
Ali Abdul-Hai, Ali Abdallah, Stephen DH Malnick

Ali Abdul-Hai, Ali Abdallah, Stephen DH Malnick, Division 
of Internal Medicine, Kaplan Medical Center, Affiliated to the 
Hebrew University, Rehovot 76100, Israel

Author contributions: All the authors were involved in the 
writing of various sections of the manuscript; Malnick SDH 
conceived the idea of writing the review. 

Conflict-of-interest: The authors have no conflict of interest to 
declare.

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Correspondence to: Dr. Stephen DH Malnick, Division of 
Internal Medicine, Kaplan Medical Center, Affiliated to the 
Hebrew University, 1 Pasternak, Rehovot 76100, 
Israel. stephen@malnick.net
Telephone: +972-89-441371
Fax: +972-89-441852

Received: December 17, 2014
Peer-review started: December 18, 2014
First decision: March 6, 2015
Revised: April 8, 2015
Accepted: April 16, 2015
Article in press: April 20, 2015
Published online: June 28, 2015

Abstract
The intestine of the human contains a dynamic population 
of microbes that have a symbiotic relationship with 
the host. In addition, there is an effect of the intestinal 
microbiota on metabolism and digestion. Non-alcoholic 
fatty liver disease (NAFLD) is a common cause worldwide 

of hepatic pathology and is thought to be the hepatic 
manifestation of the metabolic syndrome. In this review 
we examine the effect of the human microbiome on 
the components and pathogenesis of the metabolic 
syndrome. We are now on the threshold of therapeutic 
interventions on the human microbiome in order to effect 
human disease including NAFLD.

Key words: Microbiome; Metabolic syndrome; Stool 
transplantation; Non-alcoholic fatty liver disease

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The human intestine contains more bacterial 
cells than mammalian cells. These have a symbiotic 
relationship with the host. Non-alcoholic fatty liver 
disease is the hepatic manifestation of the metabolic 
syndrome and a major cause of hepatic morbidity as a 
consequence of the obesity epidemic. We examine the 
effect of the human microbiome on the components of 
the metabolic syndrome and fatty liver and mention the 
possibility of therapeutic interventions in humans. 

Abdul-Hai A, Abdallah A, Malnick SDH. Influence of gut 
bacteria on development and progression of non-alcoholic fatty 
liver disease. World J Hepatol 2015; 7(12): 1679-1684  Available 
from: URL: http://www.wjgnet.com/1948-5182/full/v7/i12/1679.
htm  DOI: http://dx.doi.org/10.4254/wjh.v7.i12.1679

INTRODUCTION 
Non-alcoholic fatty liver disease (NAFLD) is considered 
the hepatic manifestation of the metabolic syndrome. 
The metabolic syndrome is defined by clear clinical and 
laboratory criteria (Table 1). NAFLD encompasses a 
range of liver damage ranging from simple steatosis to 
non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis 
and its complications. NAFLD is present in approximately 
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1/3 of the United States population, who have isolated 
steatosis of the liver[1]. Of the patients with NAFLD, 
approximately 30% have NASH[2]. NASH refers to 
those patients who have developed liver inflammation 
and fibrosis. It is those patients with NASH who may 
develop stage 3 or 4 fibrosis (cirrhosis)[3].

Many factors including diet, sedentary lifestyle and 
genetics have been shown to influence the progression 
from steatosis through NASH to cirrhosis. However, not 
all people who are obese develop NAFLD and neither 
are all patients with NAFLD obese.

GUT MICROBIOTA
The intestinal microbiome is attracting an increasing 
amount of attention[4]. It is becoming apparent that there 
is a symbiotic relationship between the intestine and 
its microbiota and that disturbance in this relationship 
can be associated with the pathogenesis of many 
disorders. The most striking example of such an asso
ciation is Clostridium difficile infection, for which fecal 
transplantation from healthy donors is now an accepted 
treatment[5].

Distinct gut microbiota profiles are linked with specific 
metabolomes. Ninety-five percent of the gut microbiota 
of humans consists of the Firmicutes, Bacteroidetes 
and Actinobacteria phyla. The species level of the 
human microbiota, however, has higher diversity, with 
approximately 200 highly prevalent and up to 1000 less 
common bacterial species[6]. In humans as in mice, each 
individual has an unique bacterial species profile[7]. The 
gut bacteria may alter in response to a high fat diet (HFD), 
which could be responsible for some of the responses to 
an HFD. 

Bacteria from human stools can be transferred to 
germ free (GF) mice and result in a similar microbiome 
in the host mice[8]. This can result in the appearance 
of human gut enzymatic activities in GF rodents after 
human fecal transplantation[9,10]. 

Recently, the transfer of human gut microbiome from 
obesity discordant twins to GF mice was shown to result 

in the transfer of the adiposity phenotype of the donor 
twin[11]. Thus, the transfer of human fecal microbiota 
to GF mice may result in the development of human 
diseases and provide an experimental study system. 

INTESTINAL MICROBIOTA ARE RELATED 
TO OBESITY AND INSULIN RESISTANCE
The gut microbiota is now recognized as contributing 
to obesity and NAFLD[12]. GF mice have been found to 
gain less weight than conventional mice after being fed 
a high sugar and fat diet in spite of a higher amount 
of food consumption[13,14]. Furthermore, GF mice on an 
HFD develop an increase in insulin sensitivity[15] and 
GF mice colonized with conventional mouse intestinal 
microbiota develop an increase in body fat content[13]. 
There are, however, wide variations in the development 
of HFD-associated features[16,17], but the responsible 
factors are still undefined.

The insulin resistance index can be transferred 
by gut microbiota transplantation[18]. Gut microbiota 
affects both macrophage fat accumulation and systemic 
glucose metabolism by different mechanisms[19]. In 
a diet-induced obesity mouse model, administration 
of antibiotics improved fasting glycemia and insulin 
resistance independently of both food intake or adi
posity[20]. Furthermore the improved insulin sensitivity 
correlated with less hepatic lipogenesis and steatosis 
in the antibiotic-treated mice[21]. Taken together, these 
findings suggest that the gut microbiota influences both 
host glucose metabolism and liver function. 

A study in humans showed that transfer of intes
tinal microbiota from lean donors to males with the 
metabolic syndrome resulted in increased insulin sensi
tivity[21]. Dietary factors and changes in diet influence 
the composition of the microbiome. The intestinal 
microbiota of obese individuals has a different microbial 
diversity compared to lean persons. They have less 
Bacteroides and more Firmicutes[22]. Furthermore, 
an HFD increases the proportion of Gram-negative to 
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Table 1  The definitions of the metabolic syndrome

NCEP ATP Ⅲ IDF

Absolutely required None Central obesity (waist circumference) ≥ 94 cm in males or ≥ 80 cm 
in females European origin

≥ 90 cm in males or ≥ 80 cm in females
Criteria Any three of the five criteria below Central obesity plus two of the four criteria below
Obesity (1) waist circumference > 40 inches in males, or > 35 inches 

in females
Hyperglycemia (2) fasting glucose ≥ 100 mg/dL or treated for DM (1) fasting glucose ≥ 100 mg/dL
Dyslipidemia (3) TG ≥ 150 mg/dL or treated for dyslipidemia (2) TG ≥ 150 mg/dL or treated for dyslipidemia

Or
(4) HDL cholesterol < 40 mg/dL in males, or < 50 mg/dL 

in females or under treatment

Or
(3) HDL cholesterol < 40 mg/dL in males, or < 50 mg/dL in females 

or under treatment
Hypertension (5) > 130 mmHg systolic or > 85 mmHg diastolic or treated 

for HTN
(4) > 130 mmHg systolic or > 85 mmHg diastolic or treated for HTN

NCEP ATP Ⅲ: National Cholesterol and Education Program - Adult Treatment Panel Ⅲ; IDF: International diabetes federation; DM: Diabetes mellitus; TG: 
TG: Triglycerides; HTN: Hypertension.



Gram-positive microbes, resulting in the production 
of lipopolysaccharide (LPS) which is responsible for 
inflammation[23]. Gram-positive microbes are increased 
following the administration of prebiotics[24]. A prebiotic 
is a nondigestible food substrate which increases the 
growth of intestinal bacteria that can result in health 
benefits for the host.

The intestinal microbiome in obesity has an increased 
capacity to extract energy from the host diet. Bacterial 
enzymes extract calories from otherwise indigestible 
dietary polysaccharides[25]. Enteric bacteria suppress the 
synthesis and secretion of small intestinal fasting-induced 
adipocyte factor, resulting in an increased activity of 
lipoprotein lipase and increased liver triglyceride[13,14]. 

GF lean mice that were resistant to becoming obese 
on a fat-enriched diet had an increase of phosphorylated 
adenosine monophosphate-activated protein kinase 
(AMPK) in both the skeletal muscle and liver. AMPK 
phosphorylates acetyl coenzyme A (CoA) carboxylase, 
resulting in decreased malonyl CoA levels. Malonyl CoA 
controls the rate-limiting step of long-chain fatty acyl 
CoA entry to the mitochondria by blocking carnitine 
palmitoyltransferase which promotes the oxidation of 
fatty acid and results in a lower storage of fat[14,26]. 

Thus, the intestinal microbiome has an effect on 
both obesity and insulin resistance, as well as hepatic 
fat content. 

GUT MICROBIOTA AND NAFLD
In view of the intimate connection between the metabolic 
syndrome with its concomitant insulin resistance and 
NAFLD, it is expected that there is an effect of the 
intestinal microbiome on NAFLD. 

The fecal microbiota in NAFLD and NASH patients 
has been examined using quantitative polymerase chain 
reaction (PCR) and deep sequencing of a conserved 
region in the bacterial 16S ribosomal RNA gene[27-30]. 
A recent review provides a summary of the changes 
in the intestinal microbiota associated with NAFLD and 
NASH[12]. Many of these studies have variable and often 
contradictory findings. This may be due to differences 
in patient mix, methodology and documentation of liver 
disease. 

In addition to the mixture of bacteria in the colon, 
patients with obesity or NAFLD have more small intestinal 
bacterial overgrowth[31,32]. Small intestinal bacterial 
overgrowth was found in 50% of patients with NASH, 
significantly more than that in a control population[33]. 
The intestinal permeability and bacterial overgrowth were 
shown to be related to the degree of hepatic steatosis 
but not inflammation or fibrosis[31]. 

However, it is not clear if the assessment of small 
bowel bacterial overgrowth by breath tests is accurate 
since an estimate of total fecal bacterial count by real-
time PCR did not detect any difference between healthy 
controls and patients with NAFLD and NASH[28].

Possible mediators of the link between the enteric 
microbiome and the host include alcohol, choline 

and endotoxins. Obese animals have been shown to 
have higher levels of alcohol in breath tests than thin 
animals[34]. Alcohol reaches the liver via the portal blood 
and can cause triglyceride accumulation in hepatocytes[35]. 
In addition, alcohol may provide the “second hit” to the 
liver for making the transformation from steatosis to 
steatohepatitis[36].

Choline may also be involved in the development of 
NAFLD and NASH. It is well known that choline deficiency 
may result in chronic liver disease[37]. In animal models 
choline-deficient diets were utilized, but it is now known 
that choline deficiency can exist while there is a diet that 
is not deficient. HFDs produce intestinal microbiota that 
converts dietary choline into methylamines. This results 
in a reduction of serum level of phosphatidylcholine which 
can cause NASH[26]. Phosphatidylcholine is important for 
the production of very low-density lipoprotein (VLDL)[38] 
and thus choline deficiency secondary to the intestinal 
microbiome will result in lower hepatic secretion of VLDL 
and result in triglyceride accumulation in hepatocytes.

The products of the intestinal microbiota are also 
implicated in the development of NAFLD and NASH. 
Endotoxemia has been found in patients with NASH[39]. 
Toll-like receptor 4, a receptor for LPS, in hematopoietic-
derived cells is necessary for the development of hepatic 
steatosis but not for obesity in mice[40]. Mice that are 
deficient in sensing pathogen-associated molecular 
patterns (PAMPs) or downstream signaling are resistant 
to NASH[41,42].

The microbial products reach the liver via the portal 
vein and cause inflammation. Mice that are genetically 
obese are more sensitive to endotoxin-induced hepa
totoxicity and develop steatohepatitis after being exposed 
to low doses of LPS[43]. NAFLD patients have an increased 
intestinal permeability and changes in the intestinal tight 
junctions, as compared to healthy individuals[31]. The 
increased permeability, in combination with bacterial 
overgrowth, increases the hepatic exposure to endotoxins.

Alteration of the fecal microbiome by administration 
of probiotics has been shown to decrease the amount of 
intrahepatic triglyceride content in addition to a decrease 
in Firmicutes and an increase in Bacteroidetes[30]. A 
meta-analysis of the published trials of probiotics in 
patients with NAFLD, showed a reduction in serum 
transaminases, total cholesterol, tumor necrosis factor-α 
and an improvement in insulin resistance[44]. 

Dysbiosis can induce intestinal inflammation. Indeed 
GF mice are protected from inflammation of the small 
intestine[45]. Mice deficient in Nlrp3 and Nlrp6 are unable 
to form cytoplasmic multiprotein complexes composed 
of nucleotide-binding domain and leucine-rich repeat-
containing proteins (NLR) family, inflammasomes. Inflam
masomes are sensors of exogenous PAMPs that regulate 
cleavage of precursors of inflammatory cytokines 
including pro-interleukin 1 beta (pro-IL1β) and pro-
IL18. In mice, loss of Nlrp3 and Nlrp6 inflammasomes 
is associated with intestinal dysbiosis and colonic 
inflammation via CCL5. Dysbiosis is linked to an increase 
in Prevotella[46]. The consequent translocation of bacteria 
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is evidence that manipulation of the fecal microbiome 
may result in a change in the metabolic syndrome and 
an improvement in the features of NAFLD. This needs 
to be explored further in order to investigate if there will 
be an improvement in clinically significant end points.
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Figure 1  The effect of the intestinal microbiota on non-alcoholic fatty liver disease. High fat diets (HFD) produce dysbiosis and small bowel intestinal 
overgrowth (SBIO). There is an increase in energy extraction and fermentation of dietary fibers to oligo- and mono-saccahrides and short chain fatty acids (SCFA). 
There is also an increase in ethanol (ETOH) production. The microbiota metabolize choline to trimethylamine (TMA). There is a choline deficiency which decreases 
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enterocytes via chemokine (C-C motif) ligand 5 (CCL-5). The resulting increase in intestinal permeability results in the translocation of microbial products to the liver 
and inflammation; MS: Monosaccharides; LPL: Lipoprotein lipase.
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