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Abstract
Mucosal adaptation is an essential process in gut ho-
meostasis. The intestinal mucosa adapts to a range of 
pathological conditions including starvation, short-gut 
syndrome, obesity, and bariatric surgery. Broadly, these 
adaptive functions can be grouped into proliferation 
and differentiation. These are influenced by diverse 
interactions with hormonal, immune, dietary, nervous, 
and mechanical stimuli. It seems likely that clinical out-
comes can be improved by manipulating the physiol-
ogy of adaptation. This review will summarize current 
understanding of the basic science surrounding adapta-
tion, delineate the wide range of potential targets for 
therapeutic intervention, and discuss how these might 
be incorporated into an overall treatment plan. Deeper 
insight into the physiologic basis of adaptation will 
identify further targets for intervention to improve clini-
cal outcomes.
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INTRODUCTION
The small intestinal mucosa is adaptable but essential for 
survival. It has diverse biological roles including nutrient 
absorption, barrier function, injury response, and im-
munologic reservoir (Figure 1). Congenital or acquired 
diseases or medical and surgical interventions can alter 
intestinal mucosal mass and/or function with profound 
consequences to which the gut must adapt. The clinical 
challenges to gut adaptation include massive bowel resec-
tion, intestinal atresia, fasting, prolonged ileus, bariatric 
surgery, and total parenteral nutrition (TPN). The biol-
ogy that regulates such adaptation represents a critical 
new frontier for gastroenterology and gastrointestinal 
(GI) surgery if  outcomes are to be improved. This re-
view discusses intestinal mucosal atrophy, hypertrophy, 
and barrier function, and how they may be influenced. 
We will begin this review by considering what is known 
about intestinal mucosal development, as this offers use-
ful parallels to the intestinal mucosal response to pathol-
ogy. Next, we will explore the biologic phenomena of  
mucosal atrophy and hypertrophy in more depth. Third, 
we will discuss the clinical syndrome of  intestinal failure 
in more depth, and consider how our understanding of  
the biology of  intestinal adaptation may guide therapeu-
tic interventions. Finally we will discuss new frontiers in 
mucosal adaptation, focusing particularly on intersections 
with GI surgery, including both pro-absorptive proce-
dures like intestinal lengthening procedures and anti-
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absorptive procedures like bariatric surgery, and on some 
lessons that may be learned in the future from recent sci-
entific advances. Many potential approaches are available 
for facilitating absorption and mucosal homeostasis, but 
their optimal application may require a better understand-
ing of  the biology that regulates these processes.

NATURAL MUCOSAL DEVELOPMENT 
AND GROWTH
Morphogenesis and cell proliferation
Enterocytes are columnar cells with microvilli at their api-
ces that form the intestinal brush border. The microvilli 
are covered by a glycocalyx coat that acts as a physical 
barrier and contains brush border enzymes. Enterocytes 
are joined by tight junctions to form a relatively imper-
meable membrane[1,2].

The small intestinal mucosa is folded to increase its 
surface area[1,2]. Submucosal folding forms plicae circularis 
that each include many crypt-villus units. Villi are muco-
sal surface modifications, finger-like extensions of  lin-
ing epithelium formed by projections of  lamina propria 
covered with epithelium. Each villus extends into lamina 
propria as an intestinal gland or crypt of  Lieberkuhn[1,2]. 
Crypts have stem cells, paneth cells and enteroendocrine 
cells. Stem cells proliferate at the crypt base.

Mucosal growth and development are regulated by 
hormonal, nervous, immune, dietary and mechanical 
signals[3]. The small bowel mucosa ultimately develops 
in stereotypic crypt-villus units containing absorptive, 
secretory, progenitor and stem cells[4]. Intestinal stem 
cells maintained throughout life in the crypts give rise to 
progenitor cells that undergo a few cell divisions as they 
move out of  the crypts toward the villi before final dif-
ferentiation[5,6]. Small bowel ontogeny proceeds in three 
successive phases: morphogenesis and proliferation, cell 
differentiation, and functional maturation[7].

The field is beginning to identify molecular mecha-
nisms that influence intestinal development[8]. For in-
stance, homeobox (hox) genes are early regulators of  
proximal to distal organ-specific patterning[9]. Mucosal 
remodeling and villus formation precedes in a cranial-
caudal direction[10]. A primitive endodermal gut tube sur-
rounded by mesenchyme forms early in gestation[3]. Later, 
the endoderm transitions to stratified epithelium which 
ultimately matures to columnar epithelium starting at the 
apices of  the developing villi. The intervillus epithelium 
differentiates last, and mitotic activity is restricted to in-
tervillus regions and developing crypts by 16 wk[8,11]. This 
correlates with Wnt/β-catenin pathway activity that ap-
pears necessary for stem cell maintenance in fetuses and 
adults[12]. Fibroblast growth factor receptor (FGFR)-3 
signaling regulates crypt epithelial stem cell expansion 
and crypt morphogenesis via β-catenin/Tcf-4 pathways[6].

Intestinal villus formation begins at embryonic week 
8 in humans[8]. Influenced by Hedgehog and platelet-
derived growth factor (PDGF) signals, mesenchymal cells 
condense under the epithelium and then grow toward 

the central lumen to form characteristic fingerlike inward 
projections-the villi[4,8,13,14]. With increasing age, villus 
epithelial turn-over, crypt depth, and villus height each 
increase[8,15].

Differentiation
Proliferation occurs in the crypts but differentiation oc-
curs as cells migrate up the villus. Thus, differentiated 
cells populate the villi[6]. Each villus contains epithelium 
from the adjacent crypts[16]. Crypt formation occurs by 
differential growth of  mesenchyme and the crypt-villus 
junction moves upwards towards lumen[17]. Crypt-base 
columnar cells are multipotent cells that differentiate into 
absorptive enterocytes and secretory mucous secreting 
goblet cells, entero-endocrine cells and paneth cells[18]. 
Notch pathways decide differentiation into absorptive vs 
secretory cells[19-21]. Crypt stem cells become monoclonal 
during development[22]. Critical functional differentia-
tion into distinct apical, lateral and basal cells occurs. 
Apical cells express digestive enzymes and transporters, 
while lateral cells chiefly express transporters, and basal 
cells carry receptors for interaction with basement mem-
brane[8]. The brush border complex formed by villin and 
myosin I appears at the apical surface of  mature entero-
cytes[23,24].

Intestinal growth and differentiation are regulated 
by an intrinsic program; extrinsic mediators play sec-
ondary roles[25,26]. N-myc is an important regulator of  
proliferation[27]. Growth factors like epidermal growth 
factor (EGF), transforming growth factor (TGF)-α, and 
TGF-β, insulin-like growth factor (IGF)-2, hepatocyte 
growth factor (HGF), glucagon like peptide (GLP)-2 
and their receptors have been detected in fetal human 
intestine and likely influence intestinal development[28]. 
Luminal and circulating factors are not necessary for 
fetal intestinal differentiation but may affect growth and 
maturation[26,29-31]. Three known triggers are weaning, thy-
roxine and glucocorticoids[3]. Regarding intrinsic regula-
tion, it is thought that endoderm has an intrinsic program 
of  regionalization of  small intestine and it recruits other 
cells to complete the formation[32,33]. Hepatic nuclear fac-
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tor (HNF)-3β, Cdx-1, Cdx-2, GATA transcription factor 
family and transcription factor CCAAT/enhancer-bind-
ing protein α are suggested to have important roles in in-
testinal development[8]. Specific regulatory regions of  the 
fatty acid-binding protein (FABP) genes are responsible 
for appropriate temporal, crypt/villus and proximal/dis-
tal expression of  genes[34]. Reciprocal permissive and in-
structive epithelial-mesenchymal interactions and signals 
direct organ-specific differentiation[35]. Endoderm can 
recruit mesenchymal elements[33]. Sonic hedgehog, bmp, 
Fkh6, H1x homeobox gene, tyrosine kinase receptors 
and fibroblast growth factors mediate intestinal growth 
by epithelial-mesenchymal interaction and direct regional 
patterning of  the gut[35-40]. The extracellular matrix influ-
ences epithelial differentiation by receptor-mediated sig-
naling[41] and by acting as reservoir for growth factors[42]. 
The matrix also drives the enterocyte response to growth 
factors and physical forces[43,44]. Matrix has a permissive 
effect on epithelial cells and is required for maximal dif-
ferentiation[45]. 

Functional development
Brush border membrane enzymes and brush border 
transport proteins represent the most important func-
tional differentiation of  small intestine. These enzymes 
provide digestive and absorptive functionality for car-
bohydrates, proteins, fats, minerals and vitamins. Brush 
border enzymes appear by week eight. Different disac-
charidases, alkaline phosphatases, peptidases, and en-
terokinases mature at different rates in development[46-48]. 
Lactase-phlorizin hydrolase (LPH) cleaves lactose into 
glucose and galactose. Studies of  LPH development sug-
gest a proximal to distal gradient in functional maturation 
of  the intestinal epithelium[46]. Although the human fetus 
expresses some enzymes and peptidases at levels similar 
to adults, many of  these enzymes have different forms in 
the fetus[49-52]. Various transporters for sugar and amino 
acids appear during gestation in parallel with crypt and 
villus development[53,54]. Fetal intestine also starts devel-
oping the capacity to secrete lipoprotein fractions, chylo-
microns, very-low-density lipoproteins and high-density 
lipoproteins[55,56]. Absorptive function is partially detect-
able at 26 wk[57].

The intestinal barrier exhibits immune and non-im
mune protective mechanisms. Although various mucosal 
defense systems appear early in gestation, immune func-
tion remains immature at birth[58-64]. Tight junctions be-
tween enterocytes and goblet cell mucins form a physical 
barrier by 12 wk[65].

In summary, the basal differentiation program in en
coded in fetal endoderm and mediates spatial and cranio-
caudal differentiation of  intestinal epithelium via a com-
plex intercellular communication network. Epithelial-
mesenchymal interaction yields a specialized regional 
environment that influences gene expression and regulates 
the growth and differentiation of  the intestinal mucosa 
into crypt-villus units.

MUCOSAL ATROPHY
Mucosal atrophy is characterized by diminished intesti-
nal function as well as morphological changes including 
decreased villous height, crypt depth, surface area, and 
epithelial cell numbers[66]. Atrophy is most common in 
the absence of  enteral nutrition, and is a known long-
term consequence of  starvation, an effect likely reduced 
with age[67]. Animal studies suggest incremental relief  of  
atrophy with progressively greater intake, and that mor-
phologic atrophy is most evident at the villous tip[68].

Atrophy occurs even if  adequate parenteral nutrition 
is provided. Animal studies first demonstrated the physi-
ology of  atrophy during TPN[69], with atrophy of  the 
proximal small intestinal mucosa with decreased intesti-
nal weight and nitrogen content[69]. Absence of  luminal 
contents due to either starvation or TPN similarly causes 
mucosal hypoplasia in rodents, mediated at least in part 
by an altered tumor necrosis factor (TNF)-α/EGF sig-
naling pathway[70]. Additionally, rats receiving TPN have 
fewer Peyer’s patches and less total T cells than rats fed 
enterally, demonstrating an attenuating effect on the gut-
associated lymphoid tissue[71]. Animal studies also demon-
strate that TPN evokes enterocyte apoptosis via intraepi-
thelial lymphocyte derived interferon-gamma, resulting in 
a loss of  the overall barrier function[72]. Barrier function 
is further altered by TPN stimulation of  ion secretion, an 
effect upon intestinal permeability further altered by in-
terferon-gamma[72]. The effect of  TPN on immunologic 
function (including that in the gut) may have profound 
clinical consequences. For instance, infectious complica-
tions were doubled in pancreaticoduodenectomy patients 
receiving TPN rather than jejunal feeding[73].

That the effects of  fasting and TPN on the gut 
mucosa are not just from the TPN has been shown in 
animals. For instance, when a segment of  rat jejunum is 
defunctionalized by a blind end Roux-en-y anastomosis 
and the rat is allowed to eat freely, the defunctionalized 
mucosa undergoes morphologic and biochemical atrophy, 
while the remainder of  the gut mucosa remains intact[74]. 
This suggests that direct interaction with luminal chyme 
is required to sustain the mucosa. Indeed, the effects of  
the absence of  enteral feeding may reflect not only the 
loss of  luminal nutrients themselves, but also aberrations 
in the physical forces to which the mucosa is subjected 
during gut interactions with luminal chyme, either directly 
by peristaltic compression against the non-compressible 
liquid contents of  the bowel or indirectly by villus motil-
ity[75-77]. It has long been known that luminal contents and 
distension influence postprandial intestinal motor activ-
ity[78] that leads to deformation of  the bowel mucosa. In 
addition, villus motility is markedly stimulated by luminal 
amino acids and fatty acids (but not glucose)[79].

At the cellular level, atrophic loss of  mucosal mass 
may reflect both decreased proliferation and increased 
apoptosis. EGF family cytokines are potent mitogens, 
but there are others, including GLP-2, while TNF-α and 
others mediate apoptosis. We found mostly decreased 
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ences[92,93]. Within enterocytes, intestinal resection invokes 
novel signals such as proline-rich protein 2 during wound 
healing[94], glutathione reductase during intestinal apopto-
sis[95], and basic Kruppel-like factor to activate the IGF-1 
promoter[96].

The anatomic location of  the bowel mucosa has an 
important relationship with adaptive biology. The small 
and large intestinal mucosa demonstrate many differences 
in histology, cell phenotype, and transport proteins that 
reflect their differences in normal function. In addition, 
the small and large intestinal mucosa respond differently 
to stimuli of  malignant transformation. For example, the 
APC (Min) mouse is a dominant mutation that leads to 
multiple intestinal neoplasia[97]. Crypt cells express a bal-
ance of  proliferation and differentiation, a process with 
aberrant regulation in these mutants. In mouse models 
with this mutation, small bowel neoplasms are much 
more common than colonic neoplasms, in contrast to the 
human condition in which colonic neoplasms are more 
common[98]. The reason for this regional difference is as 
yet unknown but further investigation may offer impor-
tant clues into differentiated intestinal epithelial biology. 

Finally, the role of  nutrition in adaptation is not yet 
fully explained. Glutamine has been most studied[99] (Table 
1). There may also be differences between the signals that 
stimulate the increase in mucosal mass and the signals that 
augment mucosal functionality during adaptation. Adapta-
tion includes proliferation, augmentation of  function and 
changes in intestinal epithelial phenotype (Figure 2). 

Proliferation
Proliferation is one mechanism of  adaptation. Prolifera-
tion increases villus height, crypt depth, surface area, and 
intestinal wet weight[100]. The length of  intestine resected 
correlates with the subsequent change in villus height in 
humans[101]. The site of  resection also influences adapta-
tion[102], with a notable increase in jejunal hyperplasia, and 
to some degree ileal hypertrophy. Animal studies also 
suggest increased intestinal stem cells after resection; 
these may contribute to increased crypt formation[103]. 
Growth factors and nutritional supplementation stimulate 
intestinal epithelial proliferation and turnover. 

The intestine also adapts from a functional stand-
point. Proliferation increases overall function just by 

proliferation in defunctionalized rat intestine, perhaps be-
cause the incidence of  apoptosis is too low to be readily 
measurable[74], except in chemotherapy-induced mucosal 
injury[80]. Fasting leads to jejunal mucosal atrophy with 
enhanced apoptosis in a mechanism related to increased 
nitric oxide[81]. Feng et al[70] recently explored the interac-
tion between growth factor-stimulated proliferation and 
cytokine-driven apoptosis in a murine TPN model. BCl-2 
expression acts on mitochondria to prevent cytochrome 
C release, and caspase 3 directed cell death. Bax in con-
trast, acts on mitochondria to cause caspase 3 release, 
leading to programmed cell death. The ratio between 
these determines overall cell survival[82,83]. Enterocytic 
differentiation is also impaired in mucosal atrophy, with 
decreased expression of  brush border enzymes and 
other differentiation markers[74,84,85], but the mechanism 
by which this occurs is much less well understood. While 
translational science strives to find better mitogens to 
promote enterocytic proliferation, how to promote en-
terocytic differentiation in patients or animals with muco-
sal atrophy may represent an important question for basic 
science in the future.

MUCOSAL ADAPTATION
Mucosal adaptation in many ways opposes atrophy, 
although that there may be subtle but important differ-
ences in the stimuli that prevent atrophy and maintain 
normal mucosal mass and those that induce adaptation. 
Teleologically, adaptation may be the attempt of  the 
intestine to compensate for intestinal inadequacy. It has 
been best described after massive small bowel resec-
tion[86,87]. However, exogenously induced adaptation may 
reverse chemotherapeutically induced atrophy. For ex-
ample, profound intestinal injury by methotrexate may be 
mitigated by supplementation with L-arginine or n-3 fatty 
acids[88,89].

Acute absence of  nutrition alone cannot trigger full 
adaptation or fasting would cause intestinal hypertrophy 
rather than atrophy. The stimuli contributing to adapta-
tion are diverse. Many cytokines facilitate adaptation, 
including PDGF-α, HGF, and interleukin (IL)-11[86,90,91]. 
As detailed later, hormones such as IGF-1 and growth 
hormone (GH) appear to exert strong adaptive influ-

Table 1  Reported regulators of intestinal mucosal adaptation

Cytokines Intracellular transducers of physical force effects Nutrients

Stimuli Ref. Stimuli Ref. Stimuli Ref.

PDGF-α Sukhotnik et al[86] FAK-Tyr 925 Chaturvedi et al[225] L-arginine Koppelmann et al[88]

HGF Katz et al Integrin-linked Kinase Yuan et al[243] Glutamine Lardy et al[252]

Transforming GF-β Sukhotnik et al[151] RhoA Chaturvedi et al[244] Ornithine Lardy et al[252]

IGF-1 Lund et al[92] ROCK Chaturvedi et al[244] Butyrate Bartholome et al[161]

VEGF Parvadia et al mDial Chaturvedi et al[244] Short-chain fructooligosaccharide Barnes et al[163]

EGF Warner et al[90] - - - -
GLP-2 Bortvedt et al[93] - - - -

PDGF: Platelet derived growth factor; HGF: Hepatocyte growth factor; EGF: Epidermal growth factor; IGF-1: Insulin-like growth factor-1; GH: Growth hormone; 
GLP-2: Glucagon-like peptide-2; ROCK: Rho-associated kinases; mDia: The formin homology protein mDia1; VEGF: Vascular endothelial growth factor. 
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creating more cells that can contribute to amino acid, 
glucose, and electrolyte uptake. Increased absorption via 
the H+/peptide co-transporter 1 after intestinal resec-
tion occurs because of  hyperplasia and not upregulation 
of  transporters[104]. Improved glucose uptake after mas-
sive small bowel resection is similarly driven by cellular 
proliferation rather than massive transporter upregula-
tion[105]. In addition, we can see increase in Na+/glucose 
transporter (Sglt1), Na+/H+ exchangers (NHE2/3), and 
some brush border membrane enzymes[106].

Augmentation of intestinal mucosal function 
Although most work has focused on enterocytes, adap-
tation also increases non-enterocytic mucosal epithelial 
cells. Goblet and paneth cells exhibit an early and sus-
tained increase after bowel resection; these secretory 
cells may contribute to juxtacrine signaling that further 
stimulates intestinal adaptation[107]. Finally, the role of  
angiogenesis has been relatively understudied in mucosal 
adaptation. Bowel resection in rats induces angiogenesis 
within the adapting intestinal villi[108]. This may facilitate 
absorption, protect mucosal integrity and barrier func-
tion, and increase nutrients and oxygen delivery to the 
more rapidly proliferating mucosa.

Cellular differentiation
To maintain and control epithelial cell homeostasis, 
proliferation and differentiation are transcriptionally 
regulated in a sequential and spatially defined manner[109]. 
The signals that control intestinal development also influ-
ence intestinal homeostasis. These include the canonical 
Wnt/β-catenin pathway[110], Notch[111], Hedgehog[112], the 
TGF-β family including bone morphometric proteins 
(BMP)[113], PI-3K[114] and Forkhead Box (FOX) and ho-
meobox (HOX) genes[115]. These pathways use various 
transcription factors including HNF1α/β, HNF4α, 

GATA factors, ETS, and Cdx1/2, alone or in combina-
tion[116-120]. For instance, the combination of  HNF1α, 
GATA4-6 and Cdx2 regulates sucrase isomaltase tran-
scription[116] but in differentiated mouse epithelium; 
HNF4α regulates expression of  genes upregulated during 
differentiation such as alkaline phosphatase[121]. GATA 
transcription factors are required for crypt cell prolif-
eration and absorptive enterocyte gene expression[119]. 
HNF3β is expressed in small intestine and has critical 
role in foregut and midgut formation[122-124]. Finally, Cdx2, 
which is restricted to adult small intestine and colon[125], is 
necessary for maintenance of  intestinal identity and dif-
ferentiation of  the small intestine epithelium (Table 2)[126]. 

A recent landmark study demonstrated the guidance 
of  human pluripotent stem cells into intestinal tissue[127]. 
This study demonstrated that the activity of  Wnt3a and 
FGF4 was adequate for hindgut patterning, specification 
and morphogenesis, with NEUROG3 transcription fac-
tor required for enteroendocrine cell development in vitro. 
Similarly, embryonic stem cells have been committed 
to intestine lineage in medium treated with Wnt3A, in a 
process that interestingly enough simulated the genes as-
sociated with distal gut-associated mesoderm (Foxf2, hlx, 
Hoxd8)[128]. This process was successful in that it allowed 
engraftment of  these cells into murine colonic mucosa.

CLINICAL SETTINGS IN WHICH 
MUCOSAL ADAPTATION IS IMPORTANT
Atrophy in starvation, fasting or TPN
Intestinal failure occurs when the absorptive surface 
area falls below a critical level, either because of  loss of  
bowel length or mucosal atrophy with severely flattened 
epithelium. Intestinal failure presents with diarrhea, de-
hydration, malabsorption, progressive malnutrition, and 
electrolyte disturbance[129].

TPN administration in starving animals or humans 
does not abrogate the atrophy observed in starvation 
alone. In addition, TPN may itself  impair mucosal bar-
rier function[130] beyond the effects of  starvation on the 

Proliferation Differentiation

D

C

B

A

Figure 2  Initial enterocytic stem cell proliferation is supplemented by 
differentiation to produce the four main intestinal epithelial phenotypes: 
absorptive enterocytes (A), enteroendocrine cells (B), mucin-secreting 
cells (C), and Paneth cells (D). 

Table 2  Cellular factors involved in enterocyte differentiation 
during adaptation

Cellular factors

Wnt/β-catenin
Notch
Hedgehog
PI3K
HNF1 α/β
GATA 
ETS
Cdx2
FGF4
NEUROG3
Schlafen-3
Math1

PI3K: Phosphoinositide 3-​kinase; FGF: Fibroblast growth factor; HNF: 
Hepatocyte nuclear factor.
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epithelium. In adult trauma patients, this loss of  barrier 
function may significantly increase sepsis[131]. Trauma 
patients receiving enteral nutrition have fewer pneu-
monias, intra-abdominal abscesses, and line sepsis and 
less infections overall compared to patients on TPN[131]. 
TPN-associated loss of  epithelial barrier function may 
be related to altered mucosal lymphoid populations with 
increased interferon gamma and interleukin-10 expres-
sion, as well as loss of  tight junctions and adherens junc-
tion proteins[72]. Prolonged starvation, as in chronic TPN, 
pancreatitis, or other medical conditions, can lead to 
intestinal failure via mucosal atrophy. Indeed, poor enteral 
intake can cause pancreatitis and intestinal mucosal atro-
phy[132] which in turn increases enterocyte apoptosis and 
alters glutamine and arginine transport[133,134]. Atrophy in 
turn creates a propensity for bacterial translocation and 
sepsis[135]. 

Short bowel syndrome
Massive small bowel resection can severely test the capac-
ity of  the remaining small bowel mucosa to adapt, result-
ing in short bowel syndrome, a devastating nutritional 
problem. The most common causes of  short bowel 
syndrome in children include necrotizing enterocolitis, 
intestinal atresia, and midgut volvulus[136,137]. In adults, 
common causes include inflammatory bowel disease, 
mesenteric ischemia, small bowel obstruction, and radia-
tion enteritis. The loss of  mucosal area associated with 
short bowel syndrome causes substantial malabsorption, 
with attendant diarrhea, abdominal pain, and weight loss, 
electrolyte imbalance, and chronic malnutrition. Mucosal 
adaptation in such patients is a slow and gradual process 
that may require up to 1-2 years to reach maximum. The 
simplest and earliest phases of  adaptation involve en-
terocytic proliferation and villous hyperplasia, which may 
manifest as a reduction in diarrhea and attendant fluid 
and electrolyte loss. Nutritional adaptation that addresses 
nutrient absorption and digestion sufficiently to permit 
weaning from TPN is slower and requires greater com-
plexity. 

Current medical management of  intestinal failure: 
Intestinal failure is initially managed similarly whether 
due to atrophy or short gut. TPN supplies nutritional 
requirements while ways to transition to enteral feeding 
are sought. This is usually successful in mucosal atrophy, 
although it may be prolonged and difficult in some pa-
tients. Such transitions are less frequently successful in 
the short gut patient. The primary predictor of  survival 
in adults with short gut is small bowel length. Eighty-
three percent of  adults with less than 50 cm of  intestine 
require lifelong TPN; Twenty-five percent will die within 
5 years[138]. In pediatric short gut patients, cholestasis 
and age-adjusted small bowel length less than 10% of  
expected length predict mortality; small bowel length 
and an intact ileocecal valve predict successful weaning 
from TPN[139]. The ileocecal valve slows transit through 
the small bowel, facilitating absorption and digestion. In 

addition, the colon may both absorb water and salvage 
energy in such patients, perhaps mitigating the need for 
parenteral nutrition if  the small bowel is marginally ad-
equate[140].

Whether as a bridge to enteral nutrition or as per-
manent maintenance, TPN is lifesaving in patients who 
cannot be nourished enterally. However, TPN has sig-
nificant complications. TPN itself  results in mucosal 
atrophy, impaired mucosal immunity with a proclivity 
towards intestinal infections, and dysfunction of  the gut-
associated lymphoid tissue[141]. It is unclear to what extent 
these phenomena reflect the lack of  enteral feeding and 
to what extent they are consequences of  the infusion of  
large quantities of  hyperosmotic or hyperlipidemic nu-
trients into the circulation. TPN is also associated with 
chronic systemic problems including mechanical compli-
cations related to the catheter, recurrent infections, liver 
failure, and death. Randomized, controlled trials have 
demonstrated the benefits of  enteral feeding over par-
enteral feeding for diverse conditions[142] with reductions 
in infection, intraabdominal abscess, anastomotic leak, 
hospital stay, and all other complications. Many enteral 
nutrients are essential for intestinal adaptation in both 
adult and pediatric populations[143,144]. In both acutely ill 
hospitalized patients and chronic short gut patients at 
home, some enteral nutrition is therefore desirable even 
if  parenteral supplementation is required. Such enteral 
intake both maintains the mucosal barrier and supports 
the patient psychologically. The central theme of  modern 
management is to provide the gut with at least some nu-
trients and consequent hormonal stimuli even if  paren-
teral supplementation is required. 

“Intestinal rehabilitation” for short bowel syndrome 
uses chronic home TPN as a bridge to maintain patients 
while seeking to adapt them to eventual enteral nutrition. 
Intestinal rehabilitation is a multidisciplinary approach 
aimed at achieving enteral autonomy, and keeping pa-
tients alive while still requiring TPN. Teams of  GI and 
transplant surgeons, gastroenterologists, dieticians, phar-
macists, nurses, and social workers collaborate to offer 
improved nutritional care and dietary manipulation, fa-
cilitated discussion about needs for surgical interventions, 
and formal monitoring and manipulation of  essential 
medications including mucosal mitogens. This approach 
may improve survival compared to historical controls, 
although this could also reflect improved treatments over 
time[145].

NUTRITION AND INTESTINAL 
ADAPTATION
In rats with short bowel syndrome, early enteral feeding 
affects not only cellular proliferation, but also overall gut 
weight and length[146]. Even marginal nutrition at the api-
cal or luminal surfaces may improve human intestinal epi-
thelial cell growth, motility, and absorption capacity[147]. 
Overall, enteral feeding induces significant intestinal 
adaptation. Further interest lies in trying to modify the 
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nature of  the diet.

Dietary fats
Dietary lipids encourage intestinal adaptation through 
several mechanisms. At the simplest level, early feeding 
of  a fatty diet increases lipid absorption in the remnant 
intestine[148]. Specific nutrients may be important. For 
instance, arachidonic acid stimulates intestinal adapta-
tion more than linoleic acid[149]. Rats on high-fat diet 
demonstrate increased fat absorptive capacity compared 
to rats eating standard chow[150]. However there is some 
controversy about the role of  enteral fatty acids. Other 
evidence does not demonstrate improved adaptation 
with enteral omega-3 fatty acids, but only with paren-
teral supplementation among rats[151]. Dietary fish oil 
appears to increase fat absorption without a concurrent 
increase in bile acid synthesis in rats following ileocecal 
resection[152].

Dietary fat intake might also modify gene expression 
and transport by altering the transcription and activa-
tion of  signal proteins related to protein synthesis of  
nutrient transporters, including activation of  peroxisome 
proliferator-activated receptors, HNF-4, and nuclear fac-
tor k-B[153]. Dietary fat may activate intracellular signals to 
alter mRNA expression. 

Diet also affects gut membrane permeability. Mem-
brane fluidity is altered dramatically by the intrinsic fatty 
acid saturation and also by cholesterol and ganglioside/
glycosphingolipid content, and can inhibit degradation of  
gut occluding tight junctions in rats[154]. Specialized parts 
of  the membrane such as lipid rafts and caveolae affect 
signaling and protein intake in a manner altered by fatty 
acid intake[155].

Intestinal lipid transfer is relatively quickly influenced 
by diet. Rats fed a high-fat diet for only seven days under-
go intestinal adaptation, reflected in dramatic increases in 
the expression of  sterol regulatory element-binding pro-
tein (SREBP)-1c. The activation of  SREBP-1 increases 
its synthesis and translocation to the nucleus in intestinal 
cells, altering lipid metabolism[156]. Further work is needed 
to identify the signals that influence short term and long 
term adaptation. This may have even morphological im-
plications. Palmitic acid feeding increases rat bowel and 
mucosal weight after massive small bowel resection after 
only 14 d[157].

Short-chain fatty acids
Interestingly, the colon also contributes to intestinal 
adaptation in malabsorption. In carbohydrate salvage, 
short-chain fatty acids (SCFA) produced by fermentation 
by anaerobic colonic bacteria are absorbed by the colonic 
mucosa, resulting in net energy absorption. These SCFA 
consist primarily of  acetate, propionate, and butyrate. 
Luminal butyrate is the primary energy source of  the 
colonocyte, and SCFA are trophic for the colonic muco-
sa. Adding SCFA to TPN prevents small bowel mucosal 
atrophy in fasting animals[158,159]. Adding butyrate to TPN 
also improves lymphocyte numbers, small intestinal IgA 
levels, and small intestinal surface area[159]. This demon-

strates that intravenous nutrition can interact with luminal 
enterocytes, facilitating their function and altering their 
structure to promote digestion. Indeed, parenteral butyr-
ate alone increases plasma GLP-2 and directly promotes 
GLUT2 activity[160,161]. Parenteral butyrate facilitates small 
bowel adaptation in piglets after massive resection, im-
proving small intestinal morphology and reducing apop-
tosis[161]. Butyrate also must act independently of  GLUT2 
since it promotes enterocytic differentiation in isolated 
cells in culture[162]. Prebiotic supplementation with short-
chain fructooligosaccharides may replace butyrate and 
also promote jejunal adaptation[163].

Dietary carbohydrates
Traditionally attention has been placed on optimizing 
carbohydrate/fat/protein ratios to maximize nutrient de-
livery in short gut syndrome. However, enteral nutrients 
also influence intestinal adaptation. For example, dietary 
carbohydrate induces adaptation for monosaccharide 
absorption by increasing the quantity of  carbohydrate 
transporters[164]. Dietary fiber may also be helpful in 
modulating nutrient uptake. In TPN-nourished rats with 
85% small bowel resection, supplementation with dietary 
fiber along with GH synergistically enhanced intestinal 
adaptation[165].

Dietary proteins
Increased enteral protein content leads to adaptive amino 
acid uptake in the small bowel[166]. Glutamine is a con-
ditionally essential amino acid is also the enterocyte’s 
primary energy source[141]. Providing parenterally fed rats 
with glutamine reduces mucosal atrophy[167], but this ef-
fect is less robust in enterally fed animals[165]. Glutamine 
supplementation also enhances mucosal immunity in 
rats with gut-derived sepsis[168]. However, animal results 
have been mixed[169]. Some studies showed glutamine to 
be effective only when combined with GH as discussed 
below[165]. One small uncontrolled study did report that 
glutamine promoted weaning from TPN, with increased 
growth and improved nutritional factors[170]. Human 
studies for the most part have not demonstrated much 
efficacy[171,172]. A recent prospective, randomized human 
study suggests that human GH may aid adaptation with 
or without glutamine, but only the patients who received 
GH along with glutamine maintained the reduction in 
parenteral nutrition at 3 mo[173]. This points to the need 
for multimodality therapy, and suggests caution with re-
gard to glutamine supplementation alone.

Retinoic acid
Adaptation may be facilitated by retinoic acid. Retinoic 
acid administered intravenously has significant trophic ef-
fects in rats undergoing small bowel resection, apparently 
by inhibiting apoptosis and stimulating crypt cell prolifer-
ation[174]. Retinoic acid may act via changes in extracellular 
matrix[175], by acting on hedgehog signaling, by increasing 
Reg1 and Pap1 activity, and by acting on retinoid and 
peroxisome proliferators-activated receptor pathways. 
Convincing human data are lacking.
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Polyamines
Polyamines can be either synthesized from ornithine or 
ingested. Diet supplementation with ornithine α-keto
glutarate increases intestinal adaptation after intestinal 
resection[176,177]. In one recent study, piglets with 80% 
small bowel resection were randomized to either paren-
teral nutrition alone or parenteral nutrition plus enteral 
feedings beginning on postoperative day 3[146]. The pig-
lets with additional enteral feedings exhibited greater 
weight per length of  intestine, as well as increased cel-
lular proliferation index and ornithine decarboxylase 
activity. Response to enteral plus parenteral feedings was 
greater than the group with sham operation as well. In 
summary, with only a few days of  enteral feeding piglets 
could undergo exceptional adaptation to extensive surgi-
cal resection as marked by polyamine synthesis and crypt 
cell proliferation. However, it remains unclear to what 
extent the polyamine synthesis was the critical mecha-
nism for the trophic effects of  enteral feedings in this 
study, and, as for retinoic acid, data suggesting that poly-
amine supplementation alone will be effective in humans 
are lacking at this time.

CURRENT AND EMERGING 
PHARMACOTHERAPIES
Antibiotics
Enteral antibiotics are certainly effective in a very select 
group of  short bowel patients in whom small bowel bac-
terial overgrowth potentiates malabsorption[178,179]. The 
inflammatory response to small bowel resection may also 
be a potential target for intervention. In massively bowel-
resected rats with bowel segment reversal, oral antibiot-
ics were associated with increased IGF-1and blunted 
increases in white blood cell count, IL-6, and serum nitric 
oxide. This demonstrated that antibiotics may attenuate 
the inflammatory response[180]. However, more clinical 
outcomes associated intervention with this have yet to be 
assessed. This represents an important frontier for future 
work, but should not justify indiscriminate antibiotic use 
in patients without demonstrable bacterial overgrowth.

Stimulating cellular proliferation to enhance adaptation
Promoting enterocyte proliferation is an attractive strat-
egy to treat short gut. Many agents have been promising 
in vitro and in animals. We will review several below. As 
of  this writing, only GH and Teduglutide (outside the 
United States) are in clinical use. It remains unclear how 
substantial their effects are. In addition, the long term 
risks of  treating the gut mucosa with mitogens over de-
cades are unknown.

GH
GH is an anabolic protein that initiates mitosis. It is 
released by the anterior pituitary and may act through 
IGF-1[181]. GH is perhaps the best studied short bowel 

mitogen. Experimental studies suggest that GH might 
have several beneficial effects on adaptation[182], includ-
ing increases in mucosal hyperplasia and absorptive 
capacity[165,183], bowel growth, villus height, and crypt 
depth[184,185], and even increased length within the remain-
ing intestine after extensive small bowel resection[92]. In 
humans, GH alone, or combined with high carbohydrate 
diets and glutamine supplementation, may increase nu-
trient absorption[186]. In children dependent on TPN 
for more than 50% of  their nutritional needs, 12 wk of  
GH decreased TPN requirements. However, only two 
children (25%) were definitively weaned from TPN[187]. 
This suggests the need for multimodal interventions to 
achieve clinically meaningful endpoints. Combining GH 
with dietary modification and glutamine supplementation 
may permit weaning from TPN in some patients[183], and 
another prospective, double-blind randomized placebo-
controlled trial demonstrated that a reduction in TPN use 
can persist for three months if  GH is combined with glu-
tamine[173]. Four randomized, double-blind, placebo-con-
trolled studies have asked whether GH supplementation 
increases body weight in this setting[172,188-190]. These have 
yielded mixed results, although a recent Cochrane review 
found that glutamine overall increases weight, lean body 
mass, energy absorption, and nitrogen absorption[191]. 
Reported side effects[172] include myalgia, gynecomastia, 
insomnia, joint pain, and hyperglycemia. As of  this writ-
ing, GH is the only FDA-approved agent to treat short 
bowel syndrome in the United States, but it is certainly 
not a panacea. To the extent to which GH is effective, it 
is most likely to benefit patients with 70-100 cm of  small 
bowel remaining and without an intact colon. Side effects 
are significant.

Glucagon-like peptide-2: Glucagon-like peptide-1 
physiologically is a humoral mediator of  intestinal adap-
tation, normally secreted in response to enteral stimulus, 
especially by foods containing carbohydrates, fatty acids, 
and fibers[192,193]. It is a 33 amino acid peptide derived 
from proteolytic cleavage and modification of  progluca-
gon in the pancreatic α-cells and intestinal L-cells[194].

GLP-2 production is most robust in the distal small 
bowel and large intestine[195]. Effects of  GLP-2 are specif-
ic to different regions of  the bowel and appear to stimu-
late morphologic adaptation with increase in microvillus 
height and overall surface area. This was demonstrated 
in an animal model with 80% small bowel resection, us-
ing animals given TPN with or without GLP-2. After 
only one week intestines were examined for morphology, 
crypt cell proliferation, apoptosis, SGLT-1 expression and 
GLUT-5 transport proteins. In addition to the expected 
finding of  morphologic adaptation, GLP-2 increased the 
jejunal crypt apoptotic index without increasing transport 
protein expression[196]. 

Teduglutide (ALX-0600), a dipeptidyl peptidase Ⅳ 
(dpp-Ⅳ) resistant GLP-2analog, has been reported to 
promote intestinal growth in short bowel patients, increas-
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ing small intestinal villus height, crypt depth, and mitotic 
index and improving absorption over three weeks[197]. 11 
short bowel syndrome patients with Crohn’s disease tak-
ing Teguglutide over 2 years demonstrated excellent com-
pliance (93%), safety, and improved quality of  life. The 
major reported side effects appear to be abdominal pain 
and obstructive symptoms, but it is difficult to determine 
the extent to which these side effects should be ascribed 
to Teduglutide or to the patients’ underlying Crohn’s dis-
ease. Whether other short gut patients will report less of  
these symptoms awaits study[198]. Teduglutide may also aid 
weaning from TPN. In a randomized placebo-controlled 
trial, low-dose Teduglutide promoted weaning from 
TPN, although puzzlingly high-dose Teduglutide did not 
have this effect[199] although secondary endpoints of  vil-
lus height and body mass were increased by high-dose 
Teduglutide as well. This puzzling result was attributed to 
possible baseline differences between groups, although 
alternative explanations include difference in oral intake 
and side effects. In addition, a suprapharmacologic effect 
may limit efficacy. Teduglutide is in clinical use in some 
countries already, and will likely achieve broader distribu-
tion in the near future. Further studies with regard to the 
ideal dose, time course, and potential for synergy with 
other interventions would improve our understanding of  
how Teduglutide should be used (Table 3).

IGF: IGF may also enhance enterocyte proliferation after 
small bowel resection is[200,201]. IGF-1 is produced primar-
ily in the liver but it is also synthesized to a lesser extent 
within the intestine by subepithelial myofibroblasts[202]. 
IGF-1 may upregulate digestive enzymes including su-
crase, maltase, and leucine aminopeptidases after small 
bowel resection in animals[203]. In addition, targeted over-
expression of  IGF-1 in transgenic mice leads to increased 
small bowel weight, length, and crypt cell proliferation[204]. 
In short bowel syndrome rats on parenteral nutrition, 
IGF-1 treatment induced jejunal hyperplasia[205]. In small 
bowel syndrome rats, IGF-1 increased jejunal mucosal 
mass by 20% and DNA content by 33%, reflecting in-
creased enterocyte hyperplasia[206].

EGF: EGF is a 53-amino acid peptide in saliva and pancre-
aticobiliary secretions. EGF stimulates crypt cell prolifera-
tion and suppresses apoptosis[207]. EGF administration at 
the time of  small bowel resection may facilitate intestinal 
adaptation, ameliorating weight loss and apoptosis[208,209]. 
EGF functions intraluminally as small bowel resection in 
animals increases salivary EGF without increasing plasma 
EGF, and either removal of  salivary glands[209,210] or selec-
tive oral inhibition of  the EGF receptor[106] attenuates 
adaptation after small bowel resection. The EGF recep-
tor is regulated at the level of  ligand expression during 
intestinal epithelial differentiation[211].

Other hormones of potential interest
Leptin has been studied most regarding appetite and the 
obesity physiology. It is also a potential target to manipu-
late adaptation. Parenteral leptin may stimulate structural 
adaptation in short bowel rats by increasing cell prolif-
eration and decreasing apoptosis. Leptin also increases 
GLUT-5 levels[212,213].

Bombesin is also being explored as a therapeutic tar-
get of  interest. In rats, subcutaneous exposure to bombe-
sin for 2 wk after massive small bowel resection enhanced 
enterocyte turnover with increased ileal transmural and 
mucosal weight, DNA and protein, villus height, crypt 
depth, and proliferation index. These rats also demon-
strated increased ileal Bax and Bcl-2 and decreased apop-
tosis[214].

Ghrelin is secreted in the stomach and other tissues 
and influences food intake and nutrition. Plasma ghrelin 
is decreased in short bowel syndrome[215]. These changes 
are unrelated to hyperphagia. It is not yet known whether 
this decreased ghrelin is only reactive or has an adaptive 
function[216].

Glucocorticoids: The stress response may play a criti-
cal role in intestinal adaptation. In rats undergoing either 
80% small bowel resection or sham operation, dexa-
methasone infusion reduced weight, DNA content, and 
mucosal protein content regardless of  surgical status. 
IGF-1 was markedly decreased in the steroid-treated rats, 
demonstrating a potentially deleterious effect on adapta-
tion[217]. In contrast, glucocorticoids may impact uptake 
of  sugars by modulating uptake receptors with variable 
effects among the glucocorticoids[218]. How to modulate 
these effects without adversely affecting other physiologic 
parameters remains unknown.

MULTIMODALITY THERAPY
Integrated multimodality treatment may prove the best 
strategy. For instance, just as GH may be more effec-
tive when combined with glutamine. GH and EGF in 
combination synergistically increased microvillus height 
and enhanced nutrient transport in a rabbit short bowel 
model[219].

Table 3  Potential pharmacotherapy targets for intestinal 
failure

Dose mg/kg per d Side effects Structure Approval

Growth 
hormone

0.1 Fluid retention, 
joint pain, 

hyperglycemia

191-amino 
acid protein

FDA

EGF NA1 NA 53-amino acid 
peptide

Not available 
commercially

GLP-2 0.1 Abdominal 
pain/

obstructive 
symptoms

dpp-Ⅳ 
resistant 

33-amino acid 
peptide

Phase Ⅲ 
clinical trials 
available in 

Europe

1Dose not specified for human use. FDA: Food and Drug Administration; 
GLP-2: Glucagon-like peptide-2; EGF: Epidermal growth factor; dpp-Ⅳ: 
Dipeptidyl peptidase Ⅳ; NA: Not available. 

Shaw D et al . Intestinal mucosal adaptation



6366 November 28, 2012|Volume 18|Issue 44|WJG|www.wjgnet.com

OTHER NEW FRONTIERS IN MUCOSAL 
ADAPTATION
Surgical interventions for short bowel syndrome
Surgery is more acutely risky than medical intervention 
but also offers hope to patients who otherwise would be 
condemned to permanent TPN. Potential interventions 
include intestinal lengthening procedures such as the 
Bianchi procedure or the serial transverse enteroplasty 
(STEP) procedure and small bowel transplantation[141,220]. 
Intestinal lengthening procedures are more conservative.

The Bianchi procedure involves splitting a dilated 
bowel segment longitudinally and reanastomosing it. This 
could potentially double intestinal length. One institution 
recently reported a 40% TPN wean rate with Bianchi 
alone[221]. There is significant potential, however, for bow-
el loss in the event of  technical misadventure. The STEP 
is an alternative that involves plicating the small bowel 
with staple lines alternating on the mesenteric and an-
timesenteric edges. One series reported a 60% TPN wean 
rate among adult and pediatric patients with short bowel 
syndrome using the STEP procedure[222]. On the horizon 
is the concept of  using slow chronic intestinal distraction 
to stimulate intestinal mucosal and muscular proliferation 
and thus lengthen the small bowel slowly over time. This 
has been successfully performed in animal models with 
additional benefits including increased mucosal weight, 
and potentially improved function as given by increased 
disaccharidase activity[223]. This makes conceptual sense 
since pressure[224] and deformation[225] stimulate intestinal 
epithelial proliferation. 

Small intestinal transplantation is more aggressive and 
risky but offers even more potential for weaning from 
TPN. The indications for small-bowel transplantation 
according to the American Society of  Transplantation in-
clude the high risk of  death related to the underlying dis-
ease as well as intestinal failure with increased morbidity 
or poor acceptance of  parenteral nutrition. The United 
States Center for Medicare and Medicaid lists home TPN 
complications including impending liver failure, central 
venous access thrombosis of  2 or more central veins, 
recurrent line sepsis, and repeated episodes of  dehydra-
tion[226]. We highlight the critical nature of  these options 
to demonstrate the need for less morbid options. Risks 
specific to small intestine transplant include graft throm-
bosis, ischemia, infection related to immunosupression, 
and graft rejection. Outcomes appear to be improving 
with time. Graft and patient survival in carefully selected 
patients have recently been reported as high as 75% and 
80%, respectively[226,227]. Although such surgical inter-
ventions are yielding increasingly impressive results, im-
proved medical and nutritional therapy might obviate the 
need for such risky procedures.

Obesity surgery
Although we generally think about the intersection 
between mucosal function and surgery with regard to 
procedures to increase mucosal mass and digestive func-

tion, the biology of  intestinal adaptation may also be 
relevant to morbid obesity surgery. Morbid obesity is a 
rising epidemic with profound cardiovascular, endocrine, 
and pulmonary systemic consequences[228]. Such patients 
typically do not respond well to conventional instructions 
to eat less and exercise more. The induction of  artificial 
malabsorption using steatorrheic agents can cause mild 
weight loss but is associated with poor compliance[229]. 
Bariatric surgery has evolved as the most effective treat-
ment for morbid obesity. Although many procedures 
have been described to induce weight loss, they can gen-
erally be categorized as to whether they have restrictive 
and/or malabsorptive components. Procedures including 
malabsorptive components, in which some of  the small 
bowel is bypassed, generally achieve superior weight loss 
to purely restrictive procedures because malabsorption 
procedures create a functional short gut syndrome.

Such bariatric procedures generate initial weight loss, 
but many patients gain back weight later. Some failures are 
attributed to behavioral changes as patients learn to “ou-
teat” the surgical procedure. However, it seems likely that 
postoperative intestinal adaptation to the functional short 
gut also ameliorates weight loss by increasing the absorp-
tive capacity of  the intestine that remains in continuity.

Intestinal adaptation does occur after malabsorptive 
obesity surgery. Humans undergoing classical jejunoileal 
bypass develop increased small bowel villus height and 
improved nutritional intake without increases in individ-
ual cell height or width, identifying epithelial hyperplasia 
as part of  the adaptive mechanism[230]. However, the un-
bypassed functional segment of  small intestine demon-
strates not only an adapted morphologic appearance with 
increased villus height but also increased activity of  brush 
border enzymes[231]. This suggests that individual intesti-
nal epithelial cells, while not larger, are likely to be more 
functional, better able to absorb and digest nutrients, 
consistent with a bimodal model of  adaptation in which 
the adapted intestine has not only more enterocytes but 
better enterocytes that more fully express characteristics 
needed for their function. It remains unclear whether 
similar changes occur in response to decreased nutri-
ent consumption in the bowel of  patients who undergo 
purely restrictive procedures such as laparoscopic gastric 
banding and gastric sleeve procedures. Human biopsies 
11-22 mo after jejuno-ileal bypass reveal marked mucosal 
villus hypertrophy in the continuous segment of  bowel, 
and atrophy within the bypassed segment[232]. Obesity 
surgery also alters gut hormone levels. For instance, 6 mo 
after Roux-en-Y gastric bypass, fasting leptin and insulin 
decrease while peptide YY, enteroglucagon, and GLP-1 
increase[233] This coincides with sustained postprandial 
satiety that may also be related to intestinal adaptation. 
These effects may persist for years after surgery[234].

Mucosal atrophy and adaptation can also be repro-
duced in rat models for research. Adaptation in the re-
maining intestinal segment is well described in rats after 
massive small bowel resection. Conversely, we recently 
described a novel defunctionalizing Roux-en-Y anasto-
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mosis rat model in which the defunctionalized segment 
(not actually anastomosed proximally but just ligated at 
its proximal end) displays morphological and biochemical 
evidence of  mucosal atrophy reminiscent of  that seen in 
TPN-nourished animals despite enteral nutrition passing 
through the remaining gut[74]. Decreased mucosal mito-
genic extracellular signal-regulated kinase (ERK) signaling 
correlates with decreased proliferation in this bypassed 
segment. This confirms that mucosal atrophy in the set-
ting of  TPN reflects loss of  enteral nutrients in direct 
contact with the gut mucosa rather than loss of  indirect 
neurohumoral effects associated with enteric food con-
sumption.

Interestingly, more classical Roux-en-Y bypass rat mo
dels, in which the bypass limb receives continuous bilio-
pancreatic secretions, result in increased villus height and 
crypt depth in the common limb as compared to the bil-
iopancreatic limb, but decreased glucose transport overall, 
suggesting the importance of  both overall mucosal mass 
and anatomic rearrangement in determining intestinal 
function[235]. Importantly, the biliary limb of  this anasto-
mosis exhibits partial adaptation with increased width and 
increased crypt cell proliferation without further mucosal 
adaptation. The alimentary and common channel exhibits 
full adaptation in bowel width, villus height, crypt depth 
and proliferation. This demonstrates the importance of  
direct contact and local factors required for full adapta-
tion[236].

Some endocrine changes after obesity surgery prob-
ably contribute to the success of  these procedures, be-
yond their anatomic restrictive and malabsorptive effects. 
However, some of  the neurohumoral consequences of  
obesity surgery may act synergistically with the decrease 
in delivery of  nutrients to the intestinal mucosa to pro-
mote intestinal adaptation which in turn undesirably 
enhances nutrient absorption and contributes to delayed 
weight gain. Altering this natural adaptation after obe-
sity surgery could sustain weight loss with less frequent 
failure. If  sufficiently severe mucosal atrophy could be 
pharmacologically induced, one might even create suf-
ficient malabsorption to obviate the need for any surgical 
procedure.

Influence of physical forces
The gut mucosa may not only be influenced by chemical 
interactions with growth factors, cytokines, and nutrients 
but also by exposure to physical forces such as repetitive 
deformation and pressure. These forces can originate 
from peristaltic contractions, villous motility, and physical 
interactions between the intestinal villi and the relatively 
non-compressible luminal chyme. In vitro, the prolifera-
tion of  human intestinal epithelial cells is stimulated by 
rhythmic deformation, and this mitogenic effect is syn-
ergistic with the mitogenic effect of  L-glutamine supple-
mentation[237]. The mitogenic effects of  strain are ampli-
tude-dependent[75] as well as frequency-dependent[237], and 
occur not only in established cell lines but also in primary 

intestinal epithelial cells derived from human surgical 
specimens[44].

The pathway governing this mitogenic effect is com-
plex. In vitro work suggests it includes a complex web 
of  kinases[238] (while in vivo such signals are activated by 
repetitive deformation of  the intestine in anesthetized 
animals[76]). Extracellular pressure may also be mitogenic 
for intestinal epithelial cells[224]. Pressure stimulates colon 
cancer cell proliferation via protein kinase C and tyrosine 
kinase signals. Supraphysiologic extracellular pressure 
inhibits intestinal epithelial wound healing independently 
of  luminal nutrient flow[239]. Enterocytic differentiation 
is influenced by some of  these same stimuli[240,241].

Interestingly, the intestinal epithelial response to repet-
itive deformation seems regulated by a matrix-dependent 
switch. Under basal circumstances, repetitive deforma-
tion induces proliferation and differentiation consistent 
with the ideal enterocytic phenotype. However, when 
fibronectin is added to the matrix substrate or medium 
in vitro[44] or deposited into the extracellular matrix in 
vivo during inflammation or injury[239], then deformation 
promotes a shift to a migratory phenotype and more 
rapid cell motility to close the resultant mucosal defect 
and maintain the mucosal barrier. The signal pathways 
that regulate this motogenic effect are similar to those 
by which deformation is mitogenic in the absence of  
fibronectin, but exhibit subtle but important differences 
that may permit selective targeting of  each effect[242]. For 
instance, repetitive deformation promotes epithelial mo-
tility across fibronectin via a FAK-Tyr 925-phosphoryla-
tion that occurs independently of  Src, while the FAK-Tyr 
925-phosphorylation that occurs in response to strain in 
the absence of  fibronectin requires Src[225]. We recently 
demonstrated that integrin-linked kinase, in association 
with focal adhesion kinase and Src, modifies the down-
stream response to strain, perhaps implicating ILK as a 
useful molecular target for intervention[243].

Animal studies are beginning to validate these in vi-
tro observations. The defunctionalized gut, deprived of  
chemical and physical interactions with luminal nutrients, 
displays mucosal atrophy throughout its length[74] and 
slower mucosal wound healing in wounded areas into 
which fibronectin has been deposited[239]. Targeting oth-
erwise deformation-activated signals such as ILK[243] or 
small GTP-binding proteins like RhoA, rho-associated 
kinases and the formin homology protein mDia[244] may 
someday maintain the gut mucosa despite fasting or ileus. 

TARGETS FOR CELLULAR 
DIFFERENTIATION IN ADAPTATION
While most therapeutic efforts have emphasized modu-
lating intestinal epithelial proliferation, it may also be 
useful and important to modulate intestinal epithelial 
differentiation to achieve a fully and optimally functional 
intestinal mucosa. Schlafen-3 and Math-1 are potentially 
interesting targets.
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Schlafen-3
Schlafen-3 is a member of  the Schlafen superfamily, a 
poorly understood heterogenous group of  proteins first 
described in 1998 as a family of  growth regulatory genes 
that modulate thymocyte development[245]. Schlafen-3 is 
not expressed in humans, but could have a functional 
human ortholog. We recently demonstrated that the 
Schlafens could play an important role in modulating 
intestinal adaptation. Schlafen-3 levels increase in parallel 
with expression of  differentiation markers like dipeptidyl 
dipeptidase activity and villin expression when non-trans-
formed rat intestinal epithelial IEC-6 cells are induced 
to differentiate in response to repetitive deformation, 
TGF-beta, or sodium butyrate. More importantly, reduc-
ing Schlafen-3 by specific siRNA prevents the differen-
tiating effect of  each of  these stimuli[240]. This suggests 
that Schlafen-3 may represent an important common or 
convergent node in the differentiating signal pathways 
invoked by these three very different stimuli. Schlafen-3 
is also downregulated in the intestinal mucosa of  aging 
rats[246], but conversely substantially increases in expres-
sion between the fetal state over the first few days after 
birth when the rat intestine is maturing[247].

Although Patel et al[246] reported that Schlafen-3 slows 
proliferation, we observed no effect on basal or EGF-
stimulated proliferation when modulating Schlafen-3[240]. 
This discrepancy awaits exploration in vivo. Tracing and 
triggering the Schlafen-3-dependent pathway may offer 
a way to selectively promote intestinal epithelial differen-
tiation, either without affecting proliferation or perhaps 
even synergistically with agents such as GH or Teduglu-
tide to promote both proliferation and differentiation.

Targeting differentiation is clinically important be-
cause altering the function of  naive cells may promote in-
testinal function. A recent piglet study replicated multiple 
previous findings of  increased total villus cell numbers 
over 6 wk of  adaptation to massive small bowel resection. 
However, this study demonstrated a disconnect between 

early proliferation and the absence of  increased early 
weight gain. This suggests that the early proliferation of  
immature enterocytes alone may not suffice for nutrition, 
and highlights the need to encourage earlier differentia-
tion to optimize clinical gains[248].

Math1
Although the Schlafen superfamily may promote dif-
ferentiation toward an enterocytic phenotype, intestinal 
stem cells also differentiate into goblet cells, enteroen-
docrine cells, and paneth cells in addition to enterocytes. 
Although less abundant in the mucosa, these intestinal 
epithelial cells are also important for optimal mucosal 
function. Murine knockout studies have identified Math1 
as a transcription factor that influences the differentia-
tion of  these secretory cell types[249]. In fact, deletion of  
Math1 does not disturb the capacity for self-renewal in 
intestinal epithelium at the crypt base[250].

Further terminal differentiation is still under intensive 
investigation. A series of  downstream targets influence 
differentiation toward the endocrine lineage, including 
NGN3, BETA2, Pax4, and Pax6[251]. Manipulating these 
targets may also be important in the future to promote a 
fully functional mucosa.

CONCLUSION
Intestinal adaptation is an extraordinary phenomenon, 
induced by diverse pathological and surgical conditions, 
but not always successful in recreating adequate mucosal 
function. The long term consequences of  such deficits in 
intestinal function highlight the need for more effective 
therapy for short gut syndrome directed by investigation 
into the physiological basis of  adaptation. Despite recent 
progress, current targets are limited. We propose not 
only continued efforts to stimulate small bowel mucosal 
proliferation, but also increased investigation into the 
role of  differentiation in adaptation (Table 4). Addressing 
both proliferation and differentiation multimodally could 
greatly improve patient outcomes.
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