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Abstract
All cells are derived from one cell, and the origin of 
different cell types is a subject of curiosity. Cells construct 
life through appropriately timed networks at each stage 
of development. Communication among cells and 
intracellular signaling are essential for cell differentiation 
and for life processes. Cellular molecular networks 
establish cell diversity and life. The investigation of 
the regulation of each gene in the genome within the 
cellular network is therefore of interest. Stem cells 
produce various cells that are suitable for specific 
purposes. The dynamics of the information in the 
cellular network changes as the status of cells is 
altered. The components of each cell are subject to 
investigation.
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Core tip: The cells in the body orchestrate the unique 
roles of each organ through a cellular network. It is 
important to investigate alterations in cellular phenotypes 
and the regulation of genes, the genome and molecules 
in order to understand the origin of the cells. Insights 
into the changes in cellular features, including epithelial-
mesenchymal transition, and recent database advances 
are described in this editorial.
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THE Genome as a blueprint
Recently, pluripotent stem cells have played an 
increasing role in disease and developmental models, 
including the challenge of generating novel organs 
such as intestines[1]. Stem cell differentiation is one 
of the mechanisms by which regenerative tissues are 
produced. In each cell, the genome encodes the plan 
for the life of the cell and the path for organizing each 
tissue. The gene segments travel through the genome 
to settle at the gene loci[2]. Variations within the genome 
produce individual differences. Dramatic transitions of 
cellular phenotypes, such as the Warburg effect, occur in 
disease states such as cancer[3,4]. Epigenetic alterations 
provide cellular identity and phenotypic diversity. RNA 
transcription is altered in cancer; this alteration is 
caused by somatic DNA translocation or mutation[5]. 
Variants of genes such as BRCA2 and CHEK2 increase 
the risk of lung cancer[6]. Genome sequencing of normal 
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cells has revealed the accumulation of mutations and 
differences in each cell lineage and tissue[7]. Genome 
editing has recently been developed. Additionally, gene 
therapy using clustered regularly interspaced short 
palindromic repeats/Cas9 is an emerging technique[8]. 
The construction and architecture of the genome are 
important for understanding the cell. 

Stem cell differentiation and 
reprogramming
Definition of stem cells
Emerging roles for stem cells as sources for cell-based 
therapy remind us of the importance of the definition 
of stem cells[9]. Stem cells are generally defined as 
cells with self-renewal and differentiation potential[10]. 
Accumulating knowledge and insights have shown 
that stem cells are able to differentiate into several 
cell types in the body. However, a paradigm shift 
occurred after the discovery of induced pluripotent 
stem (iPS) cells that can be created by reprogramming 
differentiated cells with several factors[11]. This finding 
may allow for a shift in the cell type of stem cells 
derived from differentiated cells in the body. Thus, 
the range of stem cells needs to be defined. Stem 
cells can be classified into two categories (Figure 1): 
(1) pluripotent stem cells, such as embryonic stem 
cells or iPS cells[12-15]; or (2) tissue multipotent stem 
cells such as neural stem cells, hematopoietic stem 
cells or mesenchymal stem cells[16]. Recently, SNAI1 
(SNAIL) has been reported to localize to the nucleus 
and to play a role in epithelial-mesenchymal transition 
(EMT) during the early stage of reprogramming of 
differentiated cells[17]. EMT and mesenchymal-epithelial 
transition processes may promote the reprogramming 
of differentiated cells toward stem cells[17]. Altered 
phenotypes and gene networks of stem cells have 
been reported, suggesting that the cells themselves 
have various gene dynamics during culture[18]. Cancer 
stem cells may be included as stem cells in cancer 
states. In some cases, engineered differentiated cells 
with gene modification or genome editing may also be 
included as stem cells if the cells are reprogrammed.

Cancer stem cell phenotype transition
The cell phenotype transition has been observed 
in cancer stem cells (CSCs)[19]. SOX2, which is a 
reprogramming factor, is a CSC biomarker in embryonal 
carcinoma cells and is related to stem-like cancer 
cells[20]. Genome analysis of SOX2-silenced human 
embryonal carcinoma cell lines has revealed that 
the cellular networks of these cells are enriched for 
microRNAs that are regulated by SOX2 and that 
are associated with EMT markers[20]. In contrast, an 
epidermal growth factor receptor exon 19-deleted 
lung cancer cell line was induced to exhibit CSC-
like phenotypes and EMT by DDX3X transfection[21]. 
Moreover, DDX3X overexpression was reported to 

induce Sox2 up-regulation[21].
CSCs are related to chemotherapy and radiation 

resistance in squamous cell carcinomas (SCCs)[22]. The 
CSC population is diverse in SCCs; this diversity contributes 
to difficulty in cancer treatment[22]. Understanding the 
mechanisms of CSCs and EMT are important for the 
development of novel therapeutics. 

CELLULAR NETWORK INFORMATION
Epithelial-mesenchymal transition 
Cellular networks characterize both cells and the body, 
and gene combinations are critical for the presentation 
of phenotypes[23]. EMT is one of the mechanisms by 
which the cell phenotype transitions; dihydropyrimidine 
has been reported to induce EMT[24]. EMT is associated 
with metastasis in tumor progression and is induced 
by Notch activation and p53 deletion in mice[25]. 
Erythropoietin-producing hepatoma (EPH) receptors, 
which are receptor tyrosine kinases related to cancer, 
may be related to EMT signaling[26]. EPH receptor A2 
induces EMT via β-catenin activation, followed by Snail 
expression and cadherin 1, type 1, E-cadherin (epithelial) 
(CDH1) suppression[26]. Wnt/β-catenin signaling is 
inhibited by SOX10, leading to the inhibition of the 
growth and metastasis of digestive cancers[27]. SRY (sex 
determining region Y)-box 10 (SOX10) inhibits EMT, 
which may be one of the possible mechanisms of cancer 
inhibition[27]. Frizzled2, the Wnt receptor, induces EMT 
and cell migration through the noncanonical pathway[28]. 
EMT is monitored by cell rigidity, and human 
equilibrative nucleoside transporter-1 suppression 
induces EMT in pancreatic cancer cells[29]. EMT 
characterization is needed for further understanding cell 
type transition and cancer progression. 

Classification of EMT features
EMT can be characterized by the following three 
features: (1) changes in cellular morphology; (2) 
increases in cellular motility; and (3) alterations in the 
expression of E-cadherin and N-cadherin[29]. Cellular 
morphological changes are typically observed in the 
transition from connective-like cells to mesenchymal-
like cells[29]. The expression of CDH1 is usually up-
regulated in connective- or epithelial-like cells, whereas 
the expression of N-cadherin (CDH2) is up-regulated 
in mesenchymal-like cells[29,30]. EMT is associated 
with tumor metastasis[30]. The metastasis potential 
or invasiveness of cancer can be measured by the 
mechanical rigidity of the cells[31,32]. Several genes 
are involved in EMT, including BMI1 proto-oncogene, 
polycomb ring finger (BMI1), hypoxia inducible factor 
1, alpha subunit (HIF1A, HIF-1α) and twist family 
bHLH transcription factor 1 (TWIST1, Twist)[33]. HIF-
1α, which is a key transcription factor, is up-regulated 
in gastric cancer. Additionally, network pathway 
genes, such as NFκB1, BRCA1, STAT3 and STAT1, 
and network hub genes, such as MMP1, TIMP1, TLR2, 
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FCGR3A, IRF1, FAS and TFF3, have been identified[34].

GENE REGULATION IN DISEASE
Gene and molecule alterations 
An abundant number of genes are regulated in cancer. 
Genes are regulated not only by transcription factors 
but also by microRNAs (miRNAs). miRNA-9 is up-
regulated in esophageal squamous cell carcinoma, 
which may induce EMT and metastasis in cancer[35]. 
CD151, which is a regulator of laminin-binding integrin 
function and signaling, represses EMT and canonical 
Wnt signaling, leading to the inhibition of ovarian 
tumor growth[36]. Wnt/β-catenin signaling is involved 
in EMT induction by the parathyroid hormone in 
human renal proximal tubular cells[37]. Endothelin-1 
and endothelin A receptor signaling, together with Wnt 
signaling, regulate EMT in epithelial ovarian cancer[38]. 
Endothelin/β-arrestin signaling and Wnt/β-catenin 
signaling may be involved in chemotherapy resistance 
in cancer[38]. Hypoxia-inducible factors (HIFs) play 
roles in Wnt signaling in human colon cancer cells[39]. 
HIF-1α depletion induces the reversal of EMT, and 
HIF-2α silencing affects the expression of stem cell 
markers and increases β-catenin transcriptional activity 
under hypoxic conditions[39]. The roles of HIFs in Wnt/
β-catenin signaling and in the surrounding networks 
are essential for understanding cancer cell phenotypes. 
The silencing of β-catenin via promoter methylation 
is also involved in the enhancement of non-small cell 
lung cancer invasiveness[40].

Notch1, which is one of the important molecules in 
cancer signaling, is involved in Ras/phosphoinositide 3 
kinase (PI3K)/Akt signaling in T-cell acute lymphoblastic 
leukemia (T-ALL)[41], and PI3K and Notch1 may be 
targets for drug resistance in T-ALL[41]. Sox2, which 

is one of the reprogramming factors used to produce 
iPS cells, may be a regulator of EMT during neural 
crest development[42]. The Wnt pathway induces the 
EMT pathway, and the inhibition of the Wnt pathway 
may be involved in the re-differentiation of human 
islet β-cells[43]. Thus, the investigation of the molecules 
associated with EMT and disease is of interest[44].

MOLECULAR COMMUNICATION
The gene and genome networks
Several megaprojects have been established in res
ponse to the genome projects, one of which is called 
the ENCyclopedia Of DNA Elements (ENCODE) Project, 
which aims to translate the human genome sequence 
into biological and health mechanisms[45]. The ENCODE 
Project has identified functional elements in the genome 
(http://www.genome.gov/ENCODE/)[46,47].

The cross-cancer alteration of genes and their 
networks can be examined in cBioPortal, which is a 
cancer genomics database (http://www.cbioportal.
org/public-portal/)[48,49]. The cBioPortal includes 
network analysis for the visualization of networks 
that are altered in cancer[49]. The precise information 
obtained through network analysis has been reported 
in several studies[50-53]. The sources of the networks 
are derived from pathways and interactions from the 
Human Reference Protein Database[53], Reactome[51], the 
Pathway Interaction Database created by the National 
Cancer Institute in collaboration with Nature Publishing 
Group (http://pid.nci.nih.gov/)[52], and the Memorial 
Sloan-Kettering Cancer Center Cancer Cell Map, which 
are all included as source information in the Pathway 
Commons Project (http://www.pathwaycommons.
org)[50]. Pathway Commons is an open pathway that 
includes interaction information for multiple species, 
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Figure 1  Current variations and definitions of stem cells. Pluripotent stem cells include embryonic stem cells and induced pluripotent stem cells, which will differentiate 
into all cells in the body. Multipotent stem cells, including tissue stem cells, differentiate into several types of cells to create the parts of organs or of the body. EMT: 
Epithelial-mesenchymal transition; iPS: Induced pluripotent stem; ES: Embryonic stem; TS: Tissue stem.
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such as humans and model organisms[50].
The web interface called Gene Expression Commons 

is an interesting tool for gene expression analysis and 
microarray data that can be analyzed with reference 
data to model biological relationships (https://gexc.
stanford.edu/)[54]. The amount of data available in 
these databases is increasing and includes data from 
microarrays, next-generation sequencing, and clinical 
data.

CONCLUSION
The cell is the fundamental unit of life. The investigation 
of gene and genome regulation is critical for a deep 
understanding of phenotypic alterations and of the 
origin of cells. The transition of cell characteristics, 
including differentiation, reprogramming and EMT, 
and cell-to-cell communications requires further 
investigation to reveal the cell of origin.
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