produces 
advanced glycation end-products (AGEs) that can bind 
to their receptors of AGE (RAGE), and the AGE-RAGE 
interaction also leads to inflammation and oxidative 
stress. DM involves the enhancement of not only non-
enzymatic glycation but also enzymatic glycation via 
the hexosamine pathway; this enhanced glycation may 
also result in a proinflammatory response and oxidative 
stress. However, this interplay is complex; the ROS 
arising from oxidative stress may also contribute to 
the activation of the abovementioned pathways and 
reactions and can thus generate a vicious circle[1,2].

DETECTION OF OXIDATIVE STRESS
The study of oxidative stress processes is therefore 
important, albeit somewhat cumbersome. Per their 
definition, free radicals are highly reactive molecules 
with a very short lifetime; therefore, detecting these 
molecules requires spin traps and an electron spin 
resonance device[3,4], but the sensitivity of this method 
is usually too low for many diseases. Because of the 
high reactivity of free radicals, they can react with 
macromolecules and yield oxidation products, some 
of which are more chemically stable molecules. These 
products may include lipid peroxidation products (such 
as malonyldialdehyde derivatives), nucleobase products 
(such as 8-hydroxydeoxyguanosine), so-called advanced 
oxidation products or amino acid derivatives[5,6].

DETECTION OF HYDROXYL 
FREE RADICALS BY STABILE 
L-PHENYLALANINE DERIVATIVES
L-Phenylalanine (Phe) is a highly abundant essential 
amino acid in proteins of the human body, and Phe plays 
a role in forming peptides and proteins; Phe also gives 
rise to the semi-essential amino acid L-para-tyrosine 
(p-Tyr) and its derivatives, such as 3,4 dihydroxy-
phenylalanine (DOPA), and derivatives thereof[7]. p-Tyr is 
mainly produced via the enzymatic reactions catalyzed 
by the Phe hydroxylase enzyme, especially in the kidney 
and liver[8]. p-Tyr synthesis becomes impaired in patients 
with renal failure (e.g., CKD); therefore, the serum 
levels of p-Tyr in these patients are lower than those in 
patients/controls with normal renal function [CKD: 28 
(26-34), DM + CKD: 32 (29-39) μmol/L vs controls: 56 
(36-57) μmol/L][9]. However, other isomers of tyrosine, 
namely meta- and ortho-tyrosine (m-Tyr and o-Tyr, 
respectively) also exist in humans. These amino acids 
cannot be formed enzymatically in humans; instead, 
they are stable products of the reaction between the 
hydroxyl free radical and Phe. Additionally, p-Tyr may 
be formed non-enzymatically, via the hydroxyl radical, 
but the enzymatically produced p-Tyr is much more 
abundant than the free radical-derived p-Tyr. Therefore, 
p-Tyr is regarded as the physiologic isoform, whereas m- 
and o-Tyr are considered to be free radical markers[10-14].

All four aromatic amino acids (p-Tyr, m-Tyr, o-Tyr 
and Phe) can be readily detected in the nanomolar 
range via their autofluorescence and reverse-phase 
high performance liquid chromatography[9,15-22], as 
well as by gas chromatography combined with mass 
spectrometric detection[23] or by ultra-performance liquid 
chromatography combined with mass spectrometry[24].

ABUNDANCE OF THE HYDROXYL FREE 
RADICAL MARKERS M- AND O-TYR
In vitro measurements[25] and in silico calculations[26] have 
shown that in free radical reactions, the three isoforms (p-, 
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m- and o-Tyr) are not produced stoichiometrically (i.e., 
1:1:1), and their concentrations and ratios may vary 
from tissue to tissue in vivo. These isoforms, along with 
others, have been detected in cataractous lenses by our 
group and others[16,27], in the brain after acute oxidative 
stress[28], in the serum/plasma of diabetic patients with/
without CKD by our group[9], after the administration of 
thyroid hormone[29], after ischemia-reperfusion injury[14], 
in the hair of the Homo tirolensis and mummies[30], in 
irradiated food[31], in urine specimens[9,24] and in amniotic 
fluid[32]. In earlier publications, we have shown that 
m-Tyr, o-Tyr and DOPA accumulate in the non-water 
soluble proteins of cataractous lenses during aging and in 
patients with DM[16], and we also showed that the urinary 
excretion of o-Tyr increases in patients with type 2 DM 
and/or CKD [CKD: 122 (94-183), DM: 641 (272-499), 
DM+CKD: 403 (258-651) nmol/d vs controls: 24 (0-35) 
nmol/d][9]. Using the so-called fractional excretion values, 

which show the renal handling of o-Tyr, we have found 
active urinary secretion or in loco renal synthesis of o-Tyr 
in the kidney of diabetic patients [DM: 125 (69-140), DM 
+ CKD: 112 (69-187)% vs controls: 8 (4-12)%][9]. 

In patients with stroke, the urinary excretion of o-Tyr 
is associated with the total urinary albumin excretion; 
immunoreactive albumin excretion; and most signifi
cantly, urinary non-immunoreactive albumin excretion[17]. 

DECREASED URINARY EXCRETION 
OF O-TYR IS ASSOCIATED WITH AN 
IMPROVEMENT IN INSULIN RESISTANCE 
IN TYPE 2 DIABETES
In a human study, we demonstrated the protective 
effect of the polyphenolic compound resveratrol in 
patients with type 2 DM; a short-term administration of 
resveratrol led to a decrease in urinary o-Tyr excretion 
(Figure 1), an increase in the phosphorylation of the 
insulin signaling molecule protein kinase B (or Akt), 
(Figure 2) and an amelioration of the calculated marker 
of insulin resistance (homeostasis model assessment-
insulin resistance) (Figure 3)[18].

ARE M- AND O-TYR JUST MARKERS OR 
ALSO MAKERS?
All of the abovementioned papers focused on m- and 
o-Tyr as markers of hydroxyl free radical damage. 
However, the last of our abovementioned studies (on the 
in vivo effects of resveratrol) raised the possibility that 
these molecules may not only be markers; instead, they 
may also play a role in the development of pathological 
states[18]. Independent of our results, Ruggiero et 
al[33,34] showed that m- and o-Tyr can inhibit tumor cell 
growth via influencing the mitogen-activated protein 
kinase/extracellular signal regulated kinase (ERK) and 

502 April 15, 2015|Volume 6|Issue 3|WJD|www.wjgnet.com

Figure 1  Changes in urinary ortho-tyrosine:creatinine excretion after 
resveratrol treatment. For each participant, the value measured at baseline 
was subtracted from that measured at week 4 (i.e., Δ o-Tyr:creatinine ratio), 
and then the resulting values were averaged within the respective groups. The 
values are the means, with the standard deviations represented by vertical 
bars. aMean values were significantly different (P = 0.043). Comparisons were 
performed using ANOVA and Bonferroni post hoc tests; P < 0.05 was regarded 
as statistically significant. Republished with permission of Cambridge University 
Press from Brasnyó et al[18]. o-Try: Ortho-tyrosine.
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Figure 2  Increase in protein kinase B phosphorylation in platelets upon 
resveratrol treatment. Values are the means, with the standard deviations 
represented by vertical bars. aMean values were significantly different for 
baseline vs week 4 within the resveratrol group (P = 0.032). Comparisons 
were performed using ANOVA and post-hoc tests; P < 0.05 was regarded as 
statistically significant. Republished with permission of Cambridge University 
Press from Brasnyó et al[18]. pAkt: Protein kinase B phosphorylation.
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Figure 3  Decrease in homeostasis model of assessment for insulin resistance 
upon resveratrol treatment. For each participant, the value measured at baseline 
was subtracted from that measured at week 4 (i.e., Δ HOMA-IR), and then 
the resulting values were averaged within the respective groups. Values are 
the means with the standard deviations represented by vertical bars. aMean 
values were significantly different for the resveratrol group vs the placebo group 
(P = 0.044), comparisons were performed using ANOVA and Bonferroni post 
hoc tests; P < 0.05 was regarded as statistically significant. Republished with 
permission of Cambridge University Press from Brasnyó et al[18]. HOMA-IR: 
Homeostasis model of assessment for insulin resistance.
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phosphorylation of STAT5 and ERK1/2 (Figure 8). This 
finding indicates that the unnatural isoforms, o- and 
m-Tyr, can be incorporated into cellular proteins and 
interfere with the hormonal signaling of EPO[21].

This finding is consistent with a clinical observation 
of our group that the ratio of the pathological o-Tyr 
to the physiological p-Tyr (o-Tyr/p-Tyr ratio) is higher 
in patients who receive renal replacement therapy 
compared with controls. Additionally, the o-Tyr/p-Tyr 
ratio in the blood was higher in the individuals receiving 
hemodialysis and EPO replacement than in those 
patients receiving hemodialysis who did not require EPO 
replacement or in patients receiving peritoneal dialysis 
and requiring markedly lower EPO doses. Furthermore, 
the plasma o-Tyr/p-Tyr ratio was an independent 
predictor of the EPO dose and EPO-resistance indices 
in these patients. This finding is another indirect 
demonstration that o-Tyr may interfere with EPO 
signaling and lead to EPO resistance[22].

VASCULAR INSULIN RESISTANCE 
ACCORDING TO THE O-TYR CONTENT 
OF THE VESSEL WALL
In a further set of experiments, we analyzed the o-Tyr 
levels in the blood vessel walls of rodents and found 
that the o-Tyr content of blood vessels decreases 
toward the peripheral vasculature (i.e., thoracic aorta > 
abdominal aorta > femoral artery) (Figure 9A). The o-Tyr 
content could be increased by treatment with hydrogen 
peroxide and aminotriazole or by aortic banding, and 
it could be inhibited using superoxide dismutase and 
catalase (Figure 9B).

We have shown that vascular segments with higher 
o-Tyr content show lower vasorelaxation in response to 
insulin; i.e., the insulin-induced vasorelaxation is lowest 
in the thoracic aorta, higher in the abdominal aorta and 
the highest in the femoral artery (Figure 10). 

Furthermore, the insulin-induced relaxation could 
be increased by an antioxidant (superoxide dismutase 
and catalase) treatment in the thoracic aorta. By 
contrast, pro-oxidant therapy further diminished the 
vasorelaxation in an ERK1/2-dependent manner[19]. 

VASCULAR ACETYLCHOLINE 
RESISTANCE ACCORDING TO THE O-TYR 
CONTENT OF THE VESSEL WALL
In the same set of experiments, the vasorelaxation 
in response to acetylcholine was also tested, and we 
also found an inverse relationship between the vessel 
wall o-Tyr content and the vasorelaxation in response 
to acetylcholine; i.e., the blood vessels with high o-Tyr 
content (see Figure 9A) show less vasorelaxation in 
response to Ach (Figure 11, previously unpublished 
data).

Based on these experiments, we subjected rats 

the signal transducer and activator of transcription 
(STAT) pathway. In plants, m-Tyr inhibits cell growth 
and plant root growth and may be considered a natural 
herbicide[35,36]. This finding raises the possibility that the 
unnatural isoforms, m- and o-Tyr, might affect cellular 
function in mammals and plants and may interfere with 
hormonal signaling.

INSULIN-LIKE EFFECT OF 
ERYTHROPOIETIN ON GLUCOSE 
METABOLISM
In a subsequent study, we have shown that under 
hyperglycemic circumstances, erythropoietin (EPO) 
exerts insulin-like effects on the uptake of isotope-
labeled glucose by 3T3-L1-type fat cells (Figure 4) and 
can lead to the translocation of glucose transporters 
transporters (GLUTs) from their intracellular pools to 
the membrane (Figure 5). EPO also improves glucose 
metabolism in streptozotocin-induced diabetic rats[37].

M- AND O-TYR ARE INCORPORATED 
INTO CELLULAR PROTEINS AND LEAD 
TO ERYTHROPOIETIN RESISTANCE
In further studies, we showed that the administration 
of m- and o-Tyr to erythroblasts inhibited erythroblast 
proliferation in a time- and concentration-dependent 
manner. Increasing doses of p-Tyr could overcome 
the inhibition by m- and o-Tyr, suggesting potential 
competition among the structural isoforms (Figure 6).

Erythroblasts grown in cell culture medium supple
mented with m- or o-Tyr incorporated the Tyr isoforms 
into their cellular proteins (Figure 7).

Supplementing erythroblast cells with o- or m-Tyr 
inhibited the EPO-dependent increase in the rate of 
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Figure 5  GLUT4 translocation (red fluorescence) after a 30 min treatment with insulin (400 nmol/L) or r-mo-erythropoietin (40 ng/mL) in 3T3-L1 adipocytes 
cultured in high glucose (25 mmol/L) or normal glucose (5 mmol/L) medium compared with that in untreated cells (Control). Nuclei are shown with blue 
fluorescence. The GLUT4 translocation was apparent after both the erythropoietin (EPO) and insulin treatments, whereas it was not present in untreated cells. 
Representative images are shown from n = 3 independent experiments. Republished with permission of Georg Thieme Verlag KG Stuttgart, New York from Mikolás et 
al[37].
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to vehicle or o-Tyr supplementation for 4 wk. By the 
end of the 4 wk, we showed decreased vasorelaxation 
in response to insulin in the o-Tyr-supplemented rats 

compared with the controls. Additionally, the endothelial 
cells that received o-Tyr supplementation incorporated 
o-Tyr into their cellular proteins. In these cells, the 
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the phenylalanine (Phe) levels (Panels A and B) and are expressed as the percentage of the control vessels (Pane B). cP < 0.05; NS, P > 0.05 (ANOVA). Republished 
with permission of Informa Healthcare from Szijártó et al[19]. o-Tyr: Ortho-tyrosine; NS: Non-significant; SEM: Standard error of the mean.
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insulin-induced increase in endothelial nitric oxide 
synthase phosphorylation was diminished compared 
with that in the control cells[20] (data not shown).

CONCLUSION
Our results, which are consistent with previous findings, 
indicate that m- and o-Tyr are valuable markers of 
oxidative stress and other types of stress in patients 
or experimental animals with DM. Furthermore, the 
results suggest that these unnatural amino acids may 
also perform a pathogenic role, i.e., interfere with the 
signaling of three distinct hormones: insulin (vascular 
and perhaps metabolic signaling), acetylcholine and 
erythropoietin (also has metabolic effects). This 
inhibition may be even more pronounced in patients 
who have high levels of the pathological amino acids m- 
or o-Tyr (e.g., in DM) and simultaneously have lower 
levels of physiological p-Tyr (e.g., patients with impaired 
kidney function). This finding, together with the effect 
in which p-Tyr overcomes the inhibitory effect of m- 
and o-Tyr, raises the possibility that the physiological 
amino acid p-Tyr could be a therapeutic tool in hormone 
resistance in states with increased oxidative stress (e.g., 

in DM).
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