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Abstract
AIM: To investigate the potential for early gestation 
placenta-derived mesenchymal stromal cells (PMSCs) for 
fetal tissue engineering.

METHODS: PMSCs were isolated from early gestation 
chorionic villus tissue by explant culture. Chorionic villus 
sampling (CVS)-size tissue samples (mean = 35.93 mg) 

were used to test the feasibility of obtaining large cell 
numbers from CVS within a clinically relevant timeframe. 
We characterized PMSCs isolated from 6 donor placentas 
by flow cytometry immunophenotyping, multipotency 
assays, and through immunofluorescent staining. Protein 
secretion from PMSCs was examined using two cytokine 
array assays capable of probing for over 70 factors 
in total. Delivery vehicle compatibility of PMSCs was 
determined using three common scaffold systems: fibrin 
glue, collagen hydrogel, and biodegradable nanofibrous 
scaffolds made from a combination of polylactic acid (PLA) 
and poly(lactic-co-glycolic acid) (PLGA). Viral transduction 
of PMSCs was performed using a Luciferase-GFP-
containing lentiviral vector and efficiency of transduction 
was tested by fluorescent microscopy and flow cytometry 
analysis.

RESULTS: We determined that an average of 2.09 × 
106 (SD ± 8.59 × 105) PMSCs could be obtained from 
CVS-size tissue samples within 30 d (mean = 27 d, SD 
± 2.28), indicating that therapeutic numbers of cells can 
be rapidly expanded from very limited masses of tissue. 
Immunophenotyping by flow cytometry demonstrated 
that PMSCs were positive for MSC markers CD105, 
CD90, CD73, CD44, and CD29, and were negative for 
hematopoietic and endothelial markers CD45, CD34, 
and CD31. PMSCs displayed trilineage differentiation 
capability, and were found to express developmental 
transcription factors Sox10 and Sox17 as well as neural-
related structural proteins NFM, Nestin, and S100β. 
Cytokine arrays revealed a robust and extensive profile 
of PMSC-secreted cytokines and growth factors, and 
detected 34 factors with spot density values exceeding 
103. Detected factors had widely diverse functions 
that include modulation of angiogenesis and immune 
response, cell chemotaxis, cell proliferation, blood vessel 
maturation and homeostasis, modulation of insulin-like 
growth factor activity, neuroprotection, extracellular matrix 
degradation and even blood coagulation. Importantly, 
PMSCs were also determined to be compatible with both 
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biological and synthetic material-based delivery vehicles 
such as collagen and fibrin hydrogels, and biodegradable 
nanofiber scaffolds made from a combination of PLA 
and PLGA. Finally, we demonstrated that PMSCs can be 
efficiently transduced (> 95%) with a Luciferase-GFP-
containing lentiviral vector for future in vivo  cell tracking 
after transplantation.

CONCLUSION: Our findings indicate that PMSCs 
represent a unique source of cells that can be effectively 
utilized for in utero cell therapy and tissue engineering.

Key words: Placenta; Mesenchymal stromal cells; Chorionic 
villus; Fetal surgery; Tissue engineering
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Core tip: In this study we characterize mesenchymal 
stromal cells derived from early gestation human placenta 
chorionic villi (PMSCs) for the purpose of fetal tissue 
engineering. We examine cell expansion in early passages 
from chorionic villus sampling-size tissue samples, as 
well as PMSC surface marker expression, multipotency, 
intracellular protein expression, protein secretion, and 
compatibility with delivery vehicles and tracking methods 
often used for in vivo  experimentation. We show that 
early gestation PMSCs are excellent candidates for future 
tissue engineering studies, particularly as it applies to in 
utero therapy for congenital anomalies.
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INTRODUCTION
Over the past three decades, fetal surgery has emerged 
as an effective treatment option for congenital diseases, 
including spina bifida, congenital diaphragmatic hernia, 
sacrococcygeal teratoma and cardiac malformations[1,2]. In 
utero intervention allows clinicians to treat disease quickly 
after its onset and prevent debilitating symptoms before 
they ever occur[3,4]. Mesenchymal stromal cell (MSC) therapy 
can augment existing in utero surgical techniques, and 
treatment with MSCs has been shown to promote wound 
healing[5,6], protect damaged tissues[7-11], and modulate the 
immune system[12-15]. Cells obtained via methods such as 
chorionic villus sampling (CVS) allow for the potential 
development of  cell therapies that are autologous (derived 
from the patient’s cells) to the fetus[16-18]. Autologous 
therapies are potentially preferable to allogeneic (not patient 
specific) therapies, as using the patient’s own cells in a 
therapy should not elicit an immune response[19]. However, 
where autologous therapies are not required, allogeneic 

early gestation chorionic villus tissue can be an outstanding 
cell source for cell therapy as well.

The chorionic villi of  early gestation placenta present 
an ideal source of  autologous and allogeneic stromal cells. 
Placenta-derived mesenchymal stromal cells (PMSCs) 
are analogous to the MSCs routinely obtained from 
bone marrow in both surface marker expression and 
multipotency[20,21]. Investigators interested in utilizing 
PMSCs or other fetal-derived mesenchymal stromal cells 
have demonstrated their potential for engineering bone[22-24], 
cartilage[25-27], and muscle[28-30], as well as pancreatic[31], 
neural[7,17] and cardiac tissues[18,32-34]. The gestational age of  
the source tissue may affect the therapeutic capabilities of  
the cells. One study comparing cells obtained from term 
chorionic villus tissue vs those from first trimester tissue 
noted that the cells from earlier gestation tissue had more 
stem-like properties, faster growth kinetics, and improved 
wound-healing capability in vivo[35]. These data indicate that 
cells obtained from earlier gestation chorionic villus tissue 
may be preferential to term cells for tissue engineering 
purposes.

In this study we isolate PMSCs from chorionic villus 
tissue of  early gestation placenta (GA 12-18 wk). We detail 
the initial growth phase of  cells isolated from CVS-sized 
tissue samples using an explant culture method. PMSCs 
were characterized by flow cytometry immunophenotyping, 
multipotency assays and immunofluorescent staining for 
stem cell related transcription factors and intracellular 
markers, as well as by examining secreted proteins by 
membrane array. We demonstrate that these cells are 
compatible with multiple delivery matrices critical to their 
local distribution upon surgical transplantation. Lastly, 
PMSCs are shown to be efficiently transduced with a 
Luciferase-GFP-containing lentiviral vector which allows for 
cell tracking data to be obtained from in vivo transplantation 
experiments. These data provide further support for the 
use of  early gestation PMSCs for in vivo tissue engineering 
purposes, and sets the stage for further investigation of  the 
therapeutic profile of  transplantable cell-seeded matrices.

MATERIALS AND METHODS
Isolation and culture of PMSCs from human early 
gestation placenta 
Donated placental tissues were collected at the UC Davis 
Medical Center with approval from the Institutional 
Review Board. PMSCs were isolated from placentas 
of  varying ages early in gestation (GA 12-18 wk) using 
an explant culture method. Chorionic villus tissue was 
dissected into small pieces (roughly 5 mm) and washed 
in sterile 1X phosphate-buffered saline (PBS) containing 
100 UI/mL of  penicillin, 100 µg/mL of  streptomycin. 
Tissue was then dissected into even smaller pieces and 
evenly spread across tissue culture-treated dishes. Cells 
were allowed to migrate from tissue onto the dish before 
being harvested for subculture.  Cells were cryopreserved 
in a freeze media containing fetal bovine serum (FBS) and 
10% dimethyl sulfoxide beginning at passages 3-5 and 
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thawed for later characterization. Our standard culture 
media for all experiments was DMEM high glucose 
with 5% FBS, 100 UI/mL of  penicillin, 100 µg/mL of  
streptomycin, 20 ng/mL recombinant human bFGF 
(Peprotech) and 20 ng/ml recombinant human EGF 
(Peprotech).  

Early passage growth from CVS-size samples
Cell growth curves were generated from PMSCs obtained 
from CVS-size tissue samples in order to test the 
feasibility of  obtaining significant cell numbers from a 
limited tissue mass.  Early gestation chorionic villus tissue 
was carefully dissected and washed in sterile 1X PBS 
containing 100 UI/mL of  penicillin and 100 µg/mL of  
streptomycin. Dissected tissue was then further cut into 
smaller pieces (about 20-50 mg) analogous to the amount 
of  tissue obtained in routine chorionic villus sampling 
(CVS). The CVS-size samples were weighed before being 
further dissected and spread evenly across an individual 
well of  a 6-well cell culture plate previously coated with 
CELLStart xeno-free substrate for 1 h at 37 ℃. When 
cells reached 70%-80% confluence, individual wells were 
passaged and villus tissue removed. Cells were counted at 
each passage up to the third passage.

Flow cytometry immunophenotyping of PMSCs
Cells were detached for flow cytometry using Accutase 
(Invitrogen) and viable cell counts obtained using Trypan 
Blue staining.  Cells were then fractioned into tubes 
containing approximately 1 × 106 cells per sample before 
staining with the following antibodies: FITC-CD44 
(560977), PECy5-CD90 (555597), PE-CD73 (561014), 
Alexa Fluor 647-CD105 (561439), PE-CD29 (561795), 
PE-CD34 (560941), Alexa Fluor 647-CD31 (561654), 
FITC-CD45 (560976) or appropriate isotype controls (all 
from B.D. Biosciences). Prior to antibody staining, viability 
staining was completed using LIVE/DEAD® Fixable Aqua 
Dead Cell Stain Kit (Molecular Probes) to detect dead cells. 
After viability and antibody staining, cells were fixed in 10% 
formalin for 30 min prior to analysis.  Cell samples were 
analyzed on a BD Fortessa LSR Cell Analyzer and further 
data analysis and gating was performed using FlowJo 
software (Treestar, Inc).

Multipotency assays
Trilineage differentiation capability of  PMSCs was 
assessed using the assays described below.

For osteogenic differentiation, PMSCs were grown 
in media consisting of  DMEM containing 10% FBS, 
10 mmol/L β-glycerol phosphate (Sigma Aldrich), 0.1 
µmol/L dexamethasone (Sigma Aldrich) and 200 µmol/L 
ascorbic acid (Sigma Aldrich) for a minimum of  two 
weeks. Upon differentiation cells were fixed in formalin 
and osteogenesis confirmed using Alizarin Red staining 
(Sigma-Aldrich). 

For chondrogenic differentiation, PMSCs were grown 
as cell pellets in suspension in media consisting of  DMEM 
containing 10% FBS, 10 ng/mL transforming growth factor 

beta-3 (Peprotech), and 200 µmol/L ascorbic acid (Sigma 
Aldrich) for a minimum of  3 wk. Chondrogenic pellets 
were then fixed in formalin before subsequently being 
embedded in Optimal Cutting Temperature compound 
(Fisher Scientific) and frozen prior to sectioning. Pellet 
cross sections were then stained with Alcian Blue (Sigma-
Aldrich) and Nuclear Fast Red (Sigma Aldrich) to confirm 
presence of  glycosaminoglycans.  

For adipogenic differentiation, PMSCs were grown in 
media consisting of  DMEM containing 10% FBS, 1 µmol/L 
dexamethasone (Sigma Aldrich), 10 µg/mL insulin (Sigma 
Aldrich), 5 µmol/L isobutylxanthine (AdipoGen), and 200 
µmol/L indomethacin (MP Biomedicals) for a minimum 
of  3 wk Upon differentiation cells were fixed in formalin 
and stained with Oil Red O (Sigma-Aldrich) to identify lipid 
formation followed by hematoxylin to stain cell nuclei. 

Immunofluorescent staining of PMSCs
Cells were fixed in formalin and permeabilized using 
0.5% Triton X-100 in PBS prior to immunofluorescent 
staining. Non-specific binding of  primary antibodies was 
blocked with 1% bovine serum albumin (BSA) in 1X 
PBS for one hour at room temperature. Primary antibody 
staining consisted of  an overnight incubation with each 
of  following primary antibodies at 4 ℃ in a solution of  
1% BSA in PBS: Sox10 (R and D Systems, MAB2864), 
Sox17 (R and D Systems, MAB1924), Nestin (Millipore, 
MAB5326), S100b (Sigma-Aldrich, S2532), or NFM (Santa 
Cruz Biotech, SC-16143). Following primary antibody 
incubation, cells were then incubated with AlexaFluor 
546-conjugated secondary antibodies (Molecular Probes, 
A10040) for 1 h at room temperature. Lastly, cell nuclei 
were counterstained using DAPI (Biotium, 40011).  
Stained samples were imaged using a Carl Zeiss Axio 
Observer D1 inverted microscope and post-processed 
with ImageJ software.

Cytokine array analysis of PMSC secreted proteins
Secreted factors were analyzed from the culture supernatant 
of  PMSCs from a single donor (14 wk GA) using two 
cytokine array kits (Human Cytokine Array Panel A and 
Human Angiogenesis Array, both from RD Systems). 
PMSCs were seeded at a density of  7.5 × 105 per 100 mm 
culture dish. Culture supernatant was collected at 96 h, 
centrifuged to remove particulates and then the assays 
performed according to the manufacturer’s instructions.  
Stained membrane blots were imaged on a Bio-Rad 
ChemiDoc MP, and images were analyzed using ImageJ 
software with the Dot Blot Analysis plugin. Integrated 
density values obtained from membrane images were then 
plotted using Microsoft Excel. 

Delivery vehicle compatibility testing
A single PMSC line (15 wk GA) was tested for compatibility 
in three delivery vehicles: collagen and fibrin hydrogels, 
as well as aligned nanofiber scaffold made from synthetic 
polymers. Fibrin gels were formed using EVICEL® Fibrin 
Sealant kit. PMSCs were resuspended in DMEM and mixed 
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with cells. Cell viability in each system was assessed using 
LIVE/DEAD® Viability/Cytotoxicity Kit (Molecular 
Probes) after 24-72 h. Stained constructs were imaged using 
a Carl Zeiss Axio Observer D1 inverted microscope, and 
images further processed with ImageJ software. 

Lentiviral vector transduction
To allow for long term labeling for future in vivo 
transplantation applications, PMSCs from a single donor 
(17 wk GA) were transduced using a Luciferase-GFP-
containing lentiviral vector. The viral vector used was a 
pCCLc-MNDU3-LUC-PGK-EGFP-WPRE construct 
obtained from the UC Davis/CIRM Institute for 
Regenerative Cures, Sacramento, CA. Cells were seeded 
overnight at a density of  7.5 × 105 cells per 100 mm dish, 
and the next morning were treated with transduction 
media containing 8 µg/mL protamine sulfate and 10 
µL/mL viral vector for 6 hours. After incubation with the 
viral vector, cells were washed twice and normal culture 
media reintroduced. Cells were imaged with fluorescent 
microscopy to detect successful GFP expression using 
a Carl Zeiss Axio Observer D1 inverted microscope. At 
5 d post-transduction the GFP expression was quantified 
by flow cytometry using a BD Fortessa LSR Cell Analyzer 
and collected data further analyzed using FlowJo software 
(Treestar, Inc).

with 70 mg/mL fibrinogen solution and 1000 U/mL 
thrombin. The final composition of  fibrin hydrogel was 
5 mg/mL fibrinogen, 5 U/mL thrombin and 8.3 × 104 
cells/mL. Fibrin gel with embedded cells were seeded in 
96-well plates at a volume of  100 µL per well and incubated 
at 37 ℃ for 1 h to ensure complete gelation. After gelation 
was complete, 100 µL of  culture media was added to 
each well to cover the hydrogel layer. Collagen hydrogel 
was prepared by mixing stock 5 mg/mL bovine collagen 
I solution (Advanced BioMatrix) in DMEM containing 
PMSCs, yielding a final concentration of  2 mg/mL collagen 
I and 1.5 × 105 cells/mL. The collagen/cell solution was 
then seeded in 24-well plates at a volume of  500 µL per 
well and allowed to gel at 37 ℃ for 1 h before the addition 
of  500 µL culture media to cover the hydrogel. Aligned 
nanofiber scaffold has a two-layer structure and was 
prepared using electrospinning technology. The scaffold 
consists of  polylactic acid (PLA) and poly(lactic-co-glycolic 
acid) (PLGA) polymers each of  them making up 15% 
weight/volume of  the final product. A rectangular piece 
of  nanofiber scaffold (150 mm2 surface area) was attached 
to the bottom of  a 35 mm culture dish using double sided 
bonding tape 5 × 105 cells in 400 µL of  DMEM were 
carefully pipetted on the membrane and incubated at 37 ℃ 
for 1 h to allow cells to adhere. After 1 h, 1 mL of  culture 
medium was added to the 35 mm dish to cover the scaffold 
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Figure 1  Early passage growth of placenta-derived mesenchymal stromal cells from chorionic villus sampling-size tissues. Placenta-derived mesenchymal 
stromal cells (PMSCs) were isolated and expanded from chorionic villus sampling (CVS)-size tissue samples (n = 6). A: Photograph of a representative CVS-size mass of 
human early gestation chorionic villus tissue. The average tissue mass used in this experiment was 35.9 mg; B: Cell expansion data from the first three passages show 
that an average of 2.09 × 106 cells were obtained by the third passage; C: Average days in vitro until passages 1, 2, and 3 were 18.83, 23.5, and 27 d, respectively.
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RESULTS
Early passage growth from CVS-size Samples
Cell growth from CVS-size tissue samples demonstrated the 
feasibility of  obtaining cells from biopsied early gestation 
chorionic villus tissue within a timeframe meaningful for 
autologous in utero cellular therapy, as shown in Figure 
1. Expansion of  PMSCs from CVS-size tissue samples 
(mean = 35.93 mg) was found to yield over 2 × 106 cells 
on average by the third passage (n = 6 samples). The first 
passage of  cells to a monolayer occurred at an average of  
18.8 d with a minimum and maximum time of  14 and 23 d 
until passage one, respectively. The cultures reached passage 
three by day 27 on average, and the longest culture time 
until passage three was observed to be 29 d.

PMSC display typical MSC surface marker profile and 
multipotency
Flow cytometry immunophenotyping displayed a 
profile for PMSCs similar to that typically assigned to 
mesenchymal stem cells from various sources. As shown 
in Figure 2A and 2B, cells were observed positive for 
well-established MSC surface markers CD105 (97.13%), 
CD90 (96.98%), CD73 (99.28%), CD44 (98.93%), and 
CD29 (99.58%). Additionally, they were mostly negative 
for hematopoietic and endothelial-related surface markers 
CD31 (0.62%), CD34 (1.96%), and CD45 (0.53%) (n = 6). 
Trilineage differentiation potential was observed for all cell 
lines assayed and results displayed in Figure 2C. PMSCs 

exposed to induction media for 2 wk were capable of  
differentiating into osteocytes and adipocytes, confirmed 
by Alizarin Red staining to observe calcium deposition and 
Oil Red staining for lipid accumulation, respectively. In 
addition, PMSCs were capable of  forming chondrocytes 
when cultured as pellets in induction-specific media for 
3 wk, as confirmed by Alcian Blue staining. These results 
indicate that these cells are multipotent, which is another 
widely accepted hallmark of  traditionally characterized 
MSCs.

Immunofluorescence staining of PMSC reveals stem cell 
phenotype
PMSCs were probed for developmentally significant 
transcription factors and stem cell-related intracellular 
proteins in order to describe their phenotype in a 
developmental context.  All cell lines examined displayed 
positivity for transcription factors Sox10 and Sox17, as well 
as for intracellular stem cell-related proteins Nestin, S100β, 
and neurofilament medium (NFM) (Figure 3). 

Robust cytokine and angiogenic protein secretion by 
PMSCs
Supernatant from one PMSC line was collected and 
secreted cytokines were detected using two cytokine array 
kits together capable of  probing for over 70 cytokines. 
A total of  34 factors with spot density values above 103 
were detected in the culture supernatant in both assays 
combined (Figure 4). Density values for each array showed 
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mesenchymal stromal cells (PMSCs) were found to be mostly positive for well-established MSC markers CD29, CD44, CD73, CD90, and CD105, and mostly negative 
for hematopoietic and endothelial cell markers CD31, CD34, and CD45 (n = 6); C: Cells were multipotent and were capable of differentiating into adipocytes, osteocytes 
and chondrocytes in vitro. Images in the left column show negative control samples (normal media only) while those on the right display cultures grown in induction media. 
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variable range, with negative control spots having values 
of  around 500. Density maximums were near 57000 in 
both kits (IL-8 for the angiogenesis array and MCP-1 for 

the Panel A array). With the angiogenesis array we found 
13 of  the 30 detected factors (43.3%) to have densities 
above 10000, compared to 6 of  7 detected factors 
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Figure 3  Immunofluorescence staining of placenta-derived mesenchymal stromal cells reveals stem cell phenotype. Placenta-derived mesenchymal stromal cells 
(PMSCs) were probed using immunofluorescence and found to express intracellular structural proteins Nestin, NFM, and S100β that are often associated with neural-
lineage phenotypes. Additionally, PMSCs were positive for developmental transcription factors Sox10 and Sox17. Scale bar = 100 µm. NFM: Neurofilament medium.
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(85.7%) detected in the Panel A array. The functions 
of  these factors are quite expansive and are detailed in 
Table 1. Among the most highly detected factors for 
both kits were cytokines and angiogenic factors such as 
MCP-1, IL-8, IL-6, GROα, MIF, HGF, Angiopoietin-1, 
FGF-7, coagulation factor Ⅲ and VEGF. Inhibitors of  
angiogenesis such as TIMP-1, Thrombospondin-1, and 
Pentraxin-3 were notably present as well, indicating the 
cells can modulate angiogenesis. IGF-binding proteins 2 
and 3 were also highly detected, as was extracellular matrix 
degradation protease µPA and its inhibitor Serpin E1. 
The presence of  an additional 18 factors was observed 
at lower levels (integrated density < 10000). While most 
function in some way to modulate angiogenesis, many 
also have specific function beyond this process. Some of  
the more unique functions include vessel homeostasis and 
maturation (Angiopoietin 1 and 2), ribonuclease activity 
(Angiogenin), and initiating coagulation (Coagulation 
Factor Ⅲ). Additional capabilities such as chemotaxis, 
stimulation of  cell growth, and immunomodulation are 
shared among many of  the detected factors.

PMSCs are compatible with delivery vehicle matrices 
and transducible for in vivo tracking
Cell loading experiments demonstrated that PMSCs are 
viable on both biological and synthetic delivery vehicle 
systems. Viable non-transduced cells were observed with 
green fluorescence in all vehicles tested as well as the two-
dimensional control culture (Figure 5A). PMSCs seeded 
on the scaffolds had normal morphology indicating 
that cells were well adhered. Little to no red fluorescent 
staining was observed in each condition, indicating that 
cells seeded on each matrix remained viable with few, 
if  any, dead cells. Additionally, PMSCs were readily 
transduced with the lentiviral vector (97.3% of  total 
cell population) as confirmed by microscopy images for 
GFP-expression as well as by flow cytometry analysis of  
transduced and non-transduced cells (Figure 5B).

DISCUSSION
Early gestation chorionic villus tissue is a unique cell 
source, yielding robust mesenchymal stromal cells well-
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Figure 4  Robust paracrine secretion by placenta-derived mesenchymal stromal cells. A, C: Results from the human angiogenesis array kit detected 30 secreted 
factors with integrated density values above 103. A: Original membrane image from the Angiogenesis array, and C: corresponding graph showing measured integrated 
density values of detected spots. Functions of proteins identified here include modulation of angiogenesis, chemotaxis, stimulation of cell proliferation, blood vessel 
maturation, blood coagulation, and extracellular matrix remodeling. B, D: Results from the panel A array kit detected 7 secreted factors with integrated density values 
above 103. B: Original membrane image from the Panel A array; D: Corresponding graph showing measured integrated density values of detected spots. Many of these 
proteins have distinct functions related to the cell chemotaxis and immune response. TGF: Transforming growth factor; IL:Interleukin; VEGF: Vascular endothelial growth 
factor; GROα: Growth regulated oncogene alpha; MCP-1: Monocyte chemotactic protein 1; uPA: Urokinase-type plasminogen activator.
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suited for autologous and allogeneic in utero cell therapy 
and tissue engineering. PMSCs isolated from CVS-size 
samples were consistently able to generate populations on 
the order of  106 cells in less than four weeks, indicating 
that simple explant culture provides feasible means of  
obtaining cells for an autologous fetal cell therapy or 
tissue engineering. For example, in utero repair of  spina 
bifida typically occurs before 26 wk gestational age[36], 
and our data show that CVS tissues obtained early in the 
second-trimester can produce sufficient cell numbers 
well before they are needed for the repair. Additionally, 
other structural and congenital defects such as cardiac 
malformations and congenital diaphragmatic hernia 
(CDH) may also be potential targets for autologous, tissue 
engineered constructs populated with PMSCs[18,32,37].

The in vitro characteristics of  early second-trimester 
PMSCs presented in this study are analogous to those of  
MSCs isolated from various source tissues[38] in terms of  
surface marker expression and multipotency. The data 
also corroborate previous studies aimed at characterizing 
chorionic villus stromal cells from first and third trimester 
placentas[20,39,40], showing that PMSCs described here 

contain similarities to cells typically obtained from 
placentas younger and older in gestation. 

Immunofluorescent staining revealed that PMSCs 
expressed developmentally significant transcription factors 
Sox10 and Sox17. Sox10 is critical for neurogenesis 
and maintenance of  multipotency[41-43], while Sox17 
functions in the development of  definitive endoderm 
and vasculogenesis[44,45]. The uniformity of  expression of  
these transcription factors in PMSC cultures may reflect 
the developmental origins of  these cells and could serve 
as predictors of  some related functional properties. All 
examined PMSC lines also expressed structural proteins 
Nestin, NFM, and S100β. These proteins are often 
associated with a neural phenotype, but their appearance 
in cultures of  non-fetal MSCs has been previously 
reported elsewhere[46,47]. Taken in total, these results 
provide a characteristic phenotypic profile of  these cells 
similar to that of  traditionally studied bone marrow MSCs. 
Still, more work is necessary to better understand how the 
expression of  proteins described above may impact the 
cell function after in vivo transplantation.

It is widely understood that MSCs derive many of  
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Figure 5  Placenta-derived mesenchymal stromal cells are compatible with biological and synthetic delivery vehicle matrices. A-D: Cell viability was assessed 
using Molecular Probes Live/Dead fluorescent assay kit for PMSCs cultured in various delivery vehicles. Results show that PMSCs were viable when culture in A: 
two-dimensional culture (control); B: 2 mg/mL collagen hydrogel; C: 5 mg/mL fibrin glue, D: an aligned PLLA/PLGA nanofiber scaffold. E-G: PMSCs can be efficiently 
transduced with Luciferase-GFP-containing lentiviral vector; E: phase contrast; F: green fluorescence images from the same field of view of transduced PMSCs; G: Flow 
cytometry analysis of transduced PMSCs indicate that they were transduced with an efficiency of 97.3%. Scale bars = 100 µm. PMSCs: Placenta-derived mesenchymal 
stromal cell.
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their therapeutic properties from paracrine signaling[48,49]; 
thus we employed cytokine array assays in order to 
examine PMSC cytokine secretion. This approach allowed 
us to identify an abundance of  secreted factors with a 
wide array of  functions. Many of  the factors function 
directly or indirectly in the process of  angiogenesis, either 
to stimulate or inhibit its onset. This seems to indicate 
that PMSCs are able to modulate the angiogenic process, 
possibly in response to other environmental cues. Indeed, 
the enormous variety of  function in the factors detected 
seems to indicate that these cells are capable of  exerting 
an extensive paracrine effect on their environment. In 
the context of  the field of  tissue engineering where 
it is necessary to “restore, maintain, or improve tissue 
function”[50], PMSCs delivered locally to damaged tissue 
may be capable of  enhancing the endogenous wound 
response through their paracrine function.

Cell fate and a suitable delivery vehicle must be 
determined in the course of  developing a new cell therapy. 
Of  crucial importance in this study is the examination of  
cell compatibility with several delivery systems capable 
of  carrying and supporting PMSCs for transplantation. 
We have found that PMSCs are exceptionally well-suited 

for seeding in several systems capable of  delivering 
cells such as collagen hydrogel and fibrin glue, as well as 
nanofiber scaffolds made of  synthetic polymers. These 
materials have distinct physical properties in terms of  
rigidity and biodegradability, making them ideal for 
tailored approaches to tissue engineering with cell-seeded 
matrices. These data demonstrate cell attachment and 
survivability on each of  these matrices, which is critical to 
their effective use for in utero tissue engineering. Support 
for further investigation into the use of  PMSCs for 
tissue engineering purposes is given by the efficiency 
at which they can be transduced with viral vectors. We 
show here that PMSCs are readily transduced (97.3% of  
total cell population) with a luciferase-GFP-containing 
lentiviral vector that can aid in tracking the cells after 
in vivo transplantation. PMSCs transduced with this 
viral vector can be tracked in two ways: by detection of  
luciferase expression in live animals injected with the 
luciferin substrate, and by GFP expression in histological 
sections after the transplanted animal is sacrificed. Future 
investigations into the therapeutic function of  PMSCs 
in vivo are enhanced by this technique in that it may 
allow researchers to gain insight into the ultimate fate of  
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Table 1  Functions of placenta-derived mesenchymal stromal cells secreted factors

Factor Array Function Ref.

Amphiregulin Angiogenesis Related to EGF, autocrine mitogen, cancer cell inhibition [51,52]
Angiogenin Angiogenesis Angiogenesis, ribonuclease, mitogen [53]
Angiopoietin-1 Angiogenesis Angiogenesis, TIE2 agonist, vessel homeostasis/maturation [54]
Angiopoietin-2 Angiogenesis Angiogenesis, TIE2 antagonist, vessel homeostasis/maturation [54]
Artemin Angiogenesis Neurotrophin, endothelial cell migration and proliferation [55,56]
Tissue Factor Angiogenesis Angiogenesis, activation of coagulation cascade [57,58]
DPPIV Angiogenesis Angiogenesis via ECM degradation and EC invasion [59]
Endoglin Angiogenesis Angiogenesis, modulation of effects of TGF-β1 [60]
Endostatin Angiogenesis Angiogenesis inhibition by inhibition of EC proliferation [61]
Endothelin-1 Angiogenesis Angiogenesis by stimulating EC proliferation and invasion [62]
FGF acidic Angiogenesis Angiogenesis, EC mitogen [63-65]
FGF-7 Angiogenesis Angiogenesis, neuroprotection, wound repair [66,67]
HB-EGF Angiogenesis Chemotaxis, cell growth, angiogenesis [68]
HGF Angiogenesis Angiogenesis through EC motility and growth, neuroprotection [65,69]
IGFBP-1 Angiogenesis Modulation of IGF activity, cell chemotaxis and adhesion [70,71]
IGFBP-2 Angiogenesis Modulation of IGF activity, mitogen, osteogenesis [70-72]
IGFBP-3 Angiogenesis Modulation of IGF activity, inhibition of cell proliferation [70,71]
LAP (TGF-1β) Angiogenesis Angiogenesis, abundant and varied cell functions [73,74]
MMP-9 Angiogenesis Angiogenesis, ECM proteolysis aiding EC migration [75]
Pentraxin 3 (PTX3) Angiogenesis Angiogenesis inhibition by binding FGF2, innate immunity [76,77]
PIGF Angiogenesis Angiogenesis, related to VEGF family [78,79]
Serpin F1 Angiogenesis Angiogenesis inhibition, cell survival, immunomodulation [80]
Thrombospondin-1 Angiogenesis Angiogenesis inhibition [81,82]
TIMP-1 Angiogenesis Angiogenesis inhibition, neuroprotection [83-85]
TIMP-4 Angiogenesis Modulation of angiogenesis, EC migration [86]
uPA Angiogenesis ECM proteolysis by converting plasminogen to plasmin [87]
VEGF Angiogenesis Angiogenesis, EC migration and proliferation [88,89]
IL-8 Both Angiogenesis, leukocyte chemotaxis [90-92]
MCP-1 Both Monocyte chemotaxis, macrophage infiltration, angiogenesis [93,94]
Serpin E1 Both mPA inhibitor, wound healing, atherosclerosis [95,96]
C5/C5a Panel A Anaphylatoxin, chemotaxis, immunomodulation [97]
GROα Panel A Chemotaxis, cell growth, thrombin-induced angiogenesis [98]
IL-6 Panel A Both pro- and anti-inflammation, myokine, cell metabolism [99,100]
MIF Panel A Adaptive/innate immune response, inflammation modulation [101]
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TGF: Transforming growth factor; IL:Interleukin; VEGF: Vascular endothelial growth factor; GROα: Growth regulated oncogene alpha; MCP-1: Monocyte 
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transplanted cells. 
In this report, the characterization of  early gestation 

PMSC populations establishes some basic properties 
of  the cells in their surface marker expression and 
multipotency. Early gestation PMSCs appear to be an 
excellent candidate cell source for an autologous in utero 
cellular therapy, especially given their compatibility with 
several delivery vehicles. However, much work still needs 
to be completed to determine their potential therapeutic 
applications and to optimize relevant parameters for 
transplantation, such as delivery vehicle and cell dosage.  
In addition, more detailed characterization of  cytokine 
secretion across various cell lines and gestational ages is 
needed in order to determine the optimal time frame for 
tissue collection and ex vivo cell expansion. It will also be 
necessary to characterize changes in cell secretion patterns 
for cells seeded on delivery vehicles in comparison to 
normal two-dimensional culture. Still, there is abundant 
potential for PMSCs to be utilized as a therapeutic cell 
source for transplantation, especially in the form of  an 
autologous in utero cell therapy.
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COMMENTS
Background
In utero surgery has emerged in recent years as an effective option for early repair 
of many congenital anamolies and malformations. Additionally, many diseases for 
which in utero surgery is available may be amenable to augmentation with tissue 
engineered repair strategies using mesenchymal stromal cells (MSCs). MSCs 
have been shown to promote wound healing, protect damaged tissues, and 
modulate the immune system via paracrine secretion. The placenta has recently 
been described as an ethically unobjectionable and minimally invasive source of 
fetal MSCs.  
Research frontiers
As the field of in utero surgery continues to expand, it is likely that future advances 
in regenerative medicine such as tissue engineering, stem cell and gene therapy 
will in turn be incorporated into clinical practice. The placenta represents a unique 
cell source for both autologous and allogeneic fetal stem cell therapies. Due to 
the developmental nature of many congenital malformations, fetal-derived cells 
may confer greater benefit to the fetus than traditional adult multipotent cells such 
as bone marrow or adipose-derived MSCs. 
Innovations and breakthroughs
Early gestation placenta-derived mesenchymal stromal cells (PMSCs) were 
shown to be expandable to clinicaly relevant populations from chorionic villus 
sampling (CVS)-sized samples on a timeline applicable to autologous in utero 
therapy for disorders treated mid-gestation. The sheer variety of factors secreted 
by PMSCs reported here underscores their ability to affect a broad number of 
physiologic and cellular processes. Additionally, their compatibility with numerous 
delivery vehicle systems demonstrate that PMSCs can be surgically applied 
locally to damaged or injured tissues.
Applications
The results obtained in this study suggest that PMSCs have the potential to be 
highly therapeutic when used to augment current fetal surgical procedures.
Terminology
The chorionic villi are a functionally and anatomically distinct portion of the 
placenta. They consist of small, tree-like projections that facilitate nutrient 
transportation between the maternal and fetal blood supplies. CVS is a technique 

by which a small portion of chorionic villus tissue can be obtained in a minimally 
invasive procedure as early as 8 wk of gestation.
Peer reviews
This report from Lankford et al demonstrates the extraction of stromal cells from 
chorionic-villi suitable for manipulation, expansion, and reimplanation with the 
ultimate goal of tissue engineering and repair of multiple congenital disease, 
namely those of the heart and spinal cord. These findings are particularly relevant 
to the translational field of medicine, as heart conditions and spinal bifida have 
recently been described as promising targets of in utero repair; thus the cells 
described here would be an excellent source for repair of these congenital 
anomalies. The authors have detailed an exciting area of research with solid 
findings that will be of significant interest to multiple investigators and clinicians in 
the field. 
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