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Abstract
Hepatosplanchnic circulation receives almost half 
of cardiac output and is essential to physiologic 
homeostasis. Liver cirrhosis is estimated to affect up 
to 1% of populations worldwide, including 1.5% to 
3.3% of intensive care unit patients. Cirrhosis leads 
to hepatosplanchnic circulatory abnormalities and 
end-organ damage. Sepsis and cirrhosis result in 
similar circulatory changes and resultant multi-organ 
dysfunction. This review provides an overview of the 

hepatosplanchnic circulation in the healthy state and 
in cirrhosis, examines the signaling pathways that may 
play a role in the physiology of cirrhosis, discusses the 
physiology common to cirrhosis and sepsis, and reviews 
important issues in management. 
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Core tip: The prevalence of cirrhosis in critically ill 
patients is increasing worldwide. Cirrhosis leads to 
hepatosplanchnic circulatory abnormalities and end-
organ damage, which resemble the clinical syndrome of 
patients with sepsis. The pathophysiology of cirrhosis 
can both predispose patients to, and exacerbate, 
sepsis. An understanding of this pathophysiology may 
assist critical care providers in the development and 
application of treatment modalities. 
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INTRODUCTION
The prevalence of severe liver disease among intensive 
care unit (ICU) patients ranges from 1.35%-3.3%[1-3] 
and is increasing worldwide. A study of 174 ICUs in the 
United Kingdom reported that the number of patients 
admitted to ICU with alcoholic liver disease tripled from 
1995 to 2005[1]. The ICU mortality for patients with 
liver disease is high, ranging from 36.6% to 73.6%[4-8], 
and the one-year mortality for ICU survivors is as high 
as 68%[6]. 

Liver disease exacerbates coexisting diseases. 
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Hepatic cirrhosis is associated with an increased risk 
for ICU-associated pneumonia, respiratory failure, 
and death[9,10]. In both the United Kingdom and the 
United States the proportion of sepsis in the setting of 
liver disease is increasing and patients with cirrhosis 
are more likely to die from sepsis[11,12]. The systemic 
effects of cirrhosis also increase the morbidity and 
mortality of surgery[13,14].

Given the high morbidity of severe liver disease 
in critical care, an appreciation of hepatosplanchnic 
physiology may help guide intensivists, particularly 
those who care for patients with sepsis. This review 
provides an overview of the hepatic and splanchnic 
circulatory anatomy, examines the factors that 
contribute to the circulatory changes of cirrhosis, 
reviews the pathophysiology common to cirrhosis and 
sepsis, and discusses clinical management in the ICU.

Epidemiology of cirrhosis in the ICU
Cirrhosis may be the result of infectious, autoimmune, 
vascular, hereditary, or toxic factors. In Europe and the 
United States it is primarily caused by either alcohol 
use or infection with hepatitis C virus, while in Asia 
and sub-Saharan Africa the most common cause 
is infection with hepatitis B virus[15]. Observational 
studies in the United Kingdom and France showed that 
the most common cause of cirrhosis among patients 
admitted to ICUs was alcoholic hepatitis (43%-78%) 
followed by viral hepatitis (10%-19%)[4,6,16]. 

Although the precise global prevalence is unknown 

because compensated disease can remain undetected 
for many years, up to 1% of populations worldwide 
may have histological cirrhosis[17]. In the United States 
the prevalence of cirrhosis is estimated at 0.15%[18]. 

Hepatic circulation
The liver receives 20% of cardiac output[19]. Total liver 
blood flow is approximately 100 mL/min per 100 g 
liver tissue, or 800-1200 mL/min[20]. The liver has a 
dual blood supply with blood from the hepatic artery 
and portal vein, which together with the bile duct form 
the hepatic triad. The hepatic artery is a branch of the 
celiac artery, with a pressure similar to aortic pressure 
(mean 60-80 mmHg). It carries well-oxygenated 
blood to the liver, providing approximately 30% of 
hepatic blood flow. The valveless portal vein is a low-
pressure/low-resistance system that provides partially 
deoxygenated blood from the intestinal bed to the liver, 
accounting for 70% of hepatic blood supply. Normal 
mean portal pressures range from 5-10 mmHg[21] 
(Figure 1). Oxygen delivery to hepatocytes does not 
depend on the proportion of portal versus arterial 
blood flow[22]. Animal models have demonstrated that 
normal hepatocyte oxygen supply is approximately 16 
mL/min per 100 g liver tissue with an extraction ratio 
of 35%[22]. Oxygen extraction changes with variations 
in demand; as oxygen supply decreases the extraction 
can approach 100%[22].

The unique interaction between the hepatic artery 
and portal vein flow, termed the hepatic artery buffer 
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Figure 1  Anatomy of the splanchnic, portal and hepatic venous circulation. (With permission: Gelman S, Mushlin PS. Catecholamine-induced changes in the 
splanchnic circulation affecting systemic hemodynamics. Anesthesiology 2004, 100: 434-439).



response (HABR)[23], is essential to maintenance of 
hepatic blood flow. The hepatic artery flow increases 
in response to decreases in portal venous flow[24,25]. 
This relationship is unilateral; portal vein flow does 
not change in response to alterations of hepatic artery 
flow. The HABR is capable of offsetting a 25%-60% 
decrease in portal vein flow[26,27]. 

The HABR is the primary regulator of hepatic artery 
flow. Flow does not change in response to metabolic 
activity or blood oxygen content[28] and myogenic 
autoregulation plays a relatively small role[29]. The 
physiologic purpose of HABR is unclear, as hepatic 
oxygen supply exceeds demand and oxygen extraction 
can increase in response to metabolic changes or 
decreased blood supply. Further, the underlying 
physiology remains unclear. The role of nitric oxide 
synthase (NOS) has been investigated but animal 
models have not shown a major contribution to the 
HABR[30]. The HABR is likely regulated by washout of 
adenosine, mediated through P1-purinoceptors[26,31,32]. 

Splanchnic circulation 
The splanchnic vasculature, comprised of gastric, 
small intestinal, colonic, pancreatic, and splenic 
vessels arranged in parallel, receives approximately 
25% of cardiac output at rest[33] and more during 
digestion. The major supplying arteries are the celiac, 
superior and inferior mesenteric. The capillary beds 
of this system form extensive anastamoses. Human 
studies of splanchnic blood flow are scarce because 
direct measurement of splanchnic vasculature is 
almost impossible without surgery. Most studies rely 
on indirect measurements and extrapolation from 
experimental models.

Splanchnic blood flow is regulated by a combination 
of local and systemic factors including paracrine and 
endocrine signaling, vasoactive substances, and 
sympathetic innervation. Autonomic regulation is a 
weak contributor, although it is enhanced in the fed 
state compared to the starved state[34]. In a low-flow 
state, splanchnic blood flow decreases in order to 
maintain vital cardiac and cerebral blood supply[35]. 
This response occurs even after small-volume he
morrhage[36]. The splanchnic organs do not produce 
lactate early in low-flow states because oxygenation 
is preserved due to high baseline supply[35]. However, 
recovery of splanchnic flow is protracted even after 
adequate volume resuscitation[37]. 

The hepatosplanchnic vasculature’s active response 
to systemic bloodflow contributes to its role as a 
blood volume reservoir, and its anatomic position just 
distal to the inferior vena cava make it a significant 
component of cardiovascular preload. As a capacitance 
vessel, it has been shown to pool 2.5% or mobilize 
up to 5%-6% of total blood volume in response to 
physiologic challenges[38-40]. 

Circulatory changes of cirrhosis 
Liver cirrhosis is the end-stage of chronic liver disease 

characterized by replacement of hepatic tissue with 
fibrosis and regenerative nodules (structurally abnormal 
areas of attempted tissue repair), and impaired 
liver function. The altered hepatic architecture in 
cirrhosis leads to circulatory abnormalities, namely 
portal hypertension, splanchnic vasodilation, and 
hyperdynamic circulation. 

Portal hypertension
Portal hypertension is a pathognomic feature of 
liver cirrhosis, defined as an increase in the hepatic 
venous pressure gradient (an indirect reflection of the 
portocaval gradient in patients with cirrhosis) of more 
than 10 mmHg[41]. Portal hypertension can also be 
diagnosed ultrasonographically: hepatic vein pulsatility 
flattens from triphasic to monophasic secondary to 
histologic reductions in hepatic vein compliance. This 
is accompanied by a decrease in portal vein flow and 
an increase in the hepatic artery pulsatility index, due 
to the HABR[42]. Portal hypertension can be diagnosed 
clinically by the presence of esophageal varices, 
patency of the umbilical vein, and the presence of 
portocaval shunts (e.g., splenorenal shunts). 

The development of portal hypertension is multi
factorial. Hepatic fibrosis plays a role by disrupting 
hepatocyte architecture and increasing resistance to 
bloodflow. Hepatic sinusoidal pressure is negatively 
correlated with the percentage of un-fibrosed portal 
spaces, or “residual portal spaces”[43]. Hepatic fibrosis 
is largely caused by hepatic stellate cell injury. When 
injured by toxins (e.g., alcohol, hepatitis virus, infection, 
acetaminophen) or exposed to platelet activating factor 
(PAF), hepatic stellate cells transform into myofibroblast-
like cells, releasing collagen Ⅰ and Ⅲ[44]. Other cell types 
implicated in fibrosis include myofibroblasts derived 
from portal vessels[45] and hematopoietic stem cells[46]. 
Fibrosis is also stimulated by inflammatory cytokines 
and vasoactive molecules, including chemotactic 
protein 1, transforming growth factor-β1, nitric oxide, 
endothelin-1 and angiotensin Ⅱ[47,48]. These mediators 
are increased in liver disease and can further upregulate 
their own release, thereby accelerating an inflammatory 
cycle. 

Circulatory system changes may also contribute 
to the development of portal hypertension. Direct 
intraoperative measurements have demonstrated that, 
in cirrhosis, a basal HABR is continuously activated 
but the acute HABR is impaired[49]. While recent data 
suggests that angiotensin Ⅱ is a primary mediator 
of the progression from hepatic inflammation to 
fibrosis[48], the entire renin-angiotensin-aldosterone 
system (RAAS) may also play a role[50]. 

Splanchnic vasodilation 
Splanchnic arteriolar vasodilation with hyperdynamic 
flow has been demonstrated in liver disease by 
observation of shortened albumin transit times 
through the splanchnic circulation[51], increased 
splenic and mesenteric bloodflow[52], and decreased 

2584 March 7, 2015|Volume 21|Issue 9|WJG|www.wjgnet.com

Prin M et al . Splanchnic circulation in cirrhosis



2585 March 7, 2015|Volume 21|Issue 9|WJG|www.wjgnet.com

macrophages to produce PAF[73], particularly in the 
setting of cirrhosis[74]. There are least four endothelin 
receptors (ETA, ETB1, ETB2, ETC). Endothelin-1 mediated 
vasoconstriction occurs through the activation of the 
ETA receptor, and the ETB1 receptor stimulates the 
release of nitric oxide[75]. Endothelin-1 also stimulates 
catecholamine release[76,77] which may contribute to 
the elevated levels seen in cirrhosis. In vitro models 
have shown a direct relationship between ETA and 
ETB expression and portal pressure[78]. It is unclear if 
endothelin is increased in cirrhosis as a consequence 
or pathogenic response to splanchnic dilation.

Vasopressin is a neurohypophyseal hormone 
that regulates plasma osmolality and increases 
vascular resistance in vasodilated states. Cirrhotic 
patients are vasopressin deficient, but respond to 
exogenous vasopressin (and its analogues terlipressin 
or ornipressin) with increased blood pressure[79]. It is 
unclear if vasopressin deficiency precedes or causes 
splanchnic dilation.

Hyperdynamic circulation
The hyperdynamic circulation associated with cirrhosis 
is characterized by increased heart rate, increased 
cardiac output, and systemic hypotension[80]. The 
etiology of hyperdynamic circulation is unclear but may 
include (1) desensitization of myocardial β-receptors 
in the setting of an activated sympathetic nervous 
system[81,82]; (2) splanchnic steal that decreases 
the effective circulating volume; (3) anemia[83]; 
and (4) cardiodepressants such as nitric oxide[84,85] 
and endogenous cannibinoids[86]. Hyperdynamic 
circulation is exacerbated by systemic and intrahepatic 
angiogenesis, which is mediated by hypoxia, PAF, 
vascular endothelial growth factor, and transforming 
growth factor[87]. Portal hypertension-mediated engor
gement of collateral veins (i.e., esophageal varices, 
hemorrhoids, caput medusae) also increases the 
circulatory surface area.

Observational echocardiographic studies of cirrhotic 
patients have noted normal baseline cardiac contractility 
but attenuated stress-response, with disturbances of 
left diastolic function[88,89]. This dysfunction is termed 
cirrhotic cardiomyopathy. Cirrhotic cardiomyopathy 
is distinct from alcoholic cardiomyopathy which is 
characterized by reduced left ventricular contractility 
at baseline[90]. Overt heart failure is rare in cirrhotic 
cardiomyopathy. The splanchnic sequestration of blood 
volume reduces the cardiac workload and disguises 
the symptoms of heart failure; these can be unmasked 
by physical or pharmacologic stress (e.g., surgery). 
The pathophysiology of cirrhotic cardiomyopathy is not 
completely understood but endocannibinoid-receptor 
antagonists have improved cardiac contractility in 
animal models, suggesting a role for endocannibinoids 
in the pathogenesis of cardiac dysfunction[91]. 

measured superior mesenteric artery impedance[53]. 
Decreased mesenteric artery impedance begins early 
in liver disease and worsens with the progression to 
cirrhosis[53]. Splanchnic vasodilation is multifactorial and 
not completely understood. The pathogenesis is partly 
explained by increased resistance to portal outflow, but 
activation of other mediators including the RAAS, nitric 
oxide, PAF, vasopressin, and inflammatory molecules 
likely plays a role.

Early in liver disease, total blood volume increases 
but is largely sequestered in the splanchnic vascular 
bed, leading to “splanchnic steal” and systemic 
hypovolemia[54-56]. Animal models have shown that this 
occurs before the development of portal hypertension 
or splanchnic vasodilation[57]. Splanchnic steal is likely 
mediated by the RAAS[58], a hormone cascade which 
leads to volume loading through modulation of renal 
sodium retention. Recently an alternate RAAS pathway, 
angiotensin-converting-enzyme-2 (ACE-2) has also 
been investigated for its role in liver disease. ACE-2 
levels are upregulated in cirrhosis, and expression is 
directly related to hepatocyte hypoxia[59,60]. The ACE-2 
system acts downstream at the Mas receptor, which 
vasodilates splanchnic vessels. In cirrhosis, blockade of 
this receptor reduces portal pressure[60].

Nitric oxide (NO) is an endothelial-derived relaxing 
factor. Cirrhotic patients not only have increased 
expression of NO, but also show increased sensitivity 
to NO-mediated vasodilation[61]. NO causes vasodilation 
by stimulating soluble guanylate cyclase to generate 
cyclic guanosine monophosphate in vascular smooth 
muscle[62]. It also decreases vascular response to 
vasoconstrictors[63]. In animal models this vasoplegia is 
completely reversed by removal of the endothelium[64]. 
The constitutively expressed endothelial isoform of 
NOS has been implicated as a major contributor to 
splanchnic vascular overexpression of NO and its 
activity precedes splanchnic vasodilatation in rats[65]. 
Neuronal NOS is also upregulated in experimental 
models of cirrhosis[66,67]. In addition to nitric oxide, 
other vasodilators suggested to play a role in splanchnic 
dilation include carbon monoxide[68], plasma calcitonin 
gene related peptide[69], eicosanoids, bile salts, 
adenosine and substance P[41]. 

PAF is a pro-inflammatory molecule that affects 
platelet aggregation, vascular permeability, and vascular 
tone. Hepatic concentrations of PAF are increased in 
cirrhosis[70]. The effect of PAF on vasculature tone is 
regional, and exogenous PAF increases portal pressure 
but decreases systemic arterial blood pressure[71]. 
PAF is also neoangiogenic, and may play a role in the 
development of the arteriovenous and portocaval 
shunts common to cirrhosis. 

Endothelin is a paracrine vasoconstrictor, released 
by vascular endothelial cells, which is increased 
in cirrhosis[72]. It stimulates hepatic sinusoidal 
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Cirrhosis and sepsis 
The circulatory changes in cirrhosis lead to a clinical 
syndrome that resembles sepsis (Table 1). Both sepsis 
and cirrhosis feature a vasodilated state despite high 
levels of endogenous catecholamines, a compensatory 
hyperdynamic state with the possibility of cardiac 
dysfunction, and splanchnic hyperemia with systemic 
hypovolemia. Both cirrhotic and septic patients 
frequently present with signs of systemic inflammatory 
response syndrome including elevated heart rate, 
elevated respiratory rate, and blunted temperature 
regulation. 

Bacterial infections are a common complication of 
cirrhosis[92,93], and are the most common independent 
risk factor for death[94,95]. A multicenter prospective 
cohort study found the highest case fatality rate 
was from infections with Clostridium dificile (40%), 
respiratory infections (37.5%), and spontaneous 
bacteremia (37%)[94]. In a large epidemiologic survey, 
Foreman et al[9] noted that cirrhosis more than doubles 
both the risk of being hospitalized with sepsis and the 
risk of death from sepsis. 

The increased risk for sepsis may be attributed 

to bacteremia, particularly from intestinal bacterial 
translocation. Bacteremia increases the risk of 
spontaneous bacterial peritonitis which is found in up to 
15% of hospitalized cirrhotic patients[96] and 3%-3.5% 
of asymptomatic outpatients with cirrhosis[97,98], and it 
increases the risk of variceal hemorrhage[99]. Bacterial 
translocation occurs in the setting of splanchnic 
vasodilation (which increases intestinal mucosal 
permeability)[100], bacterial overgrowth secondary to 
delayed intestinal transit time[101,102] and structural 
damage of intestinal epithelial cells[103] (Figure 2). iNOS 
knockout mice are resistant to bacterial translocation, 
suggesting a link between NO and bacterial trans
location[104] (Figure 3). Bacterial translocation also 
stimulates the release of inflammatory mediators, and 
severity of liver disease correlates with levels of these 
mediators, including interleukin (IL)-1β, IL-2R, IL-6, IL-8 
and IL-10[105,106]. 

The risk for developing sepsis may also be 
secondary to impaired cellular immunity. In a single-
center study, decreased levels of tumor necrosis 
factor (TNF-α) and human leukocyte antigen-DR 
were found in patients with acute liver failure and 

Table 1  Common features and difference of hepatic cirrhosis and sepsis

Cirrhosis Sepsis1

Prevalence in ICU population[1-3,124-126] 1%-3% 11%-33%
ICU mortality[4-8,127,128] 37%-74% 18%-61%
Clinical presentation[129] Jaundice

Enlarged collateral veins (i.e., esophageal varices, 
hemorrhoids, caput medusae) 
SIRS like presentation possible

Systemic inflammatory response syndrome (SIRS): 
Temp < 36 ℃/> 38 ℃

Heart rate > 90 
RR > 20 or PaCO2 < 32

WBC < 4 k or > 12 k
and infection

Laboratory findings[129,130] ↓ Polymorphonuclear cells
Thrombocytopenia
Hypoalbuminemia
Increased PT, INR
Hyperlactatemia
Hypoglycemia

↓ or ↑ polymorphonuclear cells 
Thrombocytopenia

Increased PT, aPTT, INR
Decreased fibrinogen 

Bacteremia[94,131-134] 32%-41% 27%-31%
Sources of infection[6,128,135,136]

   Respiratory   9%-61% 60%-64%
   Abdominal   8%-30% 15%-19%
   Bloodstream 17%-72% 13%-15%
   Renal/urinary   7%-11% 11%-14%
   Skin         7.1%           7%
   Catheter-related     4%-5%           5%
Microbiology[6,128,135,136]

   Gram-negative 52.7%-64% 49%-63%
   Gram-positive    30%-56% 40%-47%
   Fungi    10%-25% 10%-19%
Mediators associated with disease 
progression[47,61,71,72,105,106,137] 

Endothelin, angiotensin, PAF, NO, TNF-a and 
HLA-DR, bacterial DNA, IL-1β, IL-2R, IL-6, IL-8 

and IL-10

Endothelin, NO, LPS, LTA, lipoproteins, sTNF, 
bacterial DNA, peptidoglycans, IL-6, IL-8, IL-4, 

IL-10
Endotoxin levels[138,139] ↑↑ ↑↑
Protein C activity[140,141] ↓↓ Predicts outcome
Mesenteric lymph nodes[95,142] + + 

1Sepsis includes patients without cirrhosis classified as having sepsis, severe sepsis, and septic shock. SIRS: Systemic inflammatory response syndrome; PT: 
Prothrombin time; aPTT: Activated partial thromboplastin time; INR: International normalized ratio; PAF: Platelet activating factor; NO: Nitric oxide; TNF: 
Tumor necrosis factor; HLA: Human leukocyte antigen; IL: Interleukin; LPS: Lipopolysaccharide; LTA: Lipoteichoic acid; sTNF: Soluble tumor necrosis 
factor.
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patients with sepsis, in comparison to patients with 
stable cirrhosis[106]. Changes in cellular immunity may 
alter the secretion of inflammatory mediators and the 
vulnerability to infection.

Liver disease increases the susceptibility for 
sepsis, but sepsis also aggravates liver disease. In 
animal models of sepsis, portal vein and overall 
hepatic flow decreases and angiotensin Ⅱ has 
been implicated[107,108]. Up to one third of patients 
with late septic shock have depleted vasopressin 
levels[109] resulting in hypotension, vasoplegia, and 
catecholamine resistance. These circulatory changes 
may affect hepatic blood flow and function. In septic 
patients with no previous history of liver disease, 
postmortem histopathologic hepatic changes were 
found, including portal inflammation, centrilobular 
necrosis, and hepatocellular apoptosis[110]. Human 
studies of hepatosplanchnic flow in sepsis remain 
scarce and it is important to note that animal studies 
do not always include volume-resuscitated arms, 
which would increase their clinical relevance.

Critical care considerations 
Patients with cirrhosis may be admitted to the ICU 
with decompensated disease, after surgery, or with 
infection and sepsis. Although the Child-Turcotte-
Pugh score[111,112] has traditionally been used for risk 
assessment, the Model for End Stage Liver Disease 
(MELD) score[113] is now commonly used to assess liver 
disease and rank-list patients for liver transplantation. 
While the MELD score is an excellent tool for predicting 
short-term mortality amongst cirrhotic patients 
awaiting liver transplantation[114], data regarding 
its predictive power for mortality in hospitalized 
cirrhotic patients has been inconsistent. Teh et al[115] 

retrospectively demonstrated increased mortality in 
postoperative cirrhotic patients with MELD greater 
than 20, while Oberkofler et al[116] found no mortality 
prediction in a cohort of liver transplant recipients. 

ICU scoring systems (e.g., Sequential Organ Failure 
Assessment (SOFA), Simplified Acute Physiology Score 
Ⅱ) have demonstrated superior mortality prediction in 
cirrhotic patients in the ICU[117,118]. Recently, two new 
scores have been developed for mortality prediction: 
a modified SOFA score for Chronic Liver Failure (CLIF-
SOFA) and the Royal Free Hospital Score[119,120]. Single 
biomarkers have also shown prognostic value. In 
developing the CLIF-SOFA score, Moreau et al[119] 
demonstrated that leukocyte count was independently 
associated with acute-on-chronic liver failure and 
associated 28-d mortality. Furthermore, in an effort to 
identify patients at risk for imminent decompensation, 
López-Velázquez et al[121] found that bilirubin 
concentration alone was an independent predictor of 
7-d mortality.

Beyond scoring systems, multiorgan dysfunction 
in cirrhosis has been correlated with hospital 
mortality: a prospective study of ICU patients with 
cirrhosis found that coma and acute renal failure 
were independent predictors of mortality[8]. While 
organ dysfunction is reflected in scoring systems, 
these findings highlight the importance of assessing 
patients for clinical markers of dysfunction other than 
those included in scores. Recently a novel method of 
transient elastography has been used to measure liver 
stiffness, a metric associated with hepatic fibrosis. 
In a prospective study of ICU patients, liver stiffness 
was highest in patients with decompensated cirrhosis 
(compared to other critical illnesses or comorbidities), 
and was associated with increased ICU- and post-
discharge-mortality[122]. Transient elastography may 
serve as a useful triage tool for critically ill patients 
with liver disease.  

As noted, the circulatory abnormalities of cirrhosis 
predispose patients to multiorgan dysfunction including 
heart failure, renal dysfunction, and hemodynamic 
instability. Monitoring to predict or prevent this 
morbidity has not been identified, nor has the optimal 

Portal hypertension
Endotoxemia

bacterial translocation

Intestinal permeability

Liver dysfunction

Figure 2  Damage to the intestinal barrier leads to bacterial translocation 
and endotoxaemia and thus to impairment of liver function and increase 
in portal pressure, possibly causing further damage to the gut: a vicious 
circle. (With permission: Thalheimer U, Triantos CK, Samonakis DN, Patch D, 
Burroughs AK. Infection, coagulation, and variceal bleeding in cirrhosis. Gut 
2005; 54: 556-563).
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Figure 3  Endotoxaemia, bacterial translocation, and bacterial infection 
may be different expressions of the same process at different degrees of 
severity, and are associated with increasingly severe complications. NO: 
Nitric oxide; TNF-α: Tumor necrosis factor-α. (With permission: Thalheimer U, 
Triantos CK, Samonakis DN, Patch D, Burroughs AK. Infection, coagulation, 
and variceal bleeding in cirrhosis. Gut 2005; 54: 556-563).

Prin M et al . Splanchnic circulation in cirrhosis



2588 March 7, 2015|Volume 21|Issue 9|WJG|www.wjgnet.com

treatment regimen. Notably, a prospective study 
of ICU patients with cirrhosis demonstrated 100% 
mortality for those with pulmonary artery catheters, 
84% mortality for patients requiring mechanical 
ventilation, and 89% mortality for those requiring renal 
replacement therapy[8]. These mortality rates likely 
reflect a high severity of disease rather than adverse 
effects of the monitors themselves. Studies are needed 
to determine the most appropriate monitoring and 
interventions for ICU patients with cirrhosis.

Given the morbidity and mortality attributable to 
sepsis for cirrhotic patients in the ICU, intensivists 
should maintain a high index of suspicion for infection. 
Early prophylactic antibiotics for patients with cirrhosis 
may reduce the incidence of bacterial translocation, 
sepsis, and variceal hemorrhage[123]. Studies focused 
on immune system function and inflammatory 
mediators may clarify the pathophysiology common 
to cirrhosis and sepsis, and suggest novel therapeutic 
interventions.

CONCLUSION
The hepatosplanchnic circulatory system is the largest 
blood reservoir in the human body and is essential to 
multiple aspects of homeostasis, including nutrient 
absorption, endocrine function, and toxin metabolism. 
Pathologic splanchnic vasodilation in cirrhosis leads to 
hyperdynamic circulation and blunting of the HABR. 
These alterations contribute to systemic disease and 
perioperative mortality, and resemble pathophysiologic 
changes seen in sepsis. Cirrhosis increases the risk 
of developing sepsis, and sepsis may exacerbate 
cirrhosis. A better comprehension of circulatory 
changes in cirrhosis may lead to therapeutic modalities 
that improve intensive care management.
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