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Abstract
AIM: To identify plasma metabolites used as biomarkers 
in order to distinguish cirrhotics from controls and ence
phalopathics.

METHODS: A clinical study involving stable cirrhotic 
patients with and without overt hepatic encephalopathy 
was designed. A control group of healthy volunteers was 
used. Plasma from those patients was analysed using 
1H - nuclear magnetic resonance spectroscopy. We 
used the Carr Purcell Meiboom Gill sequence to process 
the sample spectra at ambient probe temperature. We 
used a gated secondary irradiation field for water signal 
suppression. Samples were calibrated and referenced 
using the sodium trimethyl silyl propionate peak at 
0.00 ppm. For each sample 128 transients (FID’s) 
were acquired into 32 K complex data points over a 
spectral width of 6 KHz. 30 degree pulses were applied 
with an acquisition time of 4.0 s in order to achieve 
better resolution, followed by a recovery delay of 12 
s, to allow for complete relaxation and recovery of 
the magnetisation. A metabolic profile was created for 
stable cirrhotic patients without signs of overt hepatic 
encephalopathy and encephalopathic patients as well 
as healthy controls. Stepwise discriminant analysis was 
then used and discriminant factors were created to 
differentiate between the three groups. 
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RESULTS: Eighteen stabled cirrhotic patients, eighteen 
patients with overt hepatic encephalopathy and seventeen 
healthy volunteers were recruited. Patients with cirrhosis 
had significantly impaired ketone body metabolism, urea 
synthesis and gluconeogenesis. This was demonstrated 
by higher concentrations of acetoacetate (0.23 ± 0.02 
vs  0.05 ± 0.00, P  < 0.01), and b-hydroxybutarate (0.58 
± 0.14 vs  0.08 ± 0.00, P  < 0.01), lower concentrations 
of glutamine (0.44 ± 0.08 vs  0.63 ± 0.03, P  < 0.05), 
histidine (0.16 ± 0.01 vs  0.36 ± 0.04, P  < 0.01) and 
arginine (0.08 ± 0.01 vs  0.14 ± 0.02, P  < 0.03) and 
higher concentrations of glutamate (1.36 ± 0.25 vs  
0.58 ± 0.04, P  < 0.01), lactate (1.53 ± 0.11 vs  0.42 
± 0.05, P  < 0.01), pyruvate (0.11 ± 0.02 vs  0.03 ± 
0.00, P  < 0.01) threonine (0.39 ± 0.02 vs  0.08 ± 0.01, 
P  < 0.01) and aspartate (0.37 ± 0.03 vs  0.03 ± 0.01). 
A five metabolite signature by stepwise discriminant 
analysis could separate between controls and cirrhotic 
patients with an accuracy of 98%. In patients with 
encephalopathy we observed further derangement 
of ketone body metabolism, impaired production of 
glycerol and myoinositol, reversal of Fischer’s ratio and 
impaired glutamine production as demonstrated by 
lower b-hydroxybutyrate (0.58 ± 0.14 vs  0.16 ± 0.02, P  
< 0.0002), higher acetoacetate (0.23 ± 0.02 vs  0.41 ± 
0.16, P  < 0.05), leucine (0.33 ± 0.02 vs  0.49 ± 0.05, P  
< 0.005) and isoleucine (0.12 ± 0.02 vs  0.27 ± 0.02, P  
< 0.0004) and lower glutamine (0.44 ± 0.08 vs  0.36 ± 
0.04, P  < 0.013), glycerol (0.53 ± 0.03 vs  0.19 ± 0.02, 
P  < 0.000) and myoinositol (0.36 ± 0.04 vs  0.18 ± 0.02, 
P  < 0.010) concentrations. A four metabolite signature 
by stepwise discriminant analysis could separate 
between encephalopathic and cirrhotic patients with an 
accuracy of 87%.

CONCLUSION: Patients with cirrhosis and patients 
with hepatic encephalopathy exhibit distinct metabolic 
abnormalities and the use of metabonomics can select 
biomarkers for these diseases.
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Core tip: Few studies have approached the metabolic 
abnormalities of liver cirrhosis and its complication hepatic 
encephalopathy. This study provides evidence that in 
stable cirrhosis key metabolic pathways are impaired and 
confirms the fact that there is impaired gluconeogensis, 
impaired ketogensis and ketone bodies break down as 
well as impaired urea cycle. In encephalopathy there 
is a reversal in the pattern of branch chain amino acids 
concentrations towards normal. By using stepwise 
discriminating analysis we were able to separate with 
remarkable accuracy metabolic phenotypes of cirrhotic 
patients from controls and also those who suffered from 
encephalopathy from those cirrhotics who did not.
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INTRODUCTION
Insults on the liver parenchyma could result in fat 
accumulation, inflammation and fibrosis. Most chronic 
liver injuries could result in cirrhosis, which is a com­
bination of hepatic fibrosis and nodular regenerative 
hyperplasia. Hepatitis B infection is the most common 
cause in Asia and Africa whereas alcohol is the most 
common cause in the developed world. Currently world-
wide, the proportion of cirrhosis due to chronic Hepatitis 
C infection is on the increase[1,2].

One of the major complications of cirrhosis is hepatic 
encephalopathy. This is a complex neuropsychiatric 
syndrome which has a potential for full reversibility. 
It is characterised by global depression of the central 
nervous system (CNS) and has different degrees of 
severity. The syndrome is usually episodic and relapsing 
but some patients exhibit a chronic protracted course[3].

Cirrhosis is associated with alterations in proteins 
and amino acids metabolism, including diminished urea 
formation and hyperammonaemia[4,5]. Most studies that 
have looked at amino acid metabolism in cirrhosis would 
agree that there seems to be a recognisable pattern 
in the plasma amino acid profile with an elevation of 
aromatic amino acids (AAA) and methionine and reduced 
levels of branch chain amino acids (BCAA)[6,7]. Although 
this pattern has been used as the basis for the false 
neurotransmitter theory in the pathogenesis of hepatic 
encephalopathy[8], not many studies have proved that the 
pattern observed in cirrhosis is valid for encepahlopathy 
too[6,9,10]. Furthermore it is now well accepted that 
encephalopathy due to acute hepatic failure is a different 
entity and the mechanisms contributing to the CNS 
dysfunction in the two diseases might be different. 

Apart from disturbances in the BCAA to AAA ratio, 
other biochemical abnormalities are present in cirrhotics. 
Gluconeogensis is impaired and hyperammonaemia and 
diminished urea production make it necessary for the 
body to find other pathways for nitrogen elimination[5,11,12].

In the last few years, the emerging field of meta­
bonomics, which examines global metabolic profiles 
using various data collection techniques, offered the 
possibility to identify biomarkers in evolving diseases[13]. 
Lately, this technique has been used in delineating 
disease phenotypes in humans suffering from chronic 
liver disease[14,15] and animal models of liver failure[16,17]. 
Metabonomics makes use of multivariate statistical 
approaches to analyse complex data sets, such as those 
obtained by 1H NMR spectroscopy[16]. It is particularly 
useful if there are few samples to analyze and many 
variables to consider.

The aim of our study was to apply 1H NMR spec­
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troscopy in controls, cirrhotics and cirrhotics with 
hepatic encephalopathy and analyse the data to identify 
metabolic patterns that could distinguish between the 
three groups.

MATERIALS AND METHODS
Patients
The Local Research Ethics committee had approved 
the study protocol (373/1997). The study protocol 
conformed to the guidelines of the 1975 Declaration of 
Helsinki. Patients were recruited at the Centre of Liver 
and Digestive Disorders and at the Day Case Unit at 
the Royal Infirmary of Edinburgh. All patients signed 
an informed consent. For those unable to consent due 
to encephalopathy, consent from the next of kin was 
sought. Encephalopathy was defined using the West 
Haven Criteria[8]. The diagnosis of cirrhosis was based 
on a combination of clinical, histopathological and 
imaging criteria. Patients with grade Ⅲ or Ⅳ hepatic 
encephalopathy were excluded from the study as 
they usually had an acute precipitating episode and 
were not stable cirrhotics. Patients with coagulation 
abnormalities (International Normalized Ratio < 2.0, 
platelets < 80000) were excluded from the study as 
the ethics committee did not approve internal jugular 
vein puncture in patients with impaired coagulation. 
Patients with an upper gastrointestinal bleeding episode 
in the previous two weeks were also excluded. Patients 
with hepatocellular carcinoma, pregnant and lactating 
women were also excluded from the study. 

A total of 42 patients were recruited. Six of them 
eventually withdrew consent and were not included in 
the study. The study recruited for just over 16 mo.

We studied patients with stable cirrhosis (group A, 18 
patients), patients with stable cirrhosis during an episode 
of hepatic encephalopathy (group B, 18 patients) and 
sex and age matched normal controls (group C, 17 
subjects). 

All patients were fasted overnight before blood 
collection. Blood was collected from the internal jugular 
vein, from all three groups two to three hours following 
a main meal as differences in the concentration of amino 
acids between sexes are less pronounced postprandially, 
in lithium heparin tubes. It was immediately centrifuged 
at 2000 g for 15 min at 4 ℃. The supernatant was then 
aliquoted in 2.5 mL vials. The vials were then stored at 
-40 ℃ until NMR analysis.

Sample preparation for NMR spectroscopy 
Samples were prepared by adding a D2O solution 
(150 μL) to plasma (600 μL) providing an internal field 
frequency lock for the spectrometer, a Varian 600 MHz 
at 14.1T. Five millimeter probes were used for the 
analysis. Chemical shifts were referenced externally to 
the singlet methyl resonance of sodium trimethyl silyl 
propionate (TSP) (75 μL) at zero ppm. Plasma samples 
were left in room temperature for 1 h before samples 
for the NMR analysis were prepared.

Proton NMR spectroscopy
The CMPG sequence was applied, to acquire our data, 
as this sequence enabled us to observe a flat baseline 
in our spectra from plasma samples, by minimising the 
signals acquired from macromolecules present in the 
plasma such as proteins and lipoproteins. All spectra 
were acquired at ambient probe temperature (298 ± 0.2 
K). For each sample 128 transients (FID’s) were acquired 
into 32 K complex data points over a spectral width of 6 
KHz. 30° pulses were applied with an acquisition time of 
4.0 s in order to achieve better resolution, followed by a 
recovery delay of 12 s, to allow for complete relaxation 
and recovery of the magnetisation. Water signal 
suppression was achieved by applying a gated secondary 
irradiation field at the water resonance frequency.

Spectral processing
FID’s were multiplied by an exponential function before 
applying Fourier transform. Transformed spectra were 
automatically corrected for phase and baseline distortions 
and calibrated using the TSP peak at 0.00 ppm. A 
preliminary assignment of the amino acid metabolites 
was performed and only the areas between 0.70 and 3.80 
ppm and between 6.80 and 7.70 ppm were subjected to 
stepwise discriminant analysis (SDA). 

To assess which peaks were significantly different 
between the three groups a one-way analysis of variants 
was used. Normality of data distribution was assessed 
using the Wilk’s Lamda distribution. 

Spectral assignments were made by reference to 
literature values of chemical shifts in various media and 
biological fluids (18) and coupling constants. Spectra 
were processed using the Mestre-C software (Mestrelab, 
Santiago de Compostela, Spain).

Variables
We measured a large array of aminoacids and products 
of cellular metabolism to ensure representation of the 
main metabolic pathways performed by the hepatocyte 
in our results. The following substances were measured. 
Lactate, pyruvate, acetoacetate, b-hydroxybutyrate, 
leucine, isoleucine, valine, alanine, threonine, glycine, 
aspartate, glutamine, glutamate, histidine, arginine, 
methylamine, dimethylamine, trimethylamineoxide 
(TMAO), glycerol, and myoinositol. Results are expressed 
as mmols/L unless otherwise state.

Statistical analysis
To compare between the three groups we used the 
three way ANOVA test. Where the ANOVA test was 
statistically significant the Tuckey test was performed 
to compare between groups. Values are expressed as 
mean (range and standard error). A P value of < 0.05 
was taken as statistically significant (two-tail test of 
significance).

For the multivariate analysis we opted for the SDA. 
Data with statistical significance on ANOVA were entered 
into the SDA. We used SDA to extract and classify 
variables from different spectra. Analysis was performed 
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Table 4 shows the results obtained for urea cycle 
end products. Glutamine, histidine and arginine 
concentrations were significantly lower in patients than 
controls (P < 0.01 in all cases). Glutamate concen­
trations were significantly higher in cirrhotics (P < 
0.01) compared to controls. They are also significantly 
increased if we compared encephalopathics with controls 
(P < 0.05).

Table 5 shows the results for methylamine, dimethy­
lamine, TMAO, glycerol and myoinositol. Methylamine, 
dimethylamine and TMAO concentrations were present in 
similar amounts in cirrhotic and encephalopathic patients 
but were absent in controls. Glycerol concentrations 
were significantly higher in patients than controls (P < 
0.01 in both cases). Myoinositol concentrations were 
significantly higher in cirrhotics (P < 0.015) but there 
were no differences between encephalopathic patients 
and controls.

Using SDA we were able to identify five metabolites, 
tyrosine, phenylalanine, methionine, pyruvate and glycine 
that yielded the strongest segregation between groups 
A and C. A discriminant function (sum of concentrations 
of all five metabolites (tyrosine + phenylalanine + 
methionine + pyruvate + glycine) in mmols/L < 0.50 for 
controls) was created. By performing ROC analysis it had 

in stepwise manner entering variables with the highest 
statistical significance first. A discriminant function was 
thus established and receiver operator curves (ROC) 
analysis was performed. Analyses were performed 
using SAS 8.0 software (SAS Institute, Cary, NC, United 
States). 

RESULTS
Patient characteristics in groups A and C are shown in 
Table 1. Patients were well matched for age and sex. 
Patients with hepatic encephalopathy had in general 
more severe liver failure.

Table 2 shows the results for ketone bodies, BCAA 
and AAA. Acetoacetate and β-hydroxybutyrate, tyrosine, 
phenylalanine and methionine concentrations were all 
significantly higher in patients than controls (P < 0.01 
in all cases). Valine was significantly lower in patients 
than controls (P < 0.01 in both cases). Leucine was 
significantly higher in encephalopathics than controls (P 
< 0.01), but there was no difference between cirrhotics 
and controls. Isoleucine was significantly lower in 
controls than encephalopathics (P < 0.01) but there 
was no difference between cirrhotics and controls.

Table 3 shows the results obtained for glycolysis. 
Lactate and pyruvate concentrations were significantly 
higher in patients than controls (P < 0.01 in all cases). 
Alanine, threonine, glycine and aspartate concentrations 
were significantly higher in patients than controls (P < 
0.01 in all cases). 

Table 1  Patients and controls were well matched for age and 
sex

Controls Cirrhosis Encephalopathy

Age 48.8 ± 9.9 54.3 ± 8.8 56.8 ± 6.0
Sex M: 10 M: 9 M: 12

F: 7 F: 9 F: 6
CP score N/A 7.8 ± 1.6 9.9 ± 2.1
Child class a N/A   1   1
Child class b N/A 11   6
Child class c N/A   6 11

Patients with hepatic encephalopathy had more severe liver disease. CP: 
Child-Pugh; M: Male; F: Female.

Table 2  Results for ketone bodies, branch chain and aromatic 
amino acids are shown 

Chemical shift Cirrhosis Encephalopathy Controls

Acetoacetate 2.29  0.23 ± 0.02b 0.41 ± 0.05b 0.05 ± 0.00
Β-hydroxybutyr 2.31  0.58 ± 0.14b 0.16 ± 0.02b 0.08 ± 0.00
Leucine 0.96 0.33 ± 0.02 0.49 ± 0.05b 0.35 ± 0.02
Isoleucine 1.01 0.12 ± 0.02 0.27 ± 0.02b 0.13 ± 0.02
Valine 1.04  0.14 ± 0.01d 0.16 ± 0.02d 0.36 ± 0.03
Phenylalanine 7.38  0.08 ± 0.01b 0.06 ± 0.02b 0.02 ± 0.01
Tyrosine 6.91  0.23 ± 0.02b 0.25 ± 0.06b 0.07 ± 0.00
Methionine 2.14  0.07 ± 0.02b 0.08 ± 0.02b 0.03 ± 0.01

Acetoacetate and β-hydroxybutyrate concentrations were significantly 
higher in patients than controls (bP < 0.01 in all cases). Aromatic amino 
acids concentrations were significantly higher in patients than controls 
(P < 0.01 in all cases). Valine concentrations were significantly lower 
in patients than controls (dP < 0.01). Leucine was significantly higher if 
we compared encephalopathics with controls (bP < 0.01), but there was 
no difference if we compared cirrhotics and controls. Isoleucine was 
significantly lower if we compared encephalopathics with controls (bP < 
0.01) but there was no difference between cirrhotics and controls.

Chemical shift Cirrhosis Encephalopathy Controls

Lactate 1.33 1.53 ± 0.11b 1.41 ± 0.13b   0.42 ± 0.05
Pyruvate 2.38 0.11 ± 0.02b 0.17 ± 0.02b   0.03 ± 0.00
Alanine 1.48 0.77 ± 0.04b 0.73 ± 0.06b   0.61 ± 0.05
Threonine 1.34 0.39 ± 0.02b 0.25 ± 0.01b 0.08 ± 0.1
Glycine 3.57 0.31 ± 0.03b 0.18 ± 0.01b 0.09 ± 0.1
Aspartate 2.82 0.37 ± 0.03b 0.27 ± 0.02b 0.03 ± 0.1

Table 3  Results for glycolysis end products and gluconeo­
genetic precursors are shown

Lactate, pyruvate, alanine, threonine, glycine and aspartate concentrations 
were all significantly higher in patients than controls (bP < 0.01 in all 
cases).

Table 4  Results for urea cycle intermediates are shown

Chemical shift Cirrhosis Encephalopathy Controls

Glutamine 2.46 0.44 ± 0.08b 0.36 ± 0.04b 0.63 ± 0.03
Glutamate 2.36 1.36 ± 0.25d 0.84 ± 0.16a 0.58 ± 0.04
Histidine 7.83 0.16 ± 0.01b 0.18 ± 0.02b 0.36 ± 0.04
Arginine 1.93 0.08 ± 0.01b   0.1 ± 0.01b 0.14 ± 0.02

Glutamine, histidine and arginine concentrations were significantly lower 
in patients than controls (bP < 0.01 in all cases). Glutamate concentrations 
were significantly higher in cirrhotics (dP < 0.01) compared to controls. It 
was also significantly increased if we compared encephalopathics with 
controls (aP < 0.05).
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a positive predictive value (PPV) of 100%, a negative 
predictive value (NPV) of 94% a sensitivity of 95%, a 
specificity of 100% and an overall accuracy of 98%.

If we compared between patients in groups A 
and B, β-hydroxybutyrate was significantly lower in 
encephalopathics (0.58 ± 0.14 vs 0.16 ± 0.02, P < 
0.0002). In contrast, acetoacetate was significantly 
higher in encephalopathics (0.23 ± 0.02 vs 0.41 ± 0.16, 
P < 0.05). The concentration of leucine (0.33 ± 0.02 vs 
0.49 ± 0.05, P < 0.005) and isoleucine 0.12 ± 0.02 vs 
0.27 ± 0.02, P < 0.0004) were significantly higher in 
encepahopathics. Glutamine concentrations were lower 
in encephalopathic patients (0.44 ± 0.08 vs 0.36 ± 0.04, 
P < 0.013). Glycerol (0.53 ± 0.03 vs 0.19 ± 0.02, P 
< 0.000) and myoinositol concentrations (0.36 ± 0.04 
vs 0.18 ± 0.02, P < 0.01) were significantly lower in 
encepahlopathic patients. 

The strongest segregation was observed with 
input from β-hydroxybutyrate, glutamine, glycerol and 
glutamate in the SDA. A discriminate function (sum of 
concentrations of all four metabolites (β-hydroxybutyrate 
+ glutamine + glycerol + glutamate) in mmols/L < 
1.5 for encephalopathics) was created. By performing 
ROC analysis it had a PPV of 89%, a NPV of 83%, a 
sensitivity of 84%, a specificity of 88% and an overall 
accuracy of 87%.

DISCUSSION
Our study has confirmed that significant changes 
occur in plasma concentrations of amino acids and 
other key metabolites in patients with cirrhosis in the 
presence or not of hepatic encephalopathy. By using 
the metabonomics approach we were able to pinpoint 
metabolites that could be used to identify a patient 
with or without cirrhosis and with or without hepatic 
encephalopathy. We will now look at some particular 
substances in more detail.

Lactate and the amino acids alanine, threonine, 
glycine and aspartate are major precursors for 
gluconeogenesis. Pyruvate is also a central substance 
in glucose metabolism. In both cirrhotics and ence­
phalopathics we found that the concentrations of those 
substances were uniformly increased. It appears then 

that gluconeogesis is generally impaired in cirrhosis 
and encephalopathy. This would be in accordance with 
previous studies in humans[17,18] and animal models[19,20]. 
Pyruvate and glycine were part of the discriminate 
function between cirrhotics and healthy controls.

Our study showed that the concentrations of ketone 
bodies were significantly increased in both groups of 
patients compared to controls. In encephalopathics, 
acetoacaetate was even more increased than in 
cirrhotics but β-hydroxybutyrate concentrations were 
decreased. The fact that all ketogenic amino acids are 
increased in cirrhosis as well, would favour a hypothesis 
of impaired ketone bodies utilisation in the periphery 
(muscle, brain) The fact that β-hydroxybutyrate and 
acetate are significantly decreased in encephalopathic 
cirrhotics is indicative of an impaired ketogensis. We 
observed, however, that acetoacetate is increased in 
encephalopathics. Acetoacetate is the main product of 
ketogenesis and then by using nicotinamide adenine 
dinucleotide hydrogen (NADH) as co-substrate is further 
metabolised to acetate in the cellular mitochondria. 
β-hydroxybutyrate was part of the main discriminate 
function between cirrhotic and encephalopathic patients. 
We can hypothesize that, possibly, the precarious state 
of energy production in encephalopathy makes the 
availability of NADH for this further reaction minimal and 
it is shifted towards energy production from the Kreb’s
cycle, which is vital to the hepatocytes, instead of finali­
sing a product which is destined for export to other 
organs like muscle and brain. This is further consolidated 
by the fact that encephalopathics were shown to have a 
significantly lower glycerol level. This is an indication that 
fewer triglycerides are broken down and fewer lipids are 
made available for oxidation which is the main pathway 
that would lead to ketone body production. Glycerol was 
part of the main discriminant function between cirrhotic 
and encephalopathic patients. This lends support to 
the recent hypothesis that the phenylacetate could be 
used as a treatment in hepatic encephalopathy[21] and 
to subsequent studies in animal models that were in 
accordance with that[22,23].

Typical changes in plasma amino acid patterns have 
been found in different studies in patients[24,25] and 
experimental animals in chronic liver failure[26,27]. Those 
changes are increased concentrations of the AAA and 
methionine and decreased concentrations of the BCAA. 
The AAA and methionine are primarily metabolised 
by the liver and their raised concentrations in both 
cirrhotics and encepahlopathic cirrhotics are probably 
due to impaired liver metabolism and portosystemic 
shunting of blood. Our findings related to AAA confirm 
findings by numerous previous studies[24-27] which 
showed an increase in AAA concentrations. 

The story is more complex for the BCAA and is 
further complicated by the findings of this study that 
in encepohalopathics there was an increase in the 
concentrations of leucine and isoleucine. The normal liver 
does not play a major role in the breakdown of the BCAA 
which are mostly catabolised in the skeletal muscle 

Table 5  Results for amines, glycerol and myo-inositol are 
shown 

Chemical shift Cirrhotics Encephalopathics Controls

Methylamine 2.54 0.17 ± 0.03 0.19 ± 0.03 0
Dimethylamine 2.72 0.29 ± 0.03 0.31 ± 0.04 0
Tmao 3.27 0.45 ± 0.07 0.51 ± 0.08 0
Glycerol 3.79  0.53 ± 0.09b    0.2 ± 0.02b 0.08 ± 0.02
Myoinositol 3.63  0.37 ± 0.06a 0.19 ± 0.04 0.16 ± 0.03

Methylamine, dimethylamine and TMAO were present in patients and 
absent in controls. Glycerol concentrations were significantly higher 
in patients than controls (bP < 0.01). Myo-inositol concentrations were 
significantly higher in cirrhotics (aP < 0.015) but there were no differences 
between encephalopathics and controls.
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and kidneys. It was postulated that hyperisulinaemia 
which is present in cirrhosis may drive BCAA to the 
muscle and the kidneys where they are broken down[28]. 
Our results do not support this hypothesis particularly 
in encephalopathy as concentrations of leucine and 
isoleucine are increased in encephalopathy. If we look 
at BCAA individually we find that their metabolic fate 
after the initials transamination and decarboxylation 
can be very different from one to the other. Leucine is 
a ketogenic amino acid which can be oxidised to acetyl-
CoA. This study provides evidence that ketogenesis 
is impaired in encephalopathy as is the peripheral utili­
sation of the ketone bodies and this might explain the 
increased concentrations of leucine. Valine can only be 
a gluconeogenic amino acid that could enter the Kreb’s
cycle and provide towards the production of ATP. As 
acetyl-CoA is in short supply Kreb’s cycle can be fuelled 
from alternative sources such as valine. And this might 
explain the decreased concentrations of that amino acid. 

We do not have an immediate explanation as to why 
the concentration of isoleucine is high in encephalopathic 
cirrhotics in our study population. Isoleucine is a ketogenic 
amino acid and as the production of acetoacetate is 
increased but its catabolism is not it might be an index of 
diminished ketogenesis in encephalopathy.

Hyperammonaemia and diminished urea production 
are well characterised phenomena in cirrhotic patients[29-31]. 
Our study showed that cirrhotics had increased levels of 
glutamate, histidine and arginine and decreased levels 
of glutamine. This is a pattern which is not in accordance 
with the previous studies which showed a generalised 
decrease in those amino acids in chronic liver failure. It is 
in accordance though with studies in experimental animal 
models of liver failure. Although other studies in patients 
suffering acute liver failure confirmed this pattern, our 
studies in acute liver failure found no differences in any 
of those substances between patients and controls[32,33]. 
Arginine is an amino acid that is an intermediary of 
the urea cycle. Its observed increased concentrations 
are in agreement with a decreased urea cycle as is the 
increased histidine concentrations which is a glutamate 
precursor. 

Glutamine however, was part of the main discriminate 
function between cirrhotic and encephalopathic patients. 
Although this might seem paradoxical, there is evidence 
of increased ammonia production during encephalopathy, 
which is implicated in its pathogenesis. The fact that 
glutamine synthesis is impaired may provide another 
point for the hyperammonaemia of encephalopathy. An 
alternative pathway to this is the production of amines 
and TMAO which can assist in the ammonia detoxification 
in the presence of urea cycle impairment. Glutamate and 
glutamine were part of the discriminate function between 
cirrhotics and encephalopathic patients.

In conclusion, this study provides evidence that in 
stable cirrhosis key metabolic pathways are impaired and 
confirms the fact that there is impaired gluconeogensis, 
impaired ketogensis and ketone bodies break down 
and impaired urea cycle. In encephalopathy there is a 

reversal in the pattern of BCAA concentrations towards 
normal. By using SDA we were able to separate with 
remarkable accuracy metabolic phenotypes of cirrhotic 
patients from controls and also those who suffered from 
encephalopathy from those cirrhotics who were not.
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