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Abstract
Rotator cuff tears are frequent shoulder problems that 
are usually dealt with surgical repair. Despite improved 
surgical techniques, the tendon-to-bone healing rate 
is unsatisfactory due to difficulties in restoring the 
delicate transitional tissue between bone and tendon. 
It is essential to understand the molecular mechanisms 
that determine this failure. The study of the molecular 
environment during embryogenesis and during normal 
healing after injury is key in devising strategies to get 
a successful repair. Mesenchymal stem cells (MSC) can 
differentiate into different mesodermal tissues and have 
a strong paracrine, anti-inflammatory, immunoregulatory 
and angiogenic potential. Stem cell therapy is thus a 
potentially effective therapy to enhance rotator cuff 
healing. Promising results have been reported with the 
use of autologous MSC of different origins in animal 
studies: they have shown to have better healing proper
ties, increasing the amount of fibrocartilage formation 
and improving the orientation of fibrocartilage fibers with 
less immunologic response and reduced lymphocyte 
infiltration. All these changes lead to an increase in 
biomechanical strength. However, animal research is still 
inconclusive and more experimental studies are needed 
before human application. Future directions include 
expanded stem cell therapy in combination with growth 
factors or different scaffolds as well as new stem cell 
types and gene therapy. 
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Core tip: Current surgical techniques in rotator cuff 
repair do not achieve good tendon-to-bone healing. 
The use of stem cells to improve healing is a promising 
alternative. Different in vivo  animal studies have shown 
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good results in achieving restoration of the native 
enthesis. However, human studies are scarce so the use 
of stem cell therapy in rotator cuff repair should still be 
considered and experimental technique. Further basic 
and clinical research is needed. 
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INTRODUCTION
The rotator cuff is a structure formed by the tendinous 
insertions of a group of muscles that dynamically 
stabilize the glenohumeral joint. Rotator cuff disease is 
the most common condition of the shoulder for which 
patients seek treatment and can be found in 30% to 
50% of the population aged older than 50 years[1,2]. 
However, it also affects athletes and active individuals 
regardless of age and activity level.

Rotator cuff tears often require surgical treatment 
in order to increase function and decrease pain[3,4]. The 
objective of the treatment is the repair of the damaged 
tendons. Whether or not healing of the tear is a 
prognostic factor on function and pain after rotator cuff 
repair has been controversial. However, most of the 
authors have found that tear recurrence determines 
lower functional scores and a decrease in patient 
satisfaction[5-7]. In an attempt to improve the strength 
of the surgical repair, new materials and surgical 
techniques that aim to reproduce the anatomical 
footprint of the rotator cuff have been proposed[8,9]. 
Despite these significant technical advances, several 
studies have shown a persistently high failure rate of 
tendon to bone rotator cuff repair that ranges from 
30% to 94%[6,10,11].

The main problem with failure in rotator cuff 
repair is probably biologic, as it is well known that 
the delicate and highly specialized fibro-cartilaginous 
transition zone between the rotator cuff and the 
bone does not regenerate after repair[12,13]. Standard 
tendon to bone repair techniques attain only a fibro-
vascular scar tissue that has relatively poor mechanical 
properties[14]. Thus, the focus in research has changed 
from mechanical improvement of the repair techniques 
to finding ways to improve the biological environment 
around that repair[15-22]. This would include growth 
factors (GF), bone morphogenetic proteins (BMPs) as 
well as stem cells. The hypothesis is that biological 
therapies might facilitate the regeneration of the 
normal tendon-to-bone insertion microarchitecture 
and limit the amount of scar tissue. In this direction, 
isolated GF or platelet rich plasma has been recently 
used with variable results but stems cell are a more 

promising alternative[23-25].
Stem cells have demonstrated great potential 

in enhancing the biologic healing process based on 
their influence in angiogenesis and the inflammatory 
pattern[26]. However, several questions still remain before 
they can be used clinically for augmenting tendon to 
bone healing. The purpose of this paper is to outline the 
current knowledge on the role stem cell therapy might 
have in dealing with rotator cuff tears and the future 
implications of the ongoing research’s results. 

ENTHESIS: TENDON TO BONE HEALING 
IN THE ROTATOR CUFF
Tissue regeneration in the tendon-to-bone interphase 
is a complex process. The stiffness difference between 
tendon and bone is responsible for significant me
chanical stress in the regeneration zone[27]. The 
enthesis represents a transitional tissue that allows 
for efficient energy transmission due to the gradual 
changes that occur in its microstructure, its histological 
characteristics and its biomechanical behaviour.

The enthesis has been divided into four zones: 
tendon, non-mineralized fibrocartilage, mineralized 
fibrocartilage and bone[28] (Figure 1 and Table 1). In 
the tendon area (zone 1) there is a predominance of 
type I collagen fibres together with a small amount of 
decorin which is a small cellular or pericellular matrix 
proteoglycan; In the non-mineralized fibrocartilage 
area (zone 2), type II and III collagen fibres are 
predominant and small amounts of type I, IX and X 
collagen fibres have also been detected. Aggregans 
and decorine are also present. Zone 3 is constituted by 
the mineralized fibrocartilage, with a highly specialized 
mineralized content and type I collagen fibres. Lastly, 
zone 4 is characterized for a bone-alike composition, 
as it corresponds to the bony insertional area. As 
previously mentioned, it has been demonstrated that 
this specialized tissue does not regenerate after injury 
and repair. The fibro vascular tissue that substitutes 
the native enthesis is characterized by a predominance 
of type III collagen due to the excessive formation of 
scar tissue and the absence of fibrocartilage.

The reparative process can be divided into 3 
phases (inflammatory, reparative and remodelling) 
and numerous cells and cytokines have been 
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  Zone Histological 
characteristics

Collagen type Extracellular matrix 
composition

  Zone 1 Tendon I Decorin
  Zone 2 Non-mineralized 

fibrocartilage
II and III

( small amounts of I, 
IX and X)

Aggrecan and decorin

  Zone 3 Mineralized 
fibrocartilage

II
(small amounts of X)

Aggrecan and mineral 
component

  Zone 4 Bone I Mineral component

Table 1  Main biochemical and histological characteristics of 
the four areas of the enthesis[28]



implicated[13,29,30]. Diaz-Heredia et al[30] have studied 
the gradual variation of vascular endothelial growth 
factor (VEGF), interleukin-1 (IL-1) and transforming 
growth factor-β1 (TGF-β1) in an animal model of 
rotator cuff tears in rats. Some authors have pointed 
out that the inability to regenerate the native enthesis 
could be caused by the incomplete expression of 
the genes implicated in its formation[28]. During 
embryogenic development, healing occurs without 
expression of TGF-β1 but with expression of TGF-β3, 
which determines an absence of scar tissue. On the 
contrary, during postnatal life, TGF-β1 is active during 
the three phases of the healing process[13,30,31]. Another 
important group of factors widely studied are BMP-12, 
13 and 14 as well as fibroblast growth factor-β (FGF-β 
and insulin like growth factor-1 (IGF-1). Matrix metallo
proteinases are multi-domain proteinases regulated 
by tissue inhibitors of metalloproteinases (TIMPs) and 
play a determinant role in the remodelling phase.

The enthesis structure is developed successfully 
during embryogenic period so knowledge of the 
biological mechanism of its development could help 
in pinpointing which factors are relevant in trying to 
regenerate the native transitional tissue[28]. Galatz et 
al[32] found that the mature fibrocartilage does not 
appear until 21 d after birth. Supraspinatus fibroblasts 
expressed type I collagen during all the process. 
Type II collagen was expressed firstly in the non-
mineralized fibrocartilage and at 7 d in the mineralized 
fibrocartilage, where it persisted until 56 d. Type X 
collagen was initially seen in mineralized collagen at 
14 d and it persisted until 56 d. There was a change 
in the presence from TGF-β3 to TGF-β1 at 15 d. The 
gradual expression of different factors present in the 
development of the physeal plate as (sex determining 
region Y)-box 9, Scleraxis, Patched 1, Parathyroid 
hormone-related protein (PTHrP) and Indian Heddegog 
(Ihh) has also been studied[32-34]. It has been proposed 
that the stratification in the structure and composition 
along the different zones of the enthesis could be a 

consequence of the gradual expression of these and 
other factors. For example, the amount of mineral 
deposit in the mature enthesis could be determined by 
the presence of osteogenic factors such as runt-related 
transcription factor 2 (Runx2) and bone morphogenetic 
protein-2 (BMP2). On the other hand, the formation of 
fibrocartilage could be related to a greater expression 
of PTHrP, Ihh and Sox9. Lastly, tendon development 
would be conditioned by the expression of BMP-12, 
tenomoduline and scleraxis[32]. Scleraxis is a protein 
member of the basic helix-loop-helix superfamily of 
transcription factors.

BIOLOGIC APPROACH
In the past decades, as mentioned before, numerous 
biology-based strategies have been developed in 
order to improve the rate and quality of healing in 
rotator cuff models. The main areas of research, apart 
from stem cells, are matrix metalloproteinase (MMP) 
inhibitors and GF.

MMP inhibitors
MMP expression is increased in degenerative rotator 
cuff tissue and it is known to cause progressive 
weakness in extracellular matrix. They are involved in 
tumoral growth, aneurysmatic disease and post-surgical 
tissue remodelling in the rotator cuff[35-37]. Tissular 
metalloproteinase inhibitors are thus, potential biological 
tools. In particular, inhibition of MMP-13, a MMP that 
is increased in degenerative rotator cuff tears, allows 
for higher amount of fibrocartilage formation, better 
collagen fiber organization and higher load to ultimate 
failure in the enthesis[36,38].

GF
GF factors are key in the development of the different 
enthesis zones. The regeneration of the most specia
lized zone, the mineralized fibrocartilage, can be 
stimulated by osteoinductive factors[39]. The GF are 
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Figure 1  The normal enthesis (longitudinal image 
and diagram of the bone-tendon junction of the 
supraspinatus tendon of a rat; hematoxilin-eosine, 
× 10): the supraspinatus tendon (T) approaches 
the humeral bone (B) immediately adyacent to the 
normal carlilage (C). The normal tendon (zone 1) 
gradually transforms into a fibrocartilaginous tissue 
with large mononucleated cells (zone 2). As the 
fibers progress into the bone the extracellular matrix is 
progresivelyy calcified (zone 3) until it turns into normal 
bone (zone 4). Further explanation of the biochemical 
environment of these zones is shown in Table 1.
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the integration of anterior cruciate ligament tendinous 
grafts in a bone tunnel. In this animal model, the 
hamstring grafts are introduced into bony tunnels in 
both femoral and tibiae bones and pull out strength is 
tested. Lim et al[58] have used MSCs in this model in 
rabbits and found a significant increase in maximum 
load to failure. 

It was not until 2009 that MSC therapy was applied 
to a rotator cuff model, since then the available 
literature has grown consistently. MSCs of different 
origins have been used for rotator cuff repair. Different 
tissue sources have been identified: bone marrow, 
adipose tissue, muscle, synovia, periosteum, tendon, 
dermis and umbilical cord or peripheral blood, have 
all been evaluated as sources of multipotent and 
pluripotent cell[26]. Although generally speaking MSCs 
of different origins have similar biological potential, 
there is increasing knowledge that certain MSC 
populations are better than others for specific tissue 
regeneration[59-61]. Table 2 shows the main animal 
investigations performed on rotator cuff repair. 

Bone marrow MSCs
The principal source for stem cell-enhanced healing 
of the rotator cuff has been autologous bone marrow 
(BM-MSCs). Gulotta et al[20] performed an experimental 
unilateral detachment of supraspinatus tendon and a 
transosseous repair in rats. BM-MSCs were harvested 
by performing lavage of intramedullary canals of 
long bones with Hank’s Balanced Salt Solution 
(Gibco, Gaithersburg, MD). They showed that MSCs 
were present at the repair site and that they were 
metabolically active. Although they did not find 
significant differences in between the treated and 
untreated groups, at 4 wk, there was a higher amount 
of fibrocartilage formation and better orientation of 
fibrocartilage fibers. 

In order to reproduce rotator cuff surgery, Kida 
et al[62] designed a study in which they performed 
additional drilling to the greater tuberosity to release 
bone marrow and allow bone marrow cells to migrate 
into the suture zone. They tested chimeric rats that 
expressed green fluorescent protein in the bone 
marrow cells and looked for the expression of this 
protein after a period of 2, 4 and 8 wk. It seems that 
drilling and the subsequent migration of stem cells 
might improve maximum load to failure at 4 and 8 wk. 

More recently, Gulotta et al[63-65] have used gene
tically modified MSCs in order to express scleraxis and 
produce MIT1 and BMP-13 with promising results. 
MSCs genetically modified to over-express MT1-
MMP might be useful for augmenting suture as it has 
demonstrated improved biomechanical strength at 4 wk 
based on a higher presence of fibrocartilage[63]. Results 
of studies with application of MSCs genetically modified 
to overexpress BMP-13[64] were not that successful. 
On the contrary, MSCs genetically modified with 
Scx demonstrated to promote better biomechanical 

usually delivered with a vehicle, such as augmented 
sutures, fibrin gels or collagen sponges[16,40,41]. Rodeo et 
al[16] developed an animal model of supraspinatus repair 
in sheep in which they used BMP-2 to 7, TGFβ1, TGFβ2, 
TGF-β3 and FGF. They detected better histologic and 
biomechanical properties[16]. Other investigators have 
obtained similar results with BMP-12[42], BMP-13[17], 
BMP-14[43], FGF[40,44], IGF-1[45] and PDGF-b[15]. Some of 
these factors seem to play different roles depending 
in which zone of the enthesis they act or the timing of 
their effects.

The most widespread treatment, however, is platelet 
rich plasma (PRP) obtained from autologous blood[46]. 
It has been proposed that PRP facilitates coagulation 
and homeostasis, stimulates wound closure, restores 
intraarticular hyaluronic acid, equilibrates angiogenesis, 
promotes glucosamine synthesis and serves as a 
cellular support for migration and differentiation[23]. 
Despite the variable results obtained, it has been used 
for muscular, ligamentous, tendinous or cartilaginous 
injuries[47-50]. With regards to its application in rotator 
cuff tears, the results have also been controversial. 
Neither Sánchez Márquez et al[24] or Ruiz-Moneo et al[51] 
found any relevant clinical improvement with the use 
of PRP to augment suture in massive tears. However, 
other investigators support the use of PRP in selected 
cases[52]. For example, Randelli et al[25] in a prospective 
randomized clinical trial, found less postoperative pain 
and accelerated healing rate in patients with non-
massive rotator cuff tears but there were no differences 
in functional scores and re-rupture rate. Due to the 
chronic nature of these injuries, it has been suggested 
that PRP application should be serial in order to 
enhance its benefits[53]. Another explanation for this fact 
is that the expression of growth factors is ephemeral. 
In this context, stem cell and gene therapies could be a 
more definitive and long-lasting treatment.

STEM CELL THERAPY: ANIMAL STUDIES
The use of stem cell therapy in the regeneration of 
musculoskeletal tissue is a very dynamic field. MSCs of 
different origins, with their innate ability to differentiate 
into several mesenchymal tissues including bone, fat, 
muscle and tendon have been used extensively in tissue 
repair. Applications in which its usefulness has been 
confirmed are: treatment of bone defects, cartilage 
regeneration, meniscal regeneration and healing, 
management of tendinopathies and management of 
muscle lesions[54-56]. Investigators usually prefer adult 
MSCs over embryonic of fetal stem cells as the former 
are usually locally available and easier to obtain for 
the treatment of these non-life-threatening problems. 
Furthermore, the low immunogenicity of MSCs allows 
for the use of allogenic strains[57].

Some authors have also performed extensive 
research in animal bone-to-tendon healing models. 
Until recently the most widespread model reproduced 
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characteristics at 2 wk[65].

Adipose tissue MSC
Adipose Tissue derived stem cells (AMSC) have also 
shown multipotentiality in vitro[66]. Due to its meso
dermal origin, they can differentiate into adipose lineage 
cells[67], osteogenic cells[68], chondrogenic cells[59] and 
myogenic cells[69]. In vivo, they have also demonstrated 
their capacity to differentiate into adipose tissue using 
different scaffolds as polyglicolic acid, collagen sponges 
or fibrin gel[54,70,71].

Recently, Oh et al[71] have published the first study 
in a rotator cuff model using AMSCs. Four groups were 
compared for a suture of the subscapularis tendon in 
rabbit using saline, saline and AMSCs, only AMSCs and 
only suture. They found better healing properties and 
a capacity of regeneration after fatty infiltration of the 
muscle. 

MSCs of other origins (non-hematopoyetic)
Muscle-derived stem cells (M-MSCs) have been isolated 
using a modification of a method known as the preplate 
technique[72]. Pelinkovic et al[73] have shown that the 
injection of M-MSCs into the supraspinatus tendon of 
athymic rats resulted in the engraftment of transplanted 
cells in a pattern with a morphology comparable to 
resident tendon fibers. The authors suggest that more 
studies are necessary before assuming that M-MSCs 
can improve rotator cuff healing. 

Lastly, Shen et al[74] performed a study using 
tenocyte-derived stem cells (T-MSCs) proliferated in 
vitro and obtained from human fetal Achilles tendon 
samples. Implantation of this type of cells in the 
rabbit rotator cuff defect did not elicit an immunologic 

response but increased fibroblastic cell ingrowth and 
reduced infiltration of lymphocytes. 

Choice of scaffold for MSCs deployment
Cell adhesion to the scaffold depends on the interaction 
that is established in between the scaffold microstructure 
and the cell surface receptors denominated integrins. 
Transmembrane contacts are key factor for MSC sur
vival, proliferation and differentiation[75]. Numerous 
studies have investigated the behaviour of stem cells 
in different scaffolds and have demonstrated that the 
scaffold can determine the differentiation capacity 
into one or other lineages[75]. Two different types 
of interactions have been described: physical and 
biochemical. Vehicles that maintain the rounded shape 
of the cells and avoid contact in between them, promote 
the chondrogenic differentiation and avoid expression 
of type I collagen. Porous gelatine vehicles or those that 
use fibrin favour a fibro cartilaginous phenotype due to 
the expression of collagen types I and II[76].

STEM CELL THERAPY: HUMAN STUDIES
Although there is a lack of consensus on whether 
the application of stem cells to enhance the rotator 
cuff healing is effective or not, some authors have 
started developing different strategies for the clinical 
application of the experimental findings. 

Beitzel et al[77] studied the quantity and chara
cteristics of BM-MSCs obtained from proximal humerus 
and distal femur bone marrow aspiration and found 
them comparable, supporting the previous experimental 
research by Kida et al[62]. Rotator cuff derived MSCs 
have been isolated and compared to BM-derived stem 
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  Ref. Animal Type of cells Tendon repair model Method of 
delivery

Results

  Gulotta et al[20] Rat Allogenic BM-MSC Supraspinatus tendon
Acute repair

Fibrin glue carrier No differences in structure, composition or strength 
at the repair site

  Gulotta et al[63] Rat Allogenic BM-MSCs 
transduced with MT1- 

MMP

Supraspinatus tendon
Acute repair

Fibrin glue carrier Improved fibrocartilage
Improved biomechanical strength

  Gulotta et al[64] Rat Allogenic BM-MSCs 
transduced with human 

BMP-13

Supraspinatus tendon
Acute repair

Fibrin glue carrier No differences in structure, composition or strength 
at the repair site

  Gulotta et al[65] Rat Allogenic BM-MSCs 
transduced with sleraxis 

Supraspinatus tendon
Acute repair

Fibrin glue carrier Improved fibrocartilage
Improved mechanical resistance and stiffness

  Shen et al[74] Rabbit Allogenic T-MSCs Supraspinatus tendon
Acute repair

Seeded scaffold 
(silk-collagen)

T-MSCs differentiated into tenocytes
Improved collagen content

Improved biological environment
Less inflammation

  Kida et al[62] Rat Autologous BM-MSC Supraspinatus tendon 
Acute repair

Transosseous 
drilling 

BM-MSCs infiltrated the repaired tendon
Improved mechanical resistance

  Oh et al[71] Rabbit Allogenic A-MSCs Subscapularis tendon
Chronic repair

Injection Improved muscle function
Improved tendon healing
Decreased fatty infiltration

Table 2  Rotator cuff repair animal models using mesenchimal stem cells 

Different types of cells have been used: Bone marrow derived MSCs (BM-MSCs), Tendon derived MSCs (T-MSCs) or Adipose derived MSCs (A-MSCs). MT1-
MMP: Metalloproteinase inhibitor-1; BMP-13: Bone morphogenetic protein-13; MSCs: Mesenchymal stem cells.
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cells. It seems that the myogenic potential of MSCs 
derived from rotator cuff cells is higher than for BM-
MSCs[78]. Randelli et al[79] could isolate tenocyte-derived 
stem cells from supraspinatus tendon and long head 
of biceps tendon. Utsunomiya et al[80] also studied the 
subacromial bursa as a potential source for MSCs and 
found that the synovial cells found in the bursa were a 
good cell source. 

Ellera Gomes et al[81] published their work in 14 
patients with a complete tear of the rotator cuff that 
was repaired in a trans osseous fashion through a 
mini-incision augmenting the suture with mononuclear 
stem cells from iliac crest bone marrow aspirate. At 12 
mo, 12 of the 14 tears had healed according to clinical 
and magnetic resonance imaging results[81]. This is the 
only published investigation on clinical application of 
stem cells in rotator cuff tears. 

Lastly, Beitzel et al[75] have also focused their 
attention in how different scaffolds behave in humans in 
order to extrapolate results obtained from experimental 
research. MSCs adhesion, proliferation, and scaffold 
morphology were evaluated by histologic analysis 
and electron microscopy. According to their findings, 
significant differences existed: non cross-linked 
porcine collagen scaffolds showed superior results for 
cell adhesion and proliferation, as well as on histologic 
evaluation.

FUTURE ALTERNATIVES
Advanced stem cell therapy and gene therapy repre
sent the most feasible option in order to improve 
rotator cuff healing[21]. A better knowledge of the 
molecular phases of embryogenesis of the enthesis as 
well as the injury and healing patterns have allowed to 
identify the growth factors and proteins to target[13,28]. 

A combination of stem cells, modified before 
implantation, using exposure to different growth factors 
or modifications to the culture conditions to generate 
a desired phenotype is one of the most investigated 
pathways[26]. Moreover, the newly recognized anti-
inflammatory and antiapoptotic impact of MSCs on 
tissue healing may provide a great potential for func
tional restoration[76,82]. 

On the other hand, specific growth factor supple
mentation, in the form of transgenic therapy may 
allow longer-term tendon repair and potential return 
to function. Fetal-derived embryonic stem cell-like cells 
have recently been evaluated for tendon and ligament 
repair. More recently, induced pluripotent stem cells, 
developed by genetically reprogramming adult-sourced 
cells, may be particularly beneficial in the challenging 
environment of rotator cuff injury. Generation of iPS 
cells can use viral or, more recently, nonviral vector 
delivery of reprogramming genes. However, these 
transgenic therapies lack safety clearance when it 
comes to oncologic and teratogenic risks[26].

Lastly, stem cells associated to bio or nanotech
nology can control the proliferation and differentiation 

into complex, viable 3D tissues. So we might be able 
to use biodegradable polymer scaffolds to promote 
cell growth and differentiation and formation of 3D 
structures. This could be useful in order to avoid 
scarring during the healing process.

CONCLUSION
Current literature regarding the clinical use of stem 
cells in rotator cuff tears is limited. Although in vivo 
animal studies have shown promising results to enhance 
tendon-to-bone healing, the use of stem cell therapy in 
rotator cuff should still be considered an experimental 
technique. Further basic and clinical research is needed.
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