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Abstract

E3 ubiquitin ligases, as the important role in carcinogenesis, which include a large family of proteins that catalyze the ubiquitination of many protein substrates for the targeted degradation by the 26S proteasome. So far, E3 ubiquitin ligases have been reported to take part in a variety of biological processes including cell cycle regulation, proliferation, and apoptosis. Recently, several kinds of E3 ubiquitin ligases were demonstrated to be generally high expression in gastric cancer（GC）tissues and to contribute to canceration. In this review, we summarized the current knowledge and information about clinical significances of E3 ubiquitin ligases in GC. Bortezomib, a proteasome inhibitor, was encouraged the evaluation of other components of the ubiquitin proteasome system for pharmaceutical intervention. The clinical values of novel treatment strategies targeting aberrant E3 ubiquitin ligases for GC was disscussed in the review.
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Core tip：E3 biquitin ligases are a large family of proteins that catalyze the ubiquitination of many protein substrates for targeted degradation by the 26S proteasome. They are play an essential role in a variety of biological processes including cell cycle regulation, proliferation and apoptosis. They are often found overexpressed and their deregulation has been shown to contribute to gastric cancer（GC）development. The mechanisms of E3 ubiquitin ligases regulation the biological functions and their exact roles in carcinogenesis can help to develop specific E3 ubiquitin ligase inhibitors to improve the treatment strategies for GC patients.
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INTRODUCTION

Gastric cancer (GC) is one of the most common malignancies worldwide, as well as one of the leading causes of cancer-related death[1]. More than half of these cases were diagnosed in Eastern Asia. It is well known that GC has high invasion and metastasis, which is the main factor contributing to the high mortality rate of GC patients[2-4]. Although many studies of novel diagnostic and therapeutic interventions, the prognosis of patients with advanced GC remains poor[5]. It is well known that GC is the multifactorial and multistep disease which involves the activation of oncogenes and the inactivation of tumor suppressor genes in GC progression[6]. Genetic and epigenetic alterations, occurring in the genes and molecules, were demonstrated to involve in proliferation, invasion and metastasis influencing the prognosis of GC[7-10]. Understanding above-mentioned genetic and epigenetic alterations involved in GC can be critical for the improvement of the diagnosis, therapy or prognostic prediction.

The ubiquitin-proteasome system (UPS) plays a key role in the regulation of many cellular pathways by controlling the abundance, activity and localization of an enormous variety of cellular proteins[11-14]. The UPS targets a variety of proteins, including those that are misfolded, mutated, or otherwise damaged - the cellular version of quality control[15]. The attachment of ubiquitin to target proteins is mediated by three enzymes: E1, E2, E3. E1 involved in the ubiquitination process is the ubiquitin-activating enzyme recruiting ubiquitin. E2 is the ubiquitin-conjugating enzyme that transfers the ubiquitin to the targeted protein. E3 is the ubiquitin ligase acting as a scaffold protein that interacts with the E2 enzyme and transfers ubiquitin to the target protein[16,17]. This process is reversible through the action of deubiquitinases (DUBs) that remove ubiquitin chains linked to the target protein[18]. DUBs are also involved in ubiquitin processing and recycling[19]. In this process, E3 ubiquitin ligases perform a critical role through the selective binding of protein substrates. This review will focus on the role of E3 ubiquitin ligases in GC and its potential as a novel anticancer target.

E3 UBIQUITIN LIGASES 
More than 600 E3 ubiquitin ligases are expressed in the human genome, allowing for the specificity of the ubiquitination system[20]. E3 enzymes are divided into subclasses based on their biochemical and structural features: HECT (homologous to E6-AP carboxy terminus), RING (really nteresting new gene) fingers, and U-box domains[21].There are about 30 proteins containing the HECT domain. The RING fingers and U-box quitin ligases that contain the new gene (RING) finger domain[22]. There are over 700 proteins containing the RING finger domain, but only a small part functions as an E3 ubiquitin ligase. Unlike RING proteins, most HECT proteins, if not all, are believed to function as E3 ubiquitin ligases. RING and HECT E3 ubiquitin ligases use different catalytic mechanisms to promote the transfer of ubiquitin to targeted substrates. RING E3 ubiquitin ligases can promote the direct transfer of ubiquitin from E2 to the targeted substrate, whereas HECT E3 ubiquitin ligases interact with the cognate E2, followed by the formation of a thiolester linkage with ubiquitin and subsequent transfer of ubiquitin to the targeted substrate[23]. Many E3 ubiquitin ligases could be oncogenes or tumor suppressor genes because frequent deregulation of E3 ubiquitin ligases has been shown in gastric carcinogenesis. The E3 ubiquitin ligases function in GC are discussed below in detail.

E3 UBIQUITIN LIGASES AS ONCOGENES IN GASTRIC CANCER 

Some E3 ubiquitin ligases have established roles in cell cycle and apoptosis, such as the Mdm2 and the MKRN1. Others discovered E3 ubiquitin ligases, such as Cbl/Cbl-b/c-Cbl, Cullin1, and Hakai, may be similarly important in gastric carcinogenesis. These E3 ubiquitin ligases overexpressed in GC, and their inhibition lead to cells growth arrest or apoptosis. The oncogenic E3 ubiquitin ligases in GC are discussed below in detail.
murine double minute 2
The murine double minute 2 (MDM2) gene encodes an important negative regulating protein which promotes ubiquitin-dependent proteasomal degradation of P53 by functioning as an E3 ubiquitin ligase[24,25]. SNP309, a T to G change at the 309th nucleotide in the first intron of the MDM2 gene, had been found and shown to increase the affinity of the transcriptional activator Sp1, resulting in higher levels of MDM2 RNA and protein and the subsequent attenuation of the p53 pathway. Numerous studies have showed that MDM2 SNP309 is associated with an increased risk and poor prognosis of GC[26-31]. Although MDM2 was characterized as a RING finger E3 for the tumor suppressor p53[32], its interaction with Nbs1 inhibited DNA break repair, leading to chromosome instability and subsequent transformation that was independent of p53[25,33]. MDM2 is expressed at higher levels in GC tissues than in non-cancerous gastric mucosa. In addition, MDM2 expression is associated with clinicopathologic features in patients treated only with surgery[34]. Moreover，MDM2 is a potential predictive factor for benefit from adjuvant chemotherapy with fluorouracil–leucovorin–oxaliplatin (FLO) in resectable GC patients[34].

Cullin1 
Cullin1 is a scaffold protein of the ubiquitin E3 ligase Skp1/Cullin1/Rbx1/F-box protein complex, which ubiquitinates a broad range of proteins involved in cell-cycle progression, signal transduction, and transcription. Cullin1 is involved in the progression of several cancers[35-37], including GC. The high expression of Cullin1 was significantly correlated with worse overall survival and lymph node metastasis of GC[7]. On the other hand，Korzeniewski demonstrated that Cullin1 may be as a tumor suppressor by regulating PLK4 protein levels[38]. 
Cbl/Cbl-b/c-Cbl 
The Casitas B-lineage lymphoma (Cbl) family of ubiquitin ligases were identified as the negative regulators of non-receptor tyrosine kinases or activated signaling pathways[39]. Some studies showed Cbl in link with EGFR system might be associated with gastric carcinogenesis, invasion and metastasis[40,41]. Other authors showed that c­Cbl, Cbl­b, and EGFR are highly expressed in GC tissue and their expression levels are related to the invasion and development of GC. Both c­Cb l and Cbl­b were positively correlated with EGFR, suggesting that they may be synergy in the proliferation, infiltration, and metastasis in GC[42]. So Cbl, c­Cbl, Cbl­b might be deemed as the novel molecular markers for aggressive GC. However, another study found that the Cbl-b repressed IGF-I-induced EMT, likely through targeting IGF-IR for degradation and further inhibiting the Akt/ERK-miR-200c-ZEB2 axis in GC cells and decreasing the risk of developing lymph node metastasis in patients with GC[43]. Some studies demonstrated that an important role of Cbl-b in reversing Pgp-mediated GC multi-drug resistance (MDR) through suppression of the PI3K/Akt signalling pathway and down-regulation of P-gp expression[44]. 
Hakai 
Hakai was originally identified as an E3 ubiquitin-ligase for the E-cadherin complex[45]. Hakai contains Src homology (SH)2, RING-finger, and proline-rich domains, and it is structurally and functionally related to c-Cbl, a RING-finger type E3 ubiquitin ligase for receptor tyrosine kinases[46,47]. High expression of Hakai induced weakeness of cell–cell adhesions and enhanced cell proliferation[48]. Overexpression of Hakai in GC and colon adenocarcinomas involved in the early stages of carcinogenesis by up-regulating cell proliferation[48,49]. Therefore, Hakai might be as a new valuable biomarker or drug target for GC treatment.
Makorin ring finger protein 1
Makorin ring finger protein 1 (MKRN1) was reported as a transcriptional co-regulator and an E3 ligase for hTERT[50]. MKRN1 simultaneously induced p53 and p21 ubiquitination and proteasome-dependent degradation. This suggested that the presence of MKRN1 in cancer cells might affect p53- and p21-dependent apoptosis and cell growth. MKRN1 remains unique in its ability to negatively regulate the major tumor suppressors including p14ARF and p53[51]. MKRN1 might instigate gastric carcinogenesis by regulating the p14ARF-associated pathways and thus potentially represented an important therapeutic target in GC[52].
E3 UBIQUITIN LIGASES AS TUMOR SUPPRESSOR GENES INS GASTRIC CANCER 

Numerous E3 ubiquitin ligases, including FBXW7 and CHIP, have been shown to be tumor suppressors in GC. Frequently inactivating mutations or downregulated expression of these E3 ubiquitin ligase has been detected in GC. Several discovered E3 ubiquitin ligases, such as CHFR, ZNRF3, and RNF180, might play an important role in regulating gastric carcinogenesis. Besides mutation and gene copy loss, epigenetic alteration (i.e., promoter methylation) also contributed to inactivation of these tumor suppressors. The E3 ubiquitin ligases with tumor suppressor function in GC were discussed below in detail.

FBXW7/CDC4 
The FBXW7/CDC4 gene, which maps to 4q32, encodes a ubiquitin ligase and had been implicated as a tumor suppressor gene in many tumor types, including GC. FBXW7/CDC4 targets several oncoproteins, including cyclinE, c-myc, c-jun, Notch 1 and Notch 4 for degradation and its tumor suppressor function was thought to be exerted through these substrates[53]. Loss of FBXW7/CDC4 was seen in both early-onset GC and advance GC[54]. FBXW7 inactivation contributed to poor prognosis via genome instability and cell cycle progression. Recent studies suggested that GC patients with inactivation of FBXW7 had a aggressive biologic behavior and a poor prognosis[55,56]. Loss of FBXW7 expression could lead to MYC overexpression and was associated with poor prognosis in GC patients[56]. In the future, FBXW7/CDC4 might be a potential diagnostic biomarker and therapeutic target for gastric cancer. 

Ring finger protein 180
Ring finger protein 180 (RNF180), a novel member of the RING finger protein family and function as an E3 ubiquitin ligase, is well conserved among vertebrates[57]. High expression of RNF180 suppressed cell growth and induced apoptosis, which were mediated by upregulating the antiproliferation regulators MTSS1 and CDKN2A and the proapoptotic mediator TIMP3[58]. Promoter methylation of RNF180 was detected in 76% of primary GC and 55% of intestinal metaplasia, but was not detected in any of the normal gastric tissues, suggesting methylation of this gene was a common and early event in gastric carcinogenesis. Promoter methylation of RNF180 DNA was more frequently detected in the GC tissue samples, which led to low or loss RNF180 expression in GC patients with poor overall survival[58]. Our study showed that methylation of CpG sites(-116, -80, +97, and +102) in RNF180 DNA promoter prediction poor prognosis of GC[10].
CHIP
CHIP (carboxy terminus of Hsc70 interacting protein) was reported as an E3 ubiquitin ligase that could induce ubiquitination and degradation of several tumour-related proteins, and acted as a suppressor of tumour metastasis. CHIP inactivation was significantly correlated with GC progression, lymph node metastasis, TNM stage and tumor differentiation. Therefore，CHIP inactivation was an independent prognostic marker of poor survival in GC patients as well as added significant prognostic value to the well known clinical prognostic factors[8,59]. Moreover, CHIP suppresses GC angiogenesis by inhibiting NF-kB activity through ubiquitine-proteasome dependent degradation of the NF-kBep65 and downregulation of the proangiogenic cytokine IL-8[8]. Therefore, CHIP may be as a potential diagnostic biomarker and therapeutic target for GC.
CHFR 
The CHFR gene encodes a RING finger domain containing E3, as a tumor suppressor gene, which was shown to play an important role in mitosis through targeting key mitotic proteins Aurora A and Plk for ubiquitin-mediated proteolysis[60,61]. Loss of CHFR mRNA expression was a consequence of promoter methylation, suggesting that it played a tumor suppressor role in gastric carcinogenesis[62,63]. CHFR promoter methylation status might be as a value clues for predicting the malignant behaviors or a molecular diagnostic marker for GC[64-66]. Moreover, CHFR promoter methylation was a sensitive marker for docetaxel in GC patients[67].

COP1 
COP1 (constitutive photomorphogenic 1, also known as RFWD2) is a p53-targeting E3 ubiquitin ligase, containing RING-finger, WD40-repeat domains, and coiled-coil[68-70]. Whether COP1 gene was an oncogene or a tumor suppressor gene remains controversial. Some studies showed that COP1 acted as a tumor suppressor[71-73]. However, other studies indicated that COP1 acted as an oncogene[74]. One study showed that loss of COP1 expression determined poor prognosis in patients with GC[9]. However, another study showed that COP1 overexpression was associated with poor prognosis in primary GC[75]. Therefore, COP1 could be used as a goal worth pursuing to dissect fundamental biology.
ZNRF3 
ZNRF3, a unique transmembrane E3 ubiquitin ligase, suppresses the β-catenin signalling initiated by endogenous Wnt proteins[76]. ZNRF3 was reported as a negative regulator of Wnt pathway that inhibited cancer cell growth and promoted the cell apoptosis. ZNRF3 inhibited GC cell growth and promoted the cell apoptosis by limiting the Wnt/beta-catenin/TCF signaling pathway[77]. In the future, a novel therapeutic strategy based on ZNRF3 might be used for patients with GC.
TARGETING E3 UBIQUITIN LIGASES FOR GASTRIC CANCER THERAPY 

The success of Bortezomib, a selective proteasome inhibitor for treating refractory myeloma and mantle cell lymphoma, showed that modulation of UPS might represent a novel strategy to GC. But in a nonrandomized Phase II clinical trial conducted in 16 patients with advanced GC, bortezomib, intravenously at a dose of 1.3 mg/m2 twice weekly for 2 wk (days 1, 4, 8 and 11) every 21 d, did not show any clinical activity (no patient responded and only one patient achieved stable disease as best response)[78]. In addition, 14 out of 16 patients experienced grade 2 or greater toxicity. Similar outcomes were obtained in another clinical trial[79]. These studies showed that proteasome inhibition in GC should include combination therapy with targeted agents focusing on nonoverlapping oncogenic pathways.
By selectively inhibiting an E3 ubiquitin ligase, the proteins were stabilized that were regulated by this E3 ubiquitin ligase and thereby avoiding any unwanted on other cellular proteins. In all, targeting E3 ubiquitin ligase has gained increasing attention, which has led to the development of high-throughput screening assays to identify inhibitors of multiple E3 ubiquitin ligases[80]. Nutlin-3 showed potent antitumor activity against human GC cells with wt p53 and shows promise as a single agent and in combination with conventional anticancer drugs[81]. Small molecule compounds, such as Nutlin-3a, RITA, and MI-219, have been identified as potent Mdm2 inhibitors[82-85]. These small molecule compounds disrupted Mdm2-mediated p53 degradation and thus led to tumor regression by inducing p53-mediated cell cycle arrest and cell death[82-85]. Therefore, using analogs of Mdm2, or using agonists of Mdm2 with other therapeutic modalities may become the neoadjuvant therapy for GC within a few year.

Recognition of molecules that could promote the activity of FBXW7 and subsequently enhancing the degradation of its oncogenic substrates also could be used as a very good anticancer treatment strategy. It has been showed that a natural dietary agent genistein inhibited miR-223 expression and subsequently up-regulated FBXW7, leading to cell growth inhibition and apoptosis in pancreatic cancer cells[86]. Another study indicated that rapamycin suppressed FBXW7 loss-induced epithelial-mesenchymal transition and cancer stem cell-like characteristics in colorectal cancer cells[87]. However, there are no inhibitors targeting FBXW7 that is currently being tested in preclinical and clinical trials in GC. In the future, the FBXW7 target may be used for patients with GC.

The SCF, also known as CRL(Cullin-RING ubiquitin Ligase) ,was the largest family of ubiquitin ligases that promoted the degradation of about 20% of UPS-regulated proteins[88,89], including cell cycle regulatory proteins, transcription factors, oncoproteins and tumor suppressors among others[90,91]. Post-translational neddylation of CUL, a process triggered by the NEDD8-activating enzyme E1 subunit 1 (NAE1), was required for CRL/SCF activation. Recently, MLN4924 was discovered via a high-throughput screen as a specific NAE1 inhibitor and first-in-class anticancer drug[92,93]. The efficacy and mechanism of action of MLN4924 has been tested in vitro and in mouse models and has revealed promising anticancer activity of a wide-ranging of malignancies[94-99], but not including GC. MLN4924 was currently in multiple phase I clinical trials in both solid tumor and hematological malignancies[88]. We believed that MLN4924 may be used for patients with GC in the near future.
CONCLUSION 
The E3 ubiquitin ligases play an essential role in a variety of biological processes including cell cycle regulation, proliferation and apoptosis. Although further research is necessary to better understand the biological functions of E3 ubiquitin ligases, it has become clearly that some E3 ubiquitin ligases, such as those described in this review, are promising gatric cancer targets. Perhaps the greatest challenge for scientists trying to manipulate the E3 ubiquitin ligases in the GC cells will be breaking the effects of targeting proteins with role as tumor suppressors or oncogenes. The role of such proteins can be influenced by a lot of factors, some of which are still unknown. There are still others obstacle to overcome before targeting E3 ubiquitin ligases becoming a viable treatment option. The main obstacle is selectivity. Any new therapeutic must only target the cancer cells but not the healthy ones. While targeting the E3 ubiquitin ligases in GC therapy is still in its infancy, continued research on the E3 ubiquitin ligases will lead to the discovery of new therapeutic targets that may boost the development of more specific, less toxic and more efficacious anti-cancer therapeutics.
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