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Abstract
AIM: To determine available information on an inde
pendent peptide transporter 1 (PepT1) and its potential 
relevance to treatment, this evaluation was completed.

METHODS: Fully published English language literature 
articles sourced through PubMed related to protein 
digestion and absorption, specifically human peptide 
and amino acid transport, were accessed and reviewed. 
Papers from 1970 to the present, with particular emphasis 
on the past decade, were examined. In addition, 
abstracted information translated to English in PubMed 
was also included. Finally, studies and reviews relevant to 
nutrient or drug uptake, particularly in human intestine 

were included for evaluation. This work represents a 
summary of all of these studies with particular reference 
to peptide transporter mediated assimilation of nutrients 
and pharmacologically active medications.

RESULTS: Assimilation of dietary protein in humans 
involves gastric and pancreatic enzyme hydrolysis to 
luminal oligopeptides and free amino acids. During 
the ensuing intestinal phase, these hydrolytic products 
are transported into the epithelial cell and, eventually, 
the portal vein. A critical component of this process is 
the uptake of intact di-peptides and tri-peptides by an 
independent PepT1. A number of “peptide-mimetic” 
pharmaceutical agents may also be transported through 
this carrier, important for uptake of different antibiotics, 
antiviral agents and angiotensin-converting enzyme 
inhibitors. In addition, specific peptide products of 
intestinal bacteria may also be transported by PepT1, 
with initiation and persistence of an immune response 
including increased cytokine production and associated 
intestinal inflammatory changes. Interestingly, these 
inflammatory changes may also be attenuated with orally-
administered anti-inflammatory tripeptides administered 
as site-specific nanoparticles and taken up by this PepT1 
transport protein. 

CONCLUSION: Further evaluation of the role of this 
transporter in treatment of intestinal disorders, including 
inflammatory bowel disease is needed.
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Core tip: Intestinal uptake of intact di-peptides and tri-
peptides occurs by an independent epithelial transport 
process for protein assimilation. This carrier may also 
be used to absorb specific drugs and bacterial peptide 
products that may result in inflammatory disease. 
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INTRODUCTION
Protein digestion and absorption in humans depends 
on initial enzymatic hydrolysis in the stomach and pro­
ximal small intestine. The hydrolytic products include 
oligopeptides and amino acids that ultimately undergo 
small intestinal uptake into the portal vein. A critical 
step in this overall uptake process involves a transmembrane 
protein [peptide transporter 1 (PepT1)], located in 
the brush border that can transport nutrient peptides 
into the enterocyte[1-3]. In addition, studies have also 
demonstrated that PepT1 is able to transport some 
pharmaceutical agents along with bacterial by-products 
from the intestinal lumen that may trigger an ongoing 
and persistent inflammatory intestinal mucosal response.

MATERIALS AND METHODS 
Fully published English language literature articles 
sourced through PubMed related to protein digestion 
and absorption, specifically human peptide and 
amino acid transport, were accessed and reviewed. 
Papers from 1970 to the present, with particular 
emphasis on the past decade, were examined. In 
addition, abstracted information translated to English 
in PubMed was also included. Finally, studies and 
reviews relevant to nutrient or drug uptake, particularly 
in human intestine were included for evaluation. This 
work represents a summary of all of these studies with 
particular reference to peptide transporter mediated 
assimilation of nutrients and pharmacologically active 
medications.

RESULTS
Assimilation of dietary protein in humans involves 
gastric and pancreatic enzyme hydrolysis to luminal 
oligopeptides and free amino acids. During the ensuing 
intestinal phase, these hydrolytic products are 
transported into the epithelial cell and, eventually, the 
portal vein. A critical component of this process is the 
uptake of intact di-peptides and tri-peptides by an 
independent PepT1. A number of “peptide-mimetic” 
pharmaceutical agents may also be transported 
through this carrier, important for uptake of different 
antibiotics, antiviral agents and angiotensin-converting 
enzyme inhibitors. In addition, specific peptide 
products of intestinal bacteria may also be transported 
by PepT1, with initiation and persistence of an immune 
response including increased cytokine production 
and associated intestinal inflammatory changes. 
Interestingly, these inflammatory changes may also be 

attenuated with orally-administered anti-inflammatory 
tripeptides administered as site-specific nanoparticles 
and taken up by this PepT1 transport protein.

DISCUSSION
Gastric and pancreatic phases
Critical nutrients derived from digested protein are 
absorbed in the intestinal tract, specifically amino 
acids and peptides, during health as well as during 
disease. Normally, gastric and pancreatic enzymes 
initiate hydrolysis of dietary and other luminal proteins 
from endogenous sources. As a result of this initial 
hydrolytic phase, an array of free amino acids and 
different oligopeptides of variable length appear in the 
small intestinal lumen. Information on human protein 
digestion and absorption has been previously reviewed 
and updated[1-3].

Intestinal phase 
Protein digestion studied in human volunteers using 
long intestinal tubes showed that infused bovine serum 
albumin appeared to be completely hydrolyzed before 
the distal ileum[4]. A host of brush border microvillus 
membrane transport proteins are located in the intestinal 
epithelial cell resulting in the uptake of specific sub­
strates into the enterocyte. These transporters are 
specialized membrane proteins that can recognize, 
bind and translocate a specific substrate or multiple 
different substrates across the brush border membrane 
into the epithelial cell. In addition, other transport 
proteins involved in this process have been detected 
and characterized to a limited extent on the basolateral 
membrane. Most free amino acids that present on 
the luminal or apical surface of the epithelial cell are 
transported by both brush border and basolateral 
membranes into the portal venous blood. A number 
of brush border membrane amino acid carriers, linked 
to different ions, have been defined that result in 
transport of basic, neutral and anionic amino acids. 
For oligopeptides, however, different cellular transport 
routes are evident. 

Peptide uptake
For both di-peptides and tri-peptides, a separate 
membrane protein, PepT1, is present that appears to 
have very broad substrate capacity and, theoretically, 
it is believed, could transport all possible di-peptides 
and tri-peptides into the epithelial cell[5]. For 20 
different amino acids, a total of 400 di-peptides and 
8000 tri-peptides have been enumerated. For those 
peptides that consist of 4 or more amino acids, brush 
border enzymes must first hydrolyze each of these to 
free amino acids, di-peptides and tri-peptides. Then, 
substrate uptake into the epithelial cell follows. Once 
inside the epithelial cell, cytoplasmic enzymes hydrolyze 
these di-peptides and tri-peptides further into free 
amino acids for transport into the portal venous blood. 
Most oligopeptidases are aminopeptidases, acting to 
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remove an amino acid residue from the amino-terminus 
of the peptide. Peptide chain length determines the 
location of hydrolysis with longer peptides hydrolyzed 
at the brush border and di-peptides and tri-peptides 
mainly in the cytoplasm[6]. A number of other brush 
border and cytoplasmic peptidases are present. In 
particular, proline-containing oligopeptides are poorly 
hydrolyzed by most peptidases, yet are very important 
for assimilation of many normal dietary proteins with 
a high proline content (e.g., gliadin). Proline-specific 
dipeptidases are also located in the brush border 
membrane and cytoplasmic portion of the cell and these 
serve to hydrolyze most proline-containing peptides 
(e.g., dipeptidyl aminopeptidase Ⅳ)[7]. Particularly 
important was the early observation that amino acids 
infused into human intestine in peptide form are more 
readily absorbed than if infused into the intestinal lumen 
as free amino acids[8]. Some peptides, particularly in 
other non-human mammalian species, are incompletely 
hydrolyzed and may be transported out of enterocytes 
into the circulation, likely by a novel peptide transporter 
located in the baso-lateral membrane of the epithelial 
cell[9,10]. Other routes of uptake into the enterocyte have 
been hypothesized to exist[5]. For example, so-called 
“cell penetrating peptides” may carry peptides into 
the cell, either by direct penetration through the apical 
membrane or associated with endocytosis. Finally, 
enhanced permeability of the tight junctions between 
epithelial cells may result in increased paracellular 
uptake.

PepT1
The peptide transporters are part of a proton-coupled 
oligopeptide transporter superfamily, or peptide trans­
porter family[10,11]. PepT1 (or SLC15) has several 
transmembrane domains and acts as a cotransporter 
with hydrogen ions (H+ion)[12]. After uptake of di-peptides 
or tri-peptides along with H+ion into the enterocyte, H+ion 
is then removed from the cell through the sodium-
hydrogen (Na+ion/H+ion) exchanger on the brush border 
membrane in exchange for Na+ion. The Na+ion is then 
moved out of the cell by a Na+ion/K+ion ATPase pump 
on the basolateral membrane where 3 Na+ion are 
transported out of the cell and 2 K+ion are transported 
into the cell causing the epithelial intra-cellular electro­
chemical gradient to normalize. 

Tissue and cellular distribution studies have also 
located this carrier protein in intestinal and renal brush 
border membranes along with lysosomal membranes. 
Interestingly, most PepT1 activity is located in the 
proximal small intestine (specifically, duodenum and 
jejunum), but some activity exists in other intestinal 
sites, including the ileum and colon. As little dietary 
protein actually normally reaches the distal portions 
of the intestine, some investigators have suggested 
that endogenous proteins might serve as proteolytic 
substrates for intestinal microflora, particularly in 
the colon. In addition, a transcription factor, CDX2, 

that appears to play important roles in proliferation, 
differentiation and maturation of epithelial cells, has 
been shown to specifically regulate this enterocyte 
brush border membrane transporter, PepT1[13].  

The transporter has been cloned from several 
mammalian species, including humans, with a size 
estimated to be about 708 amino acids[14]. Of particular 
clinical importance, PepT1 may accept other non-
nutrients for uptake, including pharmaceutical agents 
that have similar structural characteristics and 
actually mimic peptide substrates. These “peptide-
mimetic” therapeutic agents include some antibiotics 
like cephalosporins and penicillins, some anti-viral 
agents (e.g., acyclovir, ganciclovir) and inhibitors of 
angiotensin-converting enzyme. Each may undergo 
uptake across the intestinal epithelial cell through the 
PepT1 transporter[15-17]. Important molecular insights 
into proton coupled peptide transporters have resulted 
from evaluation of crystal structures of bacterial 
transporters combined with some biochemical studies of 
transport, including use of genetically modified animals 
have recently been reviewed[18,19].   

Peptide transporter regulation
A number of factors may serve to regulate PepT1, 
including altered dietary intake[20,21]. For example, 
increased expression of PepT1 may be caused by an 
increased quantity of dietary protein, as well as the 
specific amino acid composition of the dietary protein. 
Behavioral changes may also affect expression of the 
transporter. In particular, a diurnal rhythm in PepT1 
expression may occur due to feeding behavior, increasing 
at night in some mammalian species that tend to be 
nocturnal feeders[22,23], a pattern abolished by fasting 
or imposed daytime feeding[24]. Increased expression 
of PepT1 during food deprivation or starvation may also 
occur, particularly with mucosal changes and reduced 
intestinal surface area associated with long-term 
parenteral feeding. Developmental factors also play a 
role in alteration of transporter expression, especially at 
the time following birth with suckling of a high protein 
milk diet and then the post-weaning phase with a shift 
from milk to solid food[25].

Peptide transporter in disease
PepT1 expression persists with intestinal disease, 
even with severe mucosal damage. Normally, PepT1 is 
expressed to only a limited extent in the colon compared 
to the small intestine[26]. In the short bowel syndrome, 
PepT1 expression is increased in the colon, possibly 
serving to conserve amino acids[27]. Similar changes 
have been reported in the colon of patients with 
inflammatory bowel diseases[28]. As a result of PepT1 
up-regulation associated with the inflammatory 
process, dipeptides and tripeptides from bacteria 
in the colonic lumen may be transported by PepT1 
into epithelial cells. Some of these bacterial peptides 
include N-formylmethionyl-leucyl-phenylalanine, a 
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pharmaceutical agents may also be transported through this carrier, important 
for uptake of different antibiotics, antiviral agents and angiotensin-converting 
enzyme inhibitors. In addition, specific peptide products of intestinal bacteria 
may also be transported by PepT1, with initiation and persistence of an immune 
response including increased cytokine production and associated intestinal 
inflammatory changes. Interestingly, these inflammatory changes may also be 
attenuated with orally-administered anti-inflammatory tri-peptides administered 
as site-specific nanoparticles and taken up by this PepT1 transport protein.
Innovations and breakthroughs
Further evaluation of the role of this transmembrane transport protein, PepT1, 
in transport of pharmaceutical agents is needed. This may provide novel 
approaches to treatment, particularly for intestinal disorders. In particular, use 
of agents that employ this peptide transporter to permit access into intestinal 
cells may have a special role in inflammatory bowel disease treatment. 
Applications
From a practical perspective, use of agents that particularly localize to the 
intestinal mucosal cells might have an important role in localization of treatment 
regimens rather than use of current systemically-applied pharmaceutical or 
biological agents.
Terminology
The PepT1 transporter is a special transmembrane intestinal transport 
protein located in the microvillus membrane. Its role as a nutrient transporter, 
specifically for di-peptides and tri-peptides is well established. However, in 
recent years, its role in uptake of several pharmaceutical agents has become 
apparent, including its potential relevance for management of inflammatory 
intestinal disorders. 
Peer-review
Conceptually, the peer reviewers have raised the important linkage of this 
peptide transporter and the modern “metagenomic revolution” that should 
further our understanding of intestinal, particularly inflammatory, disorders.  
Added studies are also needed that explore these intestinal uptake processes 
and role of this PepT1 transporter in the developing human intestinal tract, 
particularly in fetal and neonatal settings.
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