
the insulin family. Preclinical research suggests that 
the evolutionarily conserved brain insulin/insulin-like 
growth factor-1 (IGF-1) signalling system controls 
lifespan and protects against some features of AD such 
as neurodegeneration-related accumulation of toxic 
proteins and cognitive deficiencies, as observed in 
animal models. Insulin and IGF-1 activate cell signalling 
mechanisms which play protective and regenerative roles; 
abnormalities in the insulin/IGF-1 system may trigger a 
cascade of neurodegeneration in AD. AD patients show 
cerebral resistance to insulin which associates with IGF-I 
resistance and dysregulation of insulin/IGF-1 receptors 
as well as cognitive deterioration. This review is focused 
on the roles of the insulin/IGF-1 signalling system 
in cerebral ageing and its potential involvement in 
neurodegeneration in the human brain as seen against 
the background of preclinical evidence. 
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Core tip: Age itself is a major risk factor for the develop-
ment of age-related cognitive decline, Alzheimer’s and 
cerebrovascular diseases. Increased life expectancy 
necessitates the need to understand the processes 
that underlie successful vs  pathological brain ageing in 
order to develop early interventions which may assist in 
delaying if not reversing the detrimental effects of brain 
ageing. This review focuses on the signalling system 
of insulin and insulin-like growth factor-1 (IIS) and its 
roles in cerebral ageing; it highlights some conflicting 
literature opinions and incomplete understandings of 
the roles and mechanisms of the IIS system.
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Abstract
Cerebral ageing is a complex biological process asso-
ciated with progressing cerebrovascular disease and 
neuronal death. It does not always, however, associate 
with a functional decline, as the ageing mammalian brain 
retains considerable functional plasticity which supports 
successful cerebral ageing where age-related cognitive 
decline is modest. On the contrary, pathological cerebral 
ageing results in memory impairment and cognitive 
deterioration, with Alzheimer’s disease (AD) being a 
florid example. Trophic/growth factors promote brain 
plasticity; among them are peptides which belong to 
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INTRODUCTION
Ageing is a complex biological process that affects all 
species ranging from invertebrates through to non-
human mammals and humans, being underpinned 
by alterations at molecular and cellular levels[1,2] that 
compromise the organism’s physiological homeostasis, 
induce susceptibility to disease and accelerate death[3-5]. 
The cellular and anatomical changes that occur in the 
course of  brain ageing contribute to cerebrovascular 
disease[6], impact motor performance and learning 
and memory functions[7,8], thus leading to cognitive 
decline and dementia[9]. As human life span is growing 
and the proportion of  the elderly is increasing in most 
societies, the prevalence of  age-dependent diseases such 
as Alzheimer’s disease (AD), Parkinson’s disease and 
stroke is also on the increase world-wide. Consequently, 
understanding the biological and molecular mechanisms 
of  what constitutes “successful” vs pathological cerebral 
ageing is critical to both delaying the ageing process, 
enhancing the quality of  life in the elderly, and alleviating 
the already overburdened health care systems, from the 
cost component involved in treating age-related diseases. 

In view of  the above points, research on brain-
ageing has generated a pool of  information regarding 
the potential mechanisms, which underpin cognitive 
decline. Advancements in molecular and cell technology, 
have been instrumental in identifying factors such as 
oxidative stress[10,11], epigenetic changes[12], mitochondrial 
dysfunction, inflammatory response[13], impaired cell 
signalling and gene expressions[14], autophagy and protein 
turnover, target of  rapamycin (TOR) and insulin/ 
insulin-like growth factor (IGF) signalling as potential 
mechanisms that contribute to alterations observed in 
brain ageing[9].

This review will first discuss what constitutes 
“successful” vs pathological brain ageing. Within this 
context, the review will then focus predominantly on 
the evolutionarily conserved insulin/IGF-signalling (IIS) 
system, and its roles in cognitive decline, dementia, AD 
and neuroinflammation. 

It has been postulated that the IIS system plays a 
regulatory role in organismal ageing, lifespan and long-
evity[15,16], and a reduced expression of  its components under 
experimental conditions has been linked to amelioration 
of  amyloid-β accumulation, the latter being one of  the key 
features of  AD[17-19], and cognitive impairment[20]. The IIS 
system merits an arduous and in depth investigation into 
the role and the extent of  its involvement in cerebral aging, 
as targeting its components may pave the way to designing 
novel pharmacological approaches to early interventions 
and facilitate reversal or delay of  cognitive decline in human 
patients.

SUCCESSFUL VS PATHOLOGICAL 
CEREBRAL AGEING 
Defining successful cerebral ageing has been both 
challenging and controversial and to date there is no 
scientific consensus defining normal ageing in older 
age. Despite the lack of  an operational definition, 
it is generally agreed that successful cerebral ageing 
is a multi-dimensional process, characterized by the 
absence of  cognitive impairment and preservation of  
mental faculties, which allows for social functioning and 
independence in older age[21]. This suggests that beyond 
the neurophysiological and psychological functions, 
equally vital are some esoteric elements such as wisdom 
and resilience, which together with lifestyle factors may 
contribute towards the variability, detected in cognitive 
abilities amongst “successful” vs “unsuccessful” elderly 
individuals and groups[22,23]. 

Current research postulates that the ageing mammalian 
brain retains a considerable functional plasticity, which 
is activity-related and thus it depends on the lifestyle 
of  the individual (e.g.,[24]). There is evidence that human 
age-related diseases can be delayed by a healthy lifestyle 
which includes stress management, physical exercise and 
caloric restriction[24,25]. Thus, although genes are important 
determinants of  longevity, an individual’s lifestyle is a 
powerful instrument that can delay the development 
of  age-related diseases and lead to the path of  ageing 
successfully[25-27].

Functional imaging studies on ageing human brains, 
suggest that in the absence of  pathology, age-related 
cognitive decline is rather modest and varies amongst 
individuals[9]. It is characterized by anatomical and fun-
ctional changes, which are associated with neuronal-
synaptic molecular substrates specific to brain area[28,29]. 
These changes may be attributed to synaptic connectivity 
rather than neuronal and white matter losses[30,31].  

In contrast, the pathologically ageing brain, as that in 
AD, exhibits marked cognitive decline, which is associated 
with a significant loss of  synapses[32]. Although the 
molecular mechanisms underlying this synaptic impairment 
are not fully understood, dysfunction of  γ-secretase is 
evident in many cases of  early onset of  AD[33], and the 
gamma-secretase-mediated EphA4 signalling system 
may be involved in the synaptic pathogenesis of  AD[32,33]. 
Equally, apolipoprotein E4 can increase the presence of  
amyloid beta (aβ) oligomers in the brain, which in turn may 
increase the loss of  dendritic spines and accelerate memory 
decline in AD[34].

Of  the regions associated with memory and learning, 
the hippocampal formation exhibit age-related decrease 
in volume, which may be a consequence of  a decrease in 
neuronal and synaptic density[28,30]; prefrontal cortex (PFC) 
also shows reductions in grey matter[35,36]. The PFC is 
implicated in higher executive functions, involving explicit, 
implicit and spatial memories[28,37,38]. Its decreased grey 
matter diffusivity may be a potential biomarker for early 
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AD[39].  
Similarly, the posterior cingulate, which is both 

anatomically and functionally connected to PFC and 
medial temporal lobe (MTL)[40,41], and which plays a vital 
role in encoding and retrieval of  information[42,43] is also 
affected in ageing. Interestingly, it is one of  the first 
structures to be affected in AD[44,45] but has not yet been 
explicitly studied in conjunction with PFC to establish 
associations between task-related and cognitive task 
activation[46].

These associations may be modifiable in healthily aged 
individuals[46-48] in contrast to AD patients[48-50]. PFC grey 
matter loss may trigger plasticity, which is dependent on 
the MTL function for memory tasks[51], and consequently, 
those individuals with functionally intact grey matter/
MTL ratio, may make a greater use of  the PFC[52].

The hippocampal region implicated in memory 
function shows age-related atrophy[53], and a decline of  
working memory function is often observed in healthy 
ageing[54]. In AD pathology, impaired hippocampal 
function is detectable even before the formation and 
accumulation of  plaques[55] and volume analysis by means 
of  MRI has been used as diagnostic tool in distinguishing 
AD patients and healthy age-matched subjects by 
measuring the grey matter volumes in the lateral temporal 
and parietal cortices[56]. Furthermore, the AD brain is 
characterized by ventricular enlargement[57-60], consistent 
with a considerable loss of  grey and white matter[61].

The above alterations may be attributed to age-related 
neuronal loss, and/or compensatory plasticity, and future 
studies are needed to test how these three way structure-
function-behaviour associations impact the grey matter 
loss and PFC activation in successful ageing[46]. Equally, 
stress-related hormonal changes[9] or compromised 
calcium homeostasis[38,62] can play a role too as prolonged 
increases of  intracellular calcium concentrations may 
cause neurite degeneration and cell death in ageing[63].

In addition to the observed anatomical, functional 
and cellular changes, the brain’s neurochemistry is 
also affected, with dopaminergic, noradrenergic and 
cholinergic systems exhibiting deficits[60,64-69]. Studies on 
human and rhesus monkey PFC indicate that the balance 
between inhibitory and excitatory neurotransmission is 
decreased[70] as an effect of  reduced gene expression, 
which may compromise neural activity resulting in 
excitotoxicity and neurodegenerative pathology. Positron 
emission tomography scans in ageing humans show 
a reduction in dopamine synthesis in the striatum, of  
relevance to frontal lobe cognitive function[71], and a 
marked decrease in dopamine receptor binding within 
caudate and putamen nuclei[66,72].  

Reductions in serotonin synthesis, reuptake and 
receptor binding have also been noted in the caudate 
nucleus, putamen and PFC of  ageing brains[67], and 
glutamate decreased levels in grey and white matter, basal 
ganglia have been reported[69,73].

It is of  significance that all the pathological features 

of  AD such as neuronal loss, neurofibrillary tangles and 
plagues may be present in the brains of  elderly who may 
never show the full extent of  cognitive deterioration 
observed in AD[9]. This resilience to cognitive decline in the 
presence of  AD pathology may be attributed to “cognitive 
reserve”, which may reduce the risk of  dementia in 
ageing[74]. It further suggests that the hallmarks of  AD may 
be secondary to ageing.

One of  the cellular mechanisms regulating ageing 
processes is the insulin and IIS system, which is described 
below with regard to its role and those of  its components 
in cerebral ageing. This system, extensively studied 
in model organisms, appears to underpin the innate 
resilience that is essential in successful ageing; it may 
also present therapeutic potential in the treatment of  
debilitating neurodegenerative and cerebrovascular 
diseases.

INSULIN, INSULIN GROWTH FACTORS 
AND THEIR RECEPTORS
Insulin and the IGF-1 and IGF-2 constitute a family 
of  structurally similar peptides[75,76], which have been 
preserved in most organisms through evolution[77]. 
Peripherally, insulin is synthesized and secreted into 
blood by pancreatic cells, whereas IGF-1 and IGF-2 by 
the liver in response to the pituitary growth hormone[78].   

Insulin is a powerful player in glucose homeostasis, 
e.g.,[79,80], which targets the liver, muscle, and adipose 
tissue[81], and also the vasculature and the brain[82]. The 
IGF-1 in contrast, is implicated in foetal and postnatal 
development, with a role in cellular survival of  adult 
tissues[82]. The circulation and delivery of  IGF-1 to the 
tissues is aided by IGF-1 binding proteins 1-6 in contrast 
to insulin, which circulates freely[82]. 

The transportation of  insulin and IGF 1 into the 
brain is achieved through a saturable mechanism within 
the blood-brain barrier (BBB)[78,82,83], although there is 
evidence of  their de novo synthesis in the central nervous 
system (CNS)[84-86]. Insulin’s ability to cross the BBB[83,87-89] 
depends on a number of  factors such as age, fasting 
or obesity[88]. Under experimental conditions, insulin 
administered directly into the CNS, decreases body 
weight by suppressing appetite, lowers serum insulin 
levels and increases serum glucose[90,91]. An increase in 
peripheral insulin levels leads to increased cerebrospinal 
fluid (CSF) insulin, whereas chronic insulin resistance 
impairs cerebral transportation by down regulating 
insulin receptors (IR) at BBB[92]. Brain activity in healthy 
individuals subjected to direct determination of  insulin 
sensitivity with the hyperinsulinemic-euglycemic clamp 
technique, has been shown to be affected by increased 
levels of  circulating insulin[93].

BBB uptake of  IGF involves a lipoprotein receptor-
related protein 1, the respective receptor (IGF-1R) and 
other transport mechanisms, enabling IGF access to 
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INSULIN AND IGF-1 IIS AND ITS ROLES 
IN COGNITIVE FUNCTION, BRAIN 
AGEING AND LONGEVITY
The IIS system has been probably the most widely studied 
conserved mechanism that extends lifespan in worms, 
flies and mammals[16], linking longevity and successful 
ageing across the species[107,108]. It has been suggested 
that although insulin does not directly influence cerebral 
glucose transport, it appears to influence regionally the 
distribution of  glucose transporter (GLUT) isoforms such 
as GLUT 4 and GLUT 8; the former being expressed in the 
cerebellum, hippocampus, pituitary and hypothalamus[109] 
whereas the latter in the hippocampus and hypothalamus[110]. 
This selective stimulation of  glucose uptake in the brain 
areas implicated in learning and memory renders the 
hormone a potent player in potential therapeutic use to 
restore or enhance impaired cognitive functions[111]. In 
addition, insulin’s indirect role in hippocampal functioning 
via the long-term potentiation cascade, involving the 
N-methyl-D-aspartate receptor[112] further suggests that 
insulin can be implicated in synaptic remodelling which is 
vital for the formation of  new memories. 

Similarly, insulin’s ability to modulate CNS levels of  
acetylcholine and norepinephrine, known to influence 

CSF, and hypothalamic and hippocampal regions[82]. 
Insulin and IGFs activate signalling systems through their 
respective receptors, which belong to the tyrosine kinase 
receptor family[77]: IR, IGF-1R and IGF-2R (Figure 1). 
Low affinity binding can take place between insulin and 
IGF-1R, and IGF-1 and IR using the phosphoinositide 
3-kinase (PI3K)/AKT pathway, while IGF-2 signals 
downstream not only via IGF-2R but also IGF-1R[77]. It 
should be mentioned that IGF-2R mainly controls the 
uptake and activation/destruction of  extracellular of  
IGF-1/2 IGF2[94]; the present review is focused on IGF-
1R (Figure 1). 

IR and IGF-1R differ in their respective functions 
and tissue expressions[82] being present in the brain within 
neuron rich structures[95-97] and glial cells[18,98,99]; they 
are different entities expressed in diverse brain regions. 
The IR is highly expressed in the anterior thalamic and 
hypothalamic nuclei, olfactory bulb, hippocampus, cerebral 
cortex[100,101] and promotes plasticity through supporting 
synaptogenesis and synaptic remodelling[102,103], and 
metabolic homeostasis[75,104]. IGF-1R signalling supports 
normal brain development with its neurogenesis, and 
successful ageing, consistent with the roles of  its agonist 
neurotrophins (see review[77]). A genetic modification, 
which results in IGF-1R deletion, causes microcephaly 
and death in experimental animals[105,106].
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cognitive function[113,114], may further substantiate its role 
in neural activity and potential neural protection against 
the effects of  oxidative stress[115].

Studies in animals and humans have suggested 
that deficiency or reduced effectiveness of  insulin is a 
contributing factor to cognitive decline, impacting memory 
functions and brain ageing[116-118]. Insulin resistance 
has been positively correlated with neurodegeneration 
observed in AD and mild cognitive impairment[118,119]. 
Patients with type Ⅱ diabetes mellitus, hypertension and 
chronic hyperinsulinemia show impaired verbal memory 
while enhanced memory function has been observed 
upon intranasal insulin administration[120,121].

In preclinical studies, liver-specific IGF-1-deficient 
(LID) mice, deficient in liver-derived IGF-1 exhibit 
impaired spatial learning and memory functions[122], 
demonstrating that this peptide is vital in mediating 
exercise-induced effects on the adult brain, thus suggesting 
promotion of  neurogenesis[123,124]. In addition, IGF-1 
appears to possess neurotrophic properties and plays 
a role in the amelioration of  age-related reduction in 
hippocampal neurogenesis and behavioural deficits[125,126]; 
it also improves regional cerebral blood flow in normal 
rats[127]. It targets brain neurones and glia implying a trophic 
action on glutamatergic synapses, modulating hippocampal 
circuitries that are involved in learning and memory[116]. 

Within this context, research on brain ageing suggests 
that IGF-1 has potent effects on brain function, and that 
its reduced signalling during ageing may contribute to 
cognitive deterioration and compromise the organism’s 
ability to deal with age-associated cerebral pathologies[19]. 
Similarly, impaired insulin signalling in the brain has been 
linked to cognitive decline associated with pathological 
brain ageing[111,128]. Epidemiological studies suggest that 
individuals with type Ⅱ diabetes and obesity may be at 
higher risk of  developing vascular dementia[129].

On the other hand, centenarian studies provide 
evidence of  correlation between reduced IIS activity and 
extreme human longevity. Ashkenazi centenarians have 
been found to have mutations in the IGF-1R that leads 
to lower activity of  the respective signalling pathway[107], 
and centenarians’ offspring had lower peripheral IGF-1 
activity when compared with appropriately matched-
controls[130]. Of  significance, in the same sample of  
centenarians’ offspring, IGF-1 was inversely related to 
insulin sensitivity[130], and an Italian cohort study reported 
an IR variant to be associated with longevity[131]. The 
above findings suggest that in humans the IIS system is a 
complex determinant of  lifespan[132].  

PRECLINICAL VS CLINICAL STUDIES ON 
THE ROLE OF THE IIS SYSTEM IN AD
The importance of  IR, IGF-1R and their respective 
agonist peptides has been underscored by data postulating 
the involvement of  the IIS system in AD, which is 
characterized by amyloid-dependent neurodegeneration 
and late onset progressive cognitive decline. AD sufferers 

display impaired cerebral glucoregulation[133], reduced brain 
insulin receptor activity, reduced insulin concentrations 
in cerebrospinal fluid, peripheral hyperinsulinemia[134] 
and reduced insulin and IGF-1 expression[135], together 
with synaptic loss associated with the accumulation 
and formation of  aggregate amyloid plagues (aβ) and 
neurofibrillary tangles (tau protein) as measured post 
mortem[136-138]. The above suggests that the IIS system may 
play a significant role in the loss of  memory functions 
associated with AD and a reduction of  its activity may 
reduced toxicity, delay aβ accumulation and improve 
cognitive functions[18,139-143].

In the preclinical approaches, mouse models of  AD 
with a knockout of  IGF-1 receptor exhibit reduced 
cognitive impairment, neurodegeneration and longer 
lifespan. The findings from the above studies, point 
to aβ oligomers as the toxic species associated with 
AD, and the ageing process to be associated with the 
organism’s exposure to their toxicity, leading to age-
related neurodegenerative diseases[132]. Consequently, 
the IIS system was mechanistically linked to neurone-
associated toxic protein accumulation and ageing, as 
reduced signalling is thought to protect the brain and 
slow the progression of  AD[132]. It has been shown to 
activate the PI3K/AKT and Ras pathways (Figure 1). 
The former leads to the activation of  mammalian TOR 
(mTOR), and rapamycin-treated mice have been shown 
to increase their lifespan and ameliorate age-related 
cognitive deficits[141,144]. The latter activates extracellular 
signal-regulated kinase-1/-2, which has been implicated 
in plasticity, including long-term potentiation, and 
memory formation in the CNS[145]. Although no data as 
yet exist to support the involvement of  both pathways 
in the pathogenesis of  AD, it may present an interesting 
direction for future research.

A number of  current preclinical studies on the 
animal models of  AD suggest that genetic reduction 
of  the signalling pathway may protect against the AD 
pathology[18,20] while older studies seem to postulate 
that its reduction is associated with the age-related 
pathologies[146]. These conflicting views may arise from 
the use of  different experimental approaches[19], or as it 
has been suggested, reduced IGF-1 peripheral bioactivity 
may not necessarily induce the same results in brain 
IGF-1 levels[147], postulating an independent regulatory 
activity. 

It is important to appreciate the complexity of  this 
relationship as human studies which try to correlate 
peripheral levels of  IGF-1/2 with cognitive functioning in 
health and disease, report disparate finding, as illustrated 
below. Of  the most recent publications in this area, a 
large scale long-term study on a community sample 
of  over 3500 participants of  middle and old ages has 
demonstrated that lower serum levels of  IGF-1 associate 
with an increased risk of  developing AD dementia 
while higher levels of  IGF-1 associate with greater brain 
volumes in middle-aged participants free of  stroke and 
dementia. The authors conclude that elevated levels of  
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IGF-1 may protect against neurodegeneration[148]. On 
the other hand, the Caerphilly Prospective Study on 746 
men has not found associations between age-related 
cognitive decline and IGF-1, contrary to IGF-2 which was 
associated with both normal age-related and pathological 
cognitive decline[149]. Furthermore, offspring from 
families with a parental history of  AD appear to have 
higher serum IGF-1 levels in middle age when compared 
with appropriate controls, leading to a conclusion that 
elevated peripheral IGF-1 associates with an increased 
risk of  AD[150]. 

Despite the existence of  opposing views in the field, 
epidemiological evidence postulates a strong association 
between type Ⅱ diabetes (T2D) and AD occurrence as 
AD patients exhibit higher rates of  diabetes and impaired 
fasting glucose levels[151-153], and although the molecular 
mechanisms underlying this association are not yet clearly 
understood[82] impaired insulin signalling, amyloid-genesis 
and inflammation appear to be heavily implicated in the 
aetiology of  diabetes, AD and consequently cerebral 
ageing[154].

IIS SYSTEM AND INFLAMMATION
Inflammation is seen a key player in obesity, insulin 
resistance and diabetes, as based on elevated levels of  pro-
inflammatory cytokines in the circulation and pancreatic 
islets of  T2D patients[155]. Similarly, elevated levels of  
pro-inflammatory proteins and chemokines have been 
detected in post-mortem AD patients’ brains, e.g.,[156]. This 
was further substantiated by findings from studies on 
AD mouse models suggestive of  inflammation as key to 
early and/or intermediate stages of  the neurodegenerative 
condition[157]. There is consensus that cerebrovascular 
inflammation and neuroinflammation, along with 
an increased accumulation of  toxic aβ, all result in a 
disruption of  synaptic activity, which according to some 
theories is a trigger in AD pathophysiology, e.g.,[158].

Studies investigating IGF-1 and IGF-2 peptides’ 
expression in human microglia in vivo and in vitro suggest 
that both peptides are expressed in microglia, conferring 
vital protection against cytokine-mediated neuronal death. 
It should be mentioned here that microglial activation 
is associated with increased activities of  inflammatory 
cytokines, e.g., interleukin (IL)-1β and IL-6 which itself  
can disrupt neural signalling, e.g.,[159].

Chronic inflammation increases the production 
of  inflammatory cytokines in the long-term, which 
contributes to the suppression of  neurotrophic factors, 
including the IGFs, and leads to progressive tissue damage, 
thus accelerating the onset of  clinical manifestations of  
AD and metabolic disorders including T2D[160,161], and may 
contribute to neurodegeneration[162].

CONCLUSION
Research on brain ageing suggests that age itself  is a major 
risk factor for the development of  age-related cognitive 

decline, Alzheimer’s and cerebrovascular diseases. The 
increased life expectancy observed in most societies has 
further necessitated the need to understand the processes 
that underlie successful vs pathological brain ageing such 
that early interventions through lifestyle modifications 
or pharmacological agents may assist in delaying if  not 
reversing the detrimental effects on brain pathology.

Within this context, this review examined the role 
of  an evolutionarily conserved signalling pathway, IIS, 
with the focus on insulin and insulin-like growth factor 
IGF-1 and their roles in cerebral ageing. Translation 
of  data derived from animal models allow for linking 
the IIS pathway with its supporting longevity, protein 
homeostasis, learning and memory, and delayed ageing. 
The above is also consistent with the human studies, 
which find evidence of  reduced messaging for insulin, 
IGF-1 and their receptors in post mortem brains of  
patients with AD. While the link between insulin as such 
and brain ageing has been recognised, the IIS pathway in 
its entirety deserves more attention; our still incomplete 
understanding of  the roles and mechanisms of  this 
pathway calls for more translational research to explore 
novel treatments for cognitive decline through delaying 
cerebral ageing. 

Some conflicting literature opinions and incomplete 
understanding of  the roles and mechanisms of  the IIS 
system demand novel approaches and directions in this 
field. The IIS system clearly lends itself  to the ongoing 
search for modifiable physiological factors which may 
delay the onset of  cognitive decline and cerebral ageing. 
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