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Abstract 

AIM: To determine if gene-specific DNA methylation in prospectively collected blood samples is associated with later development of hepatocellular carcinoma (HCC).

METHODS: Comparing genome-wide DNA methy​lation profiles using Illumina Human methylation 450K arrays, we previously identified a list of loci that were differentially methylated between tumor and adjacent nontumor tissues. To examine if dysregulation of DNA methylation patterns observed in tumor tissues can be detected in white blood cell (WBC) DNA, we conducted a prospective case-control study nested within a community-based cancer screening cohort in Taiwan with 16 years of follow up. We measured methylation levels in ninety-six loci that were aberrant in DNA methylation in HCC tumor tissues compared to adjacent tissues. Baseline WBC DNA from 159 HCC cases and 312 matched controls were bisulfite treated and assayed by Illumina BeadArray. We used the 2 test for categorical variables and student’s t-test for continuous variables to assess the difference in selected characteristics between cases and controls. To estimate associations with HCC risk, we used conditional logistic regression models stratified on the matching factors to calculate odds ratios (OR) and 95%CI.  

RESULTS: We found that high methylation level in cg10272601 in WNK2 was associated with increased risk of HCC, with an OR of 1.91 (95%CI: 1.27-2.86). High methylation levels in both cg12680131 in TPO and cg22511877 in MYT1L, however, were associated with decreased risk. The ORs (95%CI) were 0.59 (0.39-0.87) and 0.50 (0.33-0.77), respectively, for those with methy​lation levels of cg12680131 and cg22511877 above the median compared with those with levels below the median. These associations were still statistically significant in multivariable conditional logistic regression models after adjusting for hepatitis B virus infection and alcohol consumption. 

CONCLUSION: These findings support the measure​ment of methylation markers in WBC DNA as biomar​kers of HCC susceptibility but should be repli​cated in additional prospective studies. 
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Core tip: Hepatocellular carcinoma (HCC) is a highly fatal disease thus, the identification of biomarkers that could predict risk for development could enhance screen​ing/early detection and prognosis. DNA methylation alterations are well established in HCC but whether changes in DNA methylation in white blood cells (WBC) are associated with increased risk of developing HCC is unknown. Taking advantage of a cancer screening program in Taiwan, we measured baseline WBC DNA methylation in prospectively collected blood samples at 96 CpG sites that were identified as differentially methy​lated in HCC tumors compared to adjacent tissues. Three were significantly associated with later development of HCC suggesting potential utility as a marker of risk.

INTRODUCTION 

Hepatocellular carcinoma (HCC) is among the most common cancers around the word[1]. Hepatitis B and C virus infection are the most important risk factors of HCC[2-4]. More recent studies have also identified the importance of exposure to alcohol, dietary aflatoxins and cigarette smoke[5-7]. 

The mechanisms of liver cancer induction are now known to include mutations in specific genes and epig​enetic alterations such as changes in DNA methy​lation and microRNA expression. These changes lead to changes in expression of oncogenes and tumor suppre​ssor genes[8-10]. DNA hypermethylation can silence tumor suppressor genes while hypomethylation can activate oncogenes[11,12]. Using Illumina Humanmethy​lation 27K and 450K BeadChips, we previously reported a distinct DNA methylation pattern between HCC tumor and paired adjacent nontumor tissues (NCBI’s GEO database accession numbers GSE54503 and GSE37988)[13,14]. In one of the studies, we found 28017 CpG sites hyper​methylated and 102495 hypomethy​lated in tumor tissues compared with paired adjacent tissues[14], suggesting their role in HCC tumorigenesis. 

Using data on baseline white blood cell (WBC) DNA banked up to 16 years before diagnosis, we recently reported that global hypomethylation of Sat2, a repetitive element, was associated with increased HCC risk[15] and was also associated with high AFB1 exposure[16]. These results suggest that decreased overall DNA methylation in WBC DNA can be used as a biomarker for HCC risk.

The main aim of this study was to examine whether the dysregulation of DNA methylation markers observed in tumor tissues can be detected in WBC DNA. We measured methylation levels in ninety-six loci in WBC DNA from 159 HCCs who developed cancer after enroll​ment in a community-based cancer screening program in Taiwan[5,6,15] and compared them with 312 controls who remained cancer free in the same cohort. 

MATERIALS AND METHODS
Study population

This study included individuals who participated in a Cancer Screening Program cohort in Taiwan. This study was approved by both the Institutional Review Board of Columbia University and the Research Ethics Committee of the College of Public Health at National Taiwan University. We obtained written informed consent from all study subjects in this study. 

Detail information regarding the cohort description and screening procedure and follow-up was provided in previous publications[5,6,15,16]. Between July 1990 and June 1992, 12020 males and 11924 females aged from 30 to 65 years old and who lived in seven towns in Taiwan were enrolled in this study. Each participant filled out a structured questionnaire to collect information including demographic characteristics, history of alcohol intake and cigarette smoking, history of chronic disease and family history of cancers, including HCC. Each participant also donated a fasting blood sample during the time of recruitment. 

In this study, we used blood collected from 159 participants who were diagnosed with HCC during the interval between their blood draw and June 2008. We also used blood from 312 controls who remained cancer free in the same cohort. Controls were selected by matching to each case by age (within 5 years), sex, residential area and time of recruitment (within 3 mo). Baseline WBCs were shipped to Columbia Univer​sity on dry ice for DNA isolation and DNA methylation measurement.

DNA bisulfite conversion

We extracted genomic DNA from WBC using a salting out procedure. We bisulfite-treated an aliquot of DNA (500 ng) with EZ DNA methylation kits (Zymo Research, Orange, CA). The bisulfite DNA was resuspended in 20 L of distilled water and stored at -20 ℃ until use. 

Loci selection and methylation measurement

We selected 96 CpG sites that previously had shown either hyper- or hypomethylation in HCC tumor com​pared to paired adjacent nontumor tissues in our 450k array data[14]. We selected our target CpG sites from among the top 250 most hyper or hypomethylated sites. Our selection of targets was based on the follow​ing criteria: (1) the largest methylation differences between tumor and adjacent tissues; (2) half of the CpG sites showing hypomethylation and half hyper​methylation; and (3) one site per gene. Due to the inability to design primers for some sites, we have 65 CpG sites with hypermethylation and 31 CpG sites with hypomethylation. DNA methylation analysis was measured using an Illumina GoldenGate assay with BeadArray technology. The arrays were customized to measure methylation covering the CpG sites identified in the 450k array. DNA methylation values were scored as -values which ranges between 0 and 1. 

Statistical analysis

We used the 2 test and/or student’s t-test to assess the difference in selected variables between cases and controls. To estimate associations between methylation markers and HCC risk, we used a conditional logistic regression model using PROC PHREG procedure. Sub​jects were divided into different methylation groups: Those with methylation levels above the median value for all controls sample vs those below the median. In the multivariable model, we modeled the associations of methylation in cg10272601 in WNK2, cg12680131 in TPO and cg22511877 in MYT1L adjusting for, hepatitis B virus surface antigen (HBsAg) (Yes vs No), and history of alcohol intake (Ever vs Never) in the model. All analyses were performed with SAS software 9.2 (SAS Institute, Cary, NC). 

RESULTS 

The distributions of subjects’ characteristics at baseline for cases and matched controls is given in Table 1. The distributions of matching factors including age, sex were similar between cases and controls. There were 51.7% and 52.5% males in cases and controls, respectively. The distribution of smoking was also similar, while the percentage of ever alcohol consumption was slightly lower in controls (11.5%) than in cases (18.2%). The percents positive for HBsAg and anti-HCV were higher in cases than in matched controls [58.5% vs 23.1% for HBsAg (+) and 18.2% vs 4.8% for anti-HCV (+)]. 

Table 2 presents the distributions of the 96 methy​lation markers by HCC status. The mean values of meth​ylation vary by methylation markers. Fifty DNA meth​ylation markers had mean methylation values below 10% in cases and controls. Nineteen DNA methylation markers had mean methylation values above 90%. About 27 DNA methylation markers had mean methylation levels between 10% and 90%. The mean levels of three DNA methylation markers were statistically significantly different between cases and controls, including cg10272601, cg12680131, and cg22511877. The mean methylation beta values for cg1027261 were 0.30 ± 0.07 for cases and 0.28 ± 0.08 for controls (P = 0.04). Values for cg12680131 were 0.80 ± 0.09 and 0.82 ± 0.11 for cases and controls, respectively (P = 0.02) and for cg22511877, 0.56 ± 0.17 for cases and 0.60 ± 0.16 for controls (P = 0.01). 

The association between DNA methylation of cg10272601, cg12680131, and cg22511877 and HCC are given in Table 3. The OR for those with cg10272601 methy​lation above the median was 1.91 (95%CI: 1.27-2.86). Individuals with a cg12680131 methylation level above the median had lower risk of HCC, with an OR of 0.59 (95%CI: 0.39-0.87). The OR was 0.50 (95%CI: 0.33-0.77) for those with cg22511877 methy​lation above median. 

Table 4 shows the multiple variables conditional logistic regression model. Overall, HBsAg (+) was associated with increased HCC risk (OR = 5.50, 95%CI: 3.34-9.03) compared with HBsAg(-). Ever smokers had a 2.1-fold increased risk of developing HCC (OR = 2.10, 95%CI: 1.08-4.07). The ORs (95%CI) were 2.26 (1.42-3.61), 0.55 (0.34-0.87), and 0.53 (0.32-0.88) for cg10272601, cg12680131, and cg22511877 hypermethy​lation. 

DISCUSSION
Alterations in methylation of cg10272601, cg12680131, and cg22511877 were associated with risk for later HCC development. Consistent with our tissue data, we found that a high methylation level in cg10272601 was associated with increased risk of HCC, while high methylation levels in both cg12680131 and cg22511877 were associated with decreased risk. In the 450k data, the mean beta values were 0.52 ± 0.22 for cg10272601, 0.28 ± 0.21 for cg12680131, and 0.34 ± 0.26 for cg22511877 in HCC tumors[14]. The corresponding beta values were 0.10 ± 0.06, 0.79 ± 0.08, 0.87±0.05, respectively, in adjacent nontumor tissues. 

cg10272601 is located at transcription start site (TSS) 200 of WNK2, a gene encoding a serine-threonine kinase on chromosome 9q22.31[17]. WNK2 acts as a tumor suppressor gene by suppressing the ERK/MAPK-pathway and downstream cell cycle progression[18] and WNK2 expression inhibited colony formation[19], suggesting a role in cell growth suppression. Dense high methylation at the CpG island was associated with decreased WNK2 expression[19]. Hypermethylation of WNK2 was reported in many cancers, including pancreatic ductal adeno​carcinoma[20], HCC[14,21], and gliomas[22].

cg12680131 is located on chromosome 2p25 at TSS 200 of thyroid peroxidase (TPO), a key enzyme in thyroid hormone synthesis. Mutations in TPO are associated with several disorders of thyroid hormonogenesis[23]. The association of methylation and expression of TPO has not been studied and the role of TPO in carcinogenesis has not been reported. cg22511877 is located at a shore region of myelin transcription factor 1-like (MYT1L) also on chromosome 2p25. MYT1L is a main member of the MYT/NZF family of transcription factors[24,25]. Limited data suggests a polymorphism in MYT1L is associated with gastric cancer outcome in a Chinese population[26]. Future studies are needed to understand the mechanisms of hypomethylation of both TPO and MYT1L in hepatocarcinogenesis. 

The main limitation of this study is that we did not adjust for multiple comparisons due to the limited sample size. However, in further data analysis, we also observed significant associations of methylation in these 3 CpG sites with HCC risk after adjusting for HBV infection and alcohol consumption, suggesting an independent effect in HCC risk. 

This study, using prospective study design, allowed us to produce causal evidence on DNA methylation in WBC and cancer susceptibility[27]. Using information from HCC tumor tissues, our study investigated the associations of HCC-specific differentially methylated loci observed in tumor tissues in WBC DNA with HCC risk. 

In summary, we provide new evidence that specific loci methylation in WBC DNA is associated with increa​sed HCC susceptibility. These finding could lead to development of a simple non-invasive blood measure of DNA methylation to identify people at high risk of HCC. 

COMMENTS
Background

Hepatocellular carcinoma (HCC) is a highly devastating disease with a poor prognosis. Thus, methods that allow the identification of individuals at elevated risk of HCC should greatly enhance screening for early diagnosis and improve prognosis. While several risk factors are well known such as infection with hepatitis B or C virus, not all viral-infected individuals develop cancer. Additional biomarkers of risk are therefore needed.

Research frontiers

It is known that tumors release DNA into the blood stream and that this DNA contains the same DNA alterations both mutations and changes in DNA methylation that are found in the tumor. Thus, researchers have been able to develop assays for tumor DNA in plasma/serum for early diagnosis. There is also limited data in some cancers, not HCC, that DNA methylation changes in blood cells differs between cases and controls.

Innovations and breakthroughs

This study is the first to investigate whether DNA methylation in specific genes in white blood cells is predictive of later HCC development. 

Applications

While the study needs confirmation in another population, it suggests that it may be possible to develop risk prediction models that include white blood cell DNA methylation markers.

Peer-review

This is a very interesting paper. The authors found the correlation between DNA methylation and HCC occurring. The results provide sufficient experimental evidence or data to draw firm scientific conclusions.
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Table 1  Sociodemographic characteristics of hepatocellular carcinoma cases and matched controls 


Variable


�
Cases 


�
% 


�
Controls 


�
% 


�
P


�
�
 


�
n = 159


�
�
n =312


�
�
 


�
�
Age (yr, mean, SD)


�
52.8 (8.0)


�
�
53.1 (7.8)


�
�
    0.72


�
�
BMI (mean, SD)


�
24.3 (3.6)


�
�
24.8 (3.7)


�
�
    0.13


�
�
Gender 


�
�
�
�
�
�
�
   Female 


�
    77


�
 48


�
  148


�
 47


�
    0.92


�
�
   Male 


�
    82


�
 52


�
  164


�
 53


�
�
�
HBsAg 


�
�
�
�
�
�
�
   Negative 


�
    65


�
 41


�
  238


�
 76


�
< 0.0001


�
�
   Positive 


�
    93


�
 59


�
    72


�
 23


�
�
�
   Missing


�
      1


�
< 1


�
      2


�
< 1


�
�
�
Anti-HCV 


�
�
�
�
�
�
�
   Negative 


�
 109


�
 69


�
  243


�
 78


�
< 0.0001


�
�
   Positive 


�
    29


�
 18


�
    15


�
   5


�
�
�
   Missing


�
    21


�
 13


�
    54


�
 17


�
�
�
Smoking 


�
�
�
�
�
�
�
   Never


�
    97


�
 61


�
  184


�
 59


�
    0.67


�
�
   Ever


�
    62


�
 39


�
  128


�
 41


�
�
�
Alcohol 


�
�
�
�
�
�
�
   Never


�
  130


�
 82


�
  276


�
 89


�
 0.046


�
�
   Ever


�
    29


�
 18


�
    36


�
 12


�
�
�
HBsAg: Hepatitis B virus surface antigen; BMI: Body mass index; HCV: Hepatitis C virus.








Table 2  Distribution of DNA methylation by hepatocellular carcinoma status


Locus


�
Gene


�
HCC cases


�
Controls


�
P1


�
�
�
�
Mean


�
SD


�
Mean


�
SD


�
 


�
�
cg00028598


�
GABRA5


�
0.92


�
0.04


�
0.92


�
0.07


�
0.81


�
�
cg00108164


�
ACP1


�
0.01


�
0.02


�
0.00


�
0.01


�
0.55


�
�
cg00249511


�
SCT


�
0.01


�
0.04


�
0.01


�
0.04


�
0.80


�
�
cg00753478


�
LDHB


�
0.09


�
0.08


�
0.08


�
0.06


�
0.12


�
�
cg00817367


�
GRASP


�
0.01


�
0.04


�
0.01


�
0.01


�
0.23


�
�
cg00939495


�
DRD5


�
0.22


�
0.10


�
0.22


�
0.12


�
0.95


�
�
cg01530024


�
STK32B


�
0.97


�
0.08


�
0.97


�
0.07


�
0.79


�
�
cg01566592


�
RIMS2


�
0.10


�
0.09


�
0.09


�
0.08


�
0.32


�
�
cg01860297


�
BASP1


�
0.96


�
0.03


�
0.95


�
0.08


�
0.49


�
�
cg02527669


�
OBSL1


�
0.02


�
0.02


�
0.03


�
0.05


�
0.53


�
�
cg02553663


�
SECTM1


�
0.03


�
0.04


�
0.03


�
0.03


�
0.65


�
�
cg02710296


�
C1orf14


�
0.33


�
0.11


�
0.33


�
0.11


�
0.92


�
�
cg02736548


�
FAM109B


�
0.08


�
0.09


�
0.08


�
0.09


�
0.46


�
�
cg03306486


�
APC2


�
0.02


�
0.02


�
0.01


�
0.02


�
0.44


�
�
cg03396005


�
APCDD1


�
0.92


�
0.04


�
0.92


�
0.06


�
0.99


�
�
cg03621881


�
BRUNOL6


�
0.04


�
0.05


�
0.03


�
0.04


�
0.70


�
�
cg04920951


�
GSTP1


�
0.01


�
0.07


�
0.00


�
0.02


�
0.22


�
�
cg05328339


�
PTPRN2


�
0.89


�
0.09


�
0.88


�
0.10


�
0.55


�
�
cg05661282


�
ZNF154


�
0.03


�
0.05


�
0.03


�
0.08


�
0.75


�
�
cg05699035


�
KCNK2


�
0.86


�
0.07


�
0.86


�
0.08


�
0.99


�
�
cg05833351


�
CUGBP2


�
0.95


�
0.07


�
0.95


�
0.08


�
0.70


�
�
cg05970721


�
HS3ST2


�
0.90


�
0.10


�
0.91


�
0.10


�
0.49


�
�
cg06382344


�
TBR1


�
0.02


�
0.03


�
0.03


�
0.05


�
0.13


�
�
cg06445348


�
ILDR2


�
0.02


�
0.06


�
0.01


�
0.01


�
0.24


�
�
cg06641285


�
TIMP2


�
0.02


�
0.02


�
0.02


�
0.05


�
0.74


�
�
cg07061738


�
SMOC2


�
0.94


�
0.08


�
0.94


�
0.11


�
0.75


�
�
cg07689503


�
MTHFD2


�
0.00


�
0.00


�
0.00


�
0.01


�
0.27


�
�
cg07759394


�
GLB1L2


�
0.01


�
0.03


�
0.01


�
0.02


�
0.44


�
�
cg07765706


�
KCNQ3


�
0.95


�
0.03


�
0.95


�
0.08


�
0.12


�
�
cg08328777


�
DUOX1


�
0.07


�
0.05


�
0.07


�
0.06


�
0.30


�
�
cg08714590


�
FZD1


�
0.86


�
0.12


�
0.86


�
0.12


�
0.43


�
�
cg08738570


�
C1orf70


�
0.09


�
0.10


�
0.09


�
0.08


�
0.69


�
�
cg09210956


�
SNTG2


�
0.67


�
0.09


�
0.67


�
0.12


�
0.93


�
�
cg09433131


�
KCNB2


�
0.94


�
0.06


�
0.93


�
0.10


�
0.43


�
�
cg09489445


�
ZNF788


�
0.01


�
0.03


�
0.01


�
0.04


�
0.92


�
�
cg09901035


�
PLEKHG4B


�
0.87


�
0.06


�
0.87


�
0.08


�
0.66


�
�
cg10272601


�
WNK2


�
0.30


�
0.07


�
0.28


�
0.08


�
0.04


�
�
cg10342963


�
IGF1R


�
0.81


�
0.13


�
0.79


�
0.15


�
0.07


�
�
cg11349423


�
OPCML


�
0.48


�
0.15


�
0.48


�
0.16


�
0.93


�
�
cg11377136


�
PKDREJ


�
0.03


�
0.03


�
0.03


�
0.03


�
0.69


�
�
cg11686528


�
ABR


�
0.01


�
0.07


�
0.01


�
0.06


�
0.60


�
�
cg12296772


�
MTMR7


�
0.07


�
0.06


�
0.07


�
0.07


�
0.78


�
�
cg12610564


�
SLC39A12


�
0.98


�
0.01


�
0.97


�
0.07


�
0.09


�
�
cg12680131


�
TPO


�
0.80


�
0.09


�
0.82


�
0.11


�
0.02


�
�
cg12852139


�
MYO10


�
0.96


�
0.02


�
0.95


�
0.06


�
0.70


�
�
cg13204512


�
RNF135


�
0.01


�
0.06


�
0.01


�
0.02


�
0.23


�
�
cg13517866


�
SMOC2


�
0.89


�
0.11


�
0.89


�
0.10


�
0.58


�
�
cg13564825


�
PPP1R14A


�
0.01


�
0.05


�
0.01


�
0.02


�
0.98


�
�
cg13604246


�
ANKMY1


�
0.11


�
0.08


�
0.11


�
0.09


�
0.68


�
�
cg13611121


�
COL5A1


�
0.80


�
0.08


�
0.80


�
0.10


�
0.73


�
�
cg13782274


�
KCNQ2


�
0.94


�
0.08


�
0.93


�
0.11


�
0.39


�
�
cg13791254


�
FOXE1


�
0.02


�
0.02


�
0.01


�
0.03


�
0.62


�
�
cg13879483


�
USP44


�
0.08


�
0.06


�
0.07


�
0.07


�
0.34


�
�
cg13895235


�
PRKAR1B


�
0.01


�
0.01


�
0.01


�
0.03


�
0.39


�
�
cg14183206


�
HLA-L


�
0.24


�
0.10


�
0.23


�
0.09


�
0.61


�
�
cg14486338


�
KCNS2


�
0.12


�
0.07


�
0.12


�
0.07


�
0.53


�
�
cg14644001


�
PRRT1


�
0.04


�
0.03


�
0.04


�
0.05


�
0.63


�
�
cg14645545


�
SLC11A1


�
0.20


�
0.12


�
0.19


�
0.12


�
0.83


�
�
cg14715697


�
HRNBP3


�
0.70


�
0.08


�
0.71


�
0.08


�
0.20


�
�
cg14866200


�
SHISA3


�
0.02


�
0.07


�
0.02


�
0.06


�
0.74


�
�
cg14988503


�
CDKL2


�
0.02


�
0.03


�
0.02


�
0.03


�
0.85


�
�
cg15092343


�
MSX1


�
0.07


�
0.05


�
0.07


�
0.04


�
0.48


�
�
cg15167871


�
TCERG1L


�
0.92


�
0.10


�
0.92


�
0.11


�
0.98


�
�
cg15549700


�
AJAP1


�
0.96


�
0.05


�
0.96


�
0.08


�
0.53


�
�
cg15760257


�
SARM1


�
0.01


�
0.01


�
0.01


�
0.05


�
0.35


�
�
cg17264670


�
RGS17


�
0.08


�
0.06


�
0.08


�
0.08


�
0.94


�
�
cg17497608


�
FZD1


�
0.83


�
0.11


�
0.84


�
0.12


�
0.43


�
�
cg17725364


�
COL6A3


�
0.96


�
0.10


�
0.96


�
0.09


�
0.86


�
�
cg18537730


�
IZUMO1


�
0.16


�
0.07


�
0.16


�
0.08


�
0.63


�
�
cg19429281


�
ZNF702P


�
0.02


�
0.01


�
0.02


�
0.03


�
0.40


�
�
cg19464917


�
ISL2


�
0.06


�
0.04


�
0.05


�
0.03


�
0.17


�
�
cg20129213


�
RIMS2


�
0.01


�
0.05


�
0.01


�
0.05


�
0.47


�
�
cg20399616


�
BCAT1


�
0.05


�
0.08


�
0.04


�
0.08


�
0.40


�
�
cg21385746


�
LOC150568


�
0.96


�
0.10


�
0.95


�
0.11


�
0.80


�
�
cg21472506


�
OTX1


�
0.01


�
0.04


�
0.01


�
0.04


�
0.98


�
�
cg21790626


�
ZNF154


�
0.04


�
0.04


�
0.05


�
0.05


�
0.32


�
�
cg22403469


�
RIMBP2


�
0.83


�
0.05


�
0.83


�
0.08


�
0.63


�
�
cg22511877


�
MYT1L


�
0.56


�
0.17


�
0.60


�
0.16


�
0.01


�
�
cg22524061


�
OSR2


�
0.23


�
0.09


�
0.22


�
0.09


�
0.48


�
�
cg22655988


�
CRMP1


�
0.96


�
0.08


�
0.96


�
0.10


�
0.77


�
�
cg22789900


�
MIXL1


�
0.00


�
0.01


�
0.01


�
0.04


�
0.55


�
�
cg23004031


�
MGMT


�
0.55


�
0.31


�
0.58


�
0.32


�
0.41


�
�
cg23391785


�
DNM3


�
0.02


�
0.06


�
0.01


�
0.04


�
0.28


�
�
cg23498518


�
POM121L12


�
0.79


�
0.07


�
0.80


�
0.10


�
0.36


�
�
cg23864180


�
ADARB2


�
0.90


�
0.06


�
0.91


�
0.07


�
0.26


�
�
cg24274117


�
C20orf195


�
0.03


�
0.07


�
0.04


�
0.07


�
0.52


�
�
cg24425838


�
C2CD4D


�
0.05


�
0.08


�
0.05


�
0.07


�
0.98


�
�
cg24432073


�
CDKL2


�
0.02


�
0.03


�
0.02


�
0.04


�
0.84


�
�
cg24563094


�
FAM59B


�
0.10


�
0.04


�
0.10


�
0.05


�
0.55


�
�
cg24602704


�
ATP10A


�
0.97


�
0.02


�
0.97


�
0.07


�
0.46


�
�
cg24816460


�
CDYL


�
0.03


�
0.07


�
0.03


�
0.07


�
0.51


�
�
cg25480336


�
ZFP64


�
0.01


�
0.02


�
0.01


�
0.01


�
0.16


�
�
cg25577023


�
AMN


�
0.09


�
0.09


�
0.09


�
0.09


�
0.82


�
�
cg25622366


�
OTX1


�
0.02


�
0.07


�
0.02


�
0.05


�
0.66


�
�
cg26010734


�
EPHX3


�
0.05


�
0.05


�
0.05


�
0.04


�
0.43


�
�
cg26841013


�
WNT3A


�
0.03


�
0.02


�
0.03


�
0.03


�
0.45


�
�
1P value for student’s t-test.





Table 3  White blood cell DNA methylation and hepatocellular carcinoma risk


Locus


�
�
Cases/controls


�
OR (95%CI)


�
�
WNK2 cg10272601


�
Below median (< 0.279)


�
  56/157


�
1.0


�
�
�
 Above median (≥ 0.279)


�
103/155


�
1.91 (1.27-2.86)


�
�
TPO cg12680131


�
Below median (< 0.836)


�
102/157


�
1.0


�
�
�
 Above median (≥ 0.836)


�
  57/155


�
0.59 (0.39-0.87)


�
�
MYT1L cg22511877


�
Below median (< 0.636)


�
105/159


�
1.0


�
�
�
 Above median (≥ 0.636)


�
  54/153


�
0.50 (0.33-0.77)


�
�






Table 4  Multiple variables model for DNA methylation and hepatocellular carcinoma risk


Variable 


�
OR (95%CI)


�
P


�
�
WNK2 cg102726011


�
2.26 (1.42-3.61)


�
    0.0006


�
�
TPO cg126801312


�
0.55 (0.34-0.87)


�
0.01


�
�
MYT1L cg225118773


�
0.53 (0.32-0.88)


�
0.01


�
�
HBsAg (positive vs negative)


�
5.50 (3.34-9.03)


�
 < 0.0001


�
�
Alcohol (yes vs no)


�
2.10 (1.08-4.07)


�
0.03


�
�
1Above or below the median of 0.279; 2Above or below the median of 0.836; 3Above or below the median of 0.636. HBsAg: Hepatitis B virus surface antigen.








PAGE  

