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Abstract
The accepted paradigm for intestinal-type gastric cancer 
pathogenesis is a multistep progression from chronic 
gastritis induced by Helicobacter pylori  (H. pylori ) to 
gastric atrophy, intestinal metaplasia, dysplasia and 
ultimately gastric cancer. The genetic and molecular 
mechanisms underlying disease progression are still 
not completely understood as only a fraction of colo
nized individuals ever develop neoplasia suggesting that 
bacterial, host and environmental factors are involved. 
MicroRNAs are noncoding RNAs that may influence H. 
pylori -related pathology through the regulation of the 
transcription and expression of various genes, playing 
an important role in inflammation, cell proliferation, 
apoptosis and differentiation. Indeed, H. pylori  have 
been shown to modify microRNA expression in the 
gastric mucosa and microRNAs are involved in the imm
une host response to the bacteria and in the regulation 
of the inflammatory response. MicroRNAs have a key 
role in the regulation of inflammatory pathways and 
H. pylori  may influence inflammation-mediated gastric 
carcinogenesis possibly through DNA methylation and 
epigenetic silencing of tumor suppressor microRNAs. 
Furthermore, microRNAs influenced by H. pylori  also 
have been found to be involved in cell cycle regulation, 
apoptosis and epithelial-mesenchymal transition. 
Altogether, microRNAs seem to have an important role in 
the progression from gastritis to preneoplastic conditions 
and neoplastic lesions and since each microRNA can 
control the expression of hundreds to thousands of 
genes, knowledge of microRNAs target genes and their 
functions are of paramount importance. In this article 
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we present a comprehensive review about the role of 
microRNAs in H. pylori  gastric carcinogenesis, identifying 
the microRNAs downregulated and upregulated in the 
infection and clarifying their biological role in the link 
between immune host response, inflammation, DNA 
methylation and gastric carcinogenesis. 

Key words: Helicobacter pylori ; MicroRNA; Gastric 
cancer; Inflammation; DNA methylation; Preneoplastic 
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Core tip: Helicobacter pylori  (H. pylori ) are involved in 
the progression of gastric preneoplastic conditions and 
gastric carcinogenesis although the clear genetic and 
molecular mechanisms are not completely clear. Micro
RNAs may have an important role in the development 
of H. pylori  mediated pathology since they can alter the 
expression of hundreds to thousands of genes. In this 
article we present a comprehensive review about the 
microRNAs that are altered in H. pylori  infection and 
the biological consequences of this alteration, linking 
the inflammatory and immune host response with the 
progression of preneoplastic conditions and gastric 
carcinogenesis.
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INTRODUCTION 
Gastric cancer (GC) is the fourth most common cancer 
and the second leading cause of cancer-related death[1]. 
Helicobacter pylori (H. pylori), a microaerophilic gram-
negative bacteria that colonizes the gastric epithe
lium of over 50% of the world’s population, has been 
identified as a definite (type Ⅰ) carcinogen by the World 
Health Organization and is thought to contribute for 
approximately 75% of GCs[2].

The accepted paradigm for the pathogenesis of 
intestinal-type GC is a multistep progression from infla
mmation/chronic gastritis induced by H. pylori to gastric 
atrophy, intestinal metaplasia, dysplasia and ultimately 
adenocarcinoma, as first suggested by Correa[3]. H. 
pylori are responsible for the initial stages of gastritis 
and atrophy and contributes to the progression to pren
eoplastic conditions/lesions and ultimately GC, but the 
molecular mechanisms underlying disease progression 
are still not completely understood. Besides, only a 
fraction of colonized individuals ever develop neopla
sia, suggesting that strain-specific bacterial virulence 
factors, host responses and environmental factors may 

influence cancer risk.
MicroRNAs (miRNAs) are noncoding RNAs with 18-24 

nucleotides which can cause mRNA degradation or 
translational inhibition, influencing the transcription and 
expression of various genes and playing an important 
role in inflammation, cell proliferation, apoptosis and 
differentiation. The biogenesis of miRNAs is initiated in 
the nucleus by the RNase Ⅲ enzyme Drosha[4]. Drosha 
and its cofactor Pasha (DGCR8) cleave primary miRNA 
transcripts generating precursor miRNAs of about 
60 nucleotides (pre-miRNA) which are subsequently 
transported out of the nucleus to the cytoplasm for 
further processing into mature miRNA by Dicer, a cytop
lasmic RNase Ⅲ[5,6]. Mature miRNAs are single-stranded 
RNA, 18-24 nucleotides long, which down-regulate 
specific gene products by translational repression of 
their target mRNAs via direct binding to 3’ untranslated 
regions (3’-UTR) or by directing mRNA degradation via 
binding to perfectly complementary sequences[7].

Over one thousand microRNAs have been identi
fied and each miRNA may regulate the expression 
of hundreds to thousands of target genes and it is 
estimated that 30%-92% of human genes are regulated 
by miRNA[8]. Identification of these target genes is 
critical to understand the biological role of each miRNA 
since miRNAs can influence the expression of tumor 
suppressor genes and oncogenes and thus are involved 
in proliferation and apoptosis, possibly contributing to 
initiation and progression of malignancy. In gastroin
testinal cancers some miRNAs are downregulated 
suggesting that these downregulated miRNAs act as 
tumor suppressors (e.g., mir-15b and mir-16, which 
target anti-apoptotic Bcl-2, are downregulated in GC)[9]. 
On the other hand, some miRNA are overexpressed 
in gastrointestinal cancers, suggesting their role as 
oncogenes (e.g., miR-155, which represses expression 
of pro-apoptotic TP53INP1, is overexpressed in mucosa-
associated lymphoid tissue lymphoma)[10]. 

H. pylori can affect the expression of various miRNAs 
which may induce epigenetic deregulation of oncogenes 
and tumor suppressor genes and may represent the 
bridge between H. pylori-gastritis and GC[11,12]. H. 
pylori possess a set of virulence factors necessary to 
successfully colonize the gastric mucosa and establish 
chronic infection. The vacuolating cytotoxin (VacA) 
exhibits vacuolating activity and is coded by the gene 
vacA, which is present in all H. pylori strains. VacA can 
induce apoptosis of host cells and suppress proliferation 
of T and B-lymphocytes, contributing to the ability of H. 
pylori to establish chronic infection through deregulation 
of the host immune response[13,14]. Besides, VacA can 
induce radical oxygen species (ROS) production and 
mitochondrial DNA mutation in gastric epithelial cells.

Another bacterial virulence factor is the cag patho
genicity island (cagPAI) which is present in about 60% 
of H. pylori strains and is associated with an increased 
risk of severe gastritis, ulcer disease and GC[15]. CagA 
can affect epithelial cells by several mechanisms and 
may contribute to GC development[16]. CagA was 
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associated with the epithelial tight-junction scaffolding 
protein ZO-1 and the transmembrane protein junctional 
adhesion molecule which modify the composition and 
function of the apical-junctional complex and disrupt 
junction-mediated functions[17]. 

cagPAI also encodes a bacterial type Ⅳ secretion 
system (T4SS), which translocates CagA into host 
cells that subsequently affects multiple pathways that 
alter host cell morphology, signaling and inflammatory 
responses[17,18]. Once inside the epithelial cell CagA is 
phosphorylated at tyrosine residues by the epithelial 
cell c-Src protein and Lyn kinases, and phosphoryla
ted CagA then activates the Src homology-2 domain-
containing tyrosine phosphatase, which activates the 
Erk1/2 pathway, deregulates the phosphatase activity 
and induces epithelial gastric cell proliferation and 
transformation[19].

CagA was shown to enhance NF-κB pathway through 
interaction with TNF-receptor associated factor 6 (TRAF6) 
and TFG-B-activating kinase-1[20], to activate activator 
protein-1 (AP-1), PI3K (which leads to B-catenin and 
NF-κB activation), NFAT and to induce higher levels of 
interleukin-8 (IL-8)[21,22]. Methylation of MGMT DNA repair 
gene was also associated with CagA in chronic gastritis, 
suggesting its role in epigenetic regulation[23]. Other 
effects of CagA involve interference with proteasome-
mediated degradation of the tumor suppressor RUNX3 
and TP53[24].

These bacterial factors contribute to adherence, 
persistence, host immune modulation and virulence. 
MiRNAs are host factors that may contribute to influence 
GC risk as each miRNA can potentially control hundreds 
to thousands of target genes and miRNA deregulation 
was associated with immune and inflammatory dis
orders and various malignancies. H. pylori have been 
demonstrated to modulate expression of miRNAs which 
may further contribute to H. pylori-related diseases[14]. 
However, the true role of miRNA deregulation in the 
tumorigenesis is not perfectly clear.

In this review we aim to summarize the available 
evidence concerning the role of microRNAs in gastric 
carcinogenesis through H. pylori infection, inflammation, 
DNA methylation and progression of preneoplastic 
conditions.

H. PYLORI, IMMUNE HOST RESPONSES 
AND INFLAMMATION
Inflammation has long been recognized as a key 
factor in the development of many types of cancers. 
H. pylori induce chronic gastric inflammation which 
is the strongest known risk factor for development of 
atrophic gastritis, metaplasia, dysplasia, and ultimately 
GC through the accumulation of mutations, epigenetic 
modifications and deregulation of cell function. The 
chronic nature of H. pylori-gastritis is critical to the 
carcinogenic potential of this infection, resulting in a long-
term interaction between the bacteria, inflammatory 

mediators and gastric epithelial and stem cells. Indeed, 
the preneoplastic gastric epithelial changes have been 
shown to carry numerous genomic, epigenetic and fun
ctional abnormalities than can also be detected in cancer 
tissues[25-28]. 

Host defense against pathogens requires appropriate 
innate immune responses, as excessive or inappropriate 
activation of the immune system can be deleterious. H. 
pylori infection elicits both humoral and cellular immune 
responses[29]. Host cells recognize invading pathogens 
and/or their secreted effectors/pathogen associated 
molecular patterns (PAMPs) through pathogen reco
gnition molecules known as Toll-like receptors (TLRs) 
and NOD-like receptors, located on the cell membrane 
and in the cytoplasm, respectively, which subsequently 
activate adaptor proteins and transcription factors such 
as the NF-κB and AP-1[30].

Gastric epithelial cells constitute the first line of 
defense against H. pylori. In these cells, the innate 
immune response is characterized by NOD1-dependent 
activation of the NF-κB pathway in response to H. 
pylori peptidoglycan which is injected into the host cell 
cytoplasm via the T4SS[31]. NF-κB activation promotes 
cellular signaling changes and activation of adaptor 
proteins and transcription factors which mediate the 
release of cytokines that promote the recruitment of 
polynuclear cells and the activation of macrophages, 
dendritic cells (DCs) and mucosa infiltrating lymp
hocytes which take part in the innate and adaptive 
immune responses to the bacteria.

The bacteria also interacts with DCs, either in the 
gut lumen (where mucosal DCs insert dendrites through 
the tight junctions of the epithelial barrier) or within 
Peyer’s patches in the small intestine (where resident 
DCs phagocytose bacteria), which may direct the 
nature of the adaptive immune responses[32]. Myeloid 
cells (monocyte/macrophage and DCs) constitute the 
second line of defense, sensing H. pylori components 
via TLR2, TLR4, TLR5 or NOD1 signaling. TLRs in the 
cell membrane of DCs trigger a signaling cascade in the 
host cell responsible for the initiation of the immune host 
response and lead to the secretion of proinflammatory 
cytokines such as IL-1B, IL-6, and TNF-α in order 
to establish T and B lymphocyte-mediated adaptive 
immunity[24,33,34]. Indeed, TNF-α contributes to monocyte 
maturation, IL-6 supports the transition between the 
early stages of the infection and the sustained mononu
clear influx into the infected gastric mucosa, and IL-
1B contributes to NF-κB pathway activation in myeloid 
cells[35].

NF-κB can be activated by H. pylori through proin
flammatory mediators (e.g., cytokines) and through 
TLR activation by PAMPs[20]. It has been proposed that 
H. pylori peptidoglycan (injected in the gastric epithelial 
cell via T4SS) activates NF-κB via NOD1, which then 
activates MAPKs in both the NF-κB and AP1 pathways, 
inducing NF-κB activity and leading to cytokine release 
namely IL-8[31,36,37]. In macrophages and DCs, the 
TLR family members TLR2, TLR5, TLR4 and TLR9 

113 October 10, 2015|Volume 6|Issue 5|WJCO|www.wjgnet.com

Libânio D et al . Helicobacter pylori , microRNAs and gastric carcinogenesis



study GKN1 was undetectable in tumoral tissues and 
was expressed in non-tumoral tissues, suggesting that 
GKN1 plays an important role in mucosal defense, 
and that its gene acts as a tumor suppressor[50]. More 
recently, Yoon et al[51] demonstrated that CagA reduces 
GKN1 expression and that GKN1 transfection suppresses 
the carcinogenic effects of CagA. GKN1 may also influ
ence cytokine production, NF-κB pathway and COX-2 
expression[52].

Inflammation and carcinogenesis
Chronic inflammation plays an important role in the 
development of various cancers, including gastric ade
nocarcinoma, hepatocellular carcinoma associated with 
hepatitis B and C, immunoproliferative small intestinal 
disease associated with Campylobacter jejuni and 
cancer associated with ulcerative colitis. In fact, up to 
25% of all cancers are thought to be associated with 
chronic inflammation, regardless of the presence or 
absence of infection[53]. 

The inflammatory milieu caused by chronic H. pylori 
infection contributes to carcinogenesis through acti
vation of downstream targets that regulate cell cycle 
progression, proliferation, and apoptosis. NF-κB is a key 
regulator of inflammation and other cellular cascades 
and was identified as a molecular bridge between 
inflammation and cancer, since improper NF-κB activ
ation transactivates several target genes harboring 
inflammatory (e.g., COX2, iNOS, TNF-α), anti-apoptotic 
[e.g., cIAP1 and 2, x-linked inhibitor of apoptosis 
(XIAP), Bcl-2, Bcl-3, Bcl-xL], cell cycle regulatory (e.g., 
cyclin D1) and proangiogenic (e.g., VEGF, angiopoietin) 
functions, and/or down-regulates pro-apoptotic genes 
(e.g., p53, Bax, Bad)[54].

Other inflammatory mediators released from 
epithelial, mesenchymal and immune cells like proin
flammatory cytokines, growth factors, ROS and 
reactive nitrogen species (RNS) can also promote cell 
proliferation, migration, angiogenesis and invasion 
through a stepwise accumulation of genetic and 
epigenetic alterations. Among these, cytokines play key 
roles in the inflammatory process, and IL-1B, IL-6, and 
TNF-α have been implicated in cancer development. 
Interleukin-1B and TNF-α induce NF-κB activation, 
which promotes cell growth/proliferation, suppresses 
apoptosis of epithelial cells and stimulates the production 
of growth factors and cytokines such as epidermal 
growth factor, IL-6, COX2 and ROS[55]. IL-6 activates 
STAT3 (signal transducer and activator of transcription 3), 
enhancing cell growth and growth factor production[56]. 
Besides, IL-6 promotes COX-2 induction and increases 
ROS production[57]. COX-2 subsequently enhances cell 
growth and angiogenesis while ROS can modify protein 
function[24]. 

TLRs may also lead to the production of inflam
matory cytokines through AP-1 and NF-κB dependent 
transcription, playing a role in carcinogenesis through 
the activation of NF-κB and COX2[58-60]. In fact, incr

are involved in response to H. pylori infection[34], but 
discussion is ongoing as wether H. pylori LPS signals 
via TLR4 (a common receptor for Gram-negative 
enterobacterial LPS) or via TLR2 (the main receptor for 
G+ bacteria lipoteichoic acid), because H. pylori LPS 
lacks distinct features of the prototypical LPS[38]. When 
activated by bacterial LPS, TLR4 may recruit MyD88 and 
IRAK which subsequently activates NF-κB[39].

DCs also stimulate the production of IL-17 by lymp
hoid cells and release IL-23, a major cytokine involved 
in the induction and maintenance of Th17 responses, 
leading to a Th17 response against H. pylori which 
can affect the development of H. pylori gastritis[34,40,41]. 
Infection with cagPAI+ strains was associated with an 
increased production of IL-23[35]. However, an imbalance 
of the Th17/Treg axis may lead to suppressed Th17 
and ineffective bacterial eradication, suggesting that 
DCs may also play a role in H. pylori immune escape 
through directing a Treg-skewed DC-induced helper 
T-cell differentiation[42].

Altogether, the mediators released by epithelial cells, 
macrophages and DCs activate T-lymphocytes with a 
predominant Th1 response, regulatory T-lymphocytes 
(Treg), B-lymphocytes which mature into mucosal 
plasma cells, and neutrophils which actively phagocytize 
H. pylori[24].

Despite the strong immune response, H. pylori 
is not cleared and produces a chronic inflammatory 
status which requires evasion from the immune sys
tem. Although H. pylori is generally considered an 
extracellular microorganism, some evidence supports 
that at least a subset of H. pylori has an intraepithelial 
location and that a minor fraction of H. pylori resides 
inside gastric epithelial cells, which may represent the 
site of residence for persistent infection[43]. Autophagy 
is suggested as an immune innate response against H. 
pylori, decreasing its survival, and it was shown that H. 
pylori can induce autophagy in gastric epithelial cells 
despite still being capable to replicate in these cells[44,45]. 

The progressive damage of gastric glands leads 
to mucosal atrophy and intestinal metaplasia which 
constitutes an environment with increased risk for the 
development of dysplasia and cancer. Mucosal atrophy 
in the gastric body and fundus lead to hypochlorhydria, 
which may further contribute to the overgrowth of other 
bacteria that can convert nitrites to carcinogenic nitroso-
N-compounds and thus increase the carcinogenic 
activity in the gastric mucosa[46]. 

Gastrokine-1 (GKN1) is a protein present in gastric 
mucosal cells that protects the antral mucosa and pro
motes healing by facilitating restitution and proliferation 
after injury and may also play an important role in 
mucosal inflammation since its expression suppresses 
activation of NF-κB by inhibiting the degradation and 
phosphorylation of IkB and inactivating IKKalfa/beta[47,48]. 
Decreased GKN1 expression has been reported in H. 
pylori-infected patients and it was demonstrated a 
progressive decrease from chronic gastritis to atrophy 
and intestinal metaplasia[49]. Remarkably, in the latter 
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easing levels of TLR2, 4 and 5 and decreasing levels of 
TLR inhibitors (PPARy and TOLLIP) were demonstrated 
through the spectrum of gastric carcinogenesis in 
our previous studies, suggesting that increasing TLR 
expression is associated with the progression of preneo
plastic lesions[61,62].

The intricate balance between pro- and anti-
inflammatory cytokines in chronic inflammation may 
mediate the outcome of H. pylori infection by affecting 
cell proliferation and apoptosis and various immune 
regulators take part in this regulation. An important role 
for miRNAs in modulating both the innate and adaptive 
immune responses has been suggested in various 
studies[63,64]. In the next section we will summarize the 
evidence regarding the role of miRNAs in the regulation 
of innate and adaptive immunity and inflammation.

MicroRNAs involved in the host immune response to H. 
pylori
The first miRNA found to be influenced by H. pylori 
infection was miR-21. miR-21 was found to be over
expressed in both H. pylori-infected tissues and in 
GC[65,66]. NF-κB and IL-6 activate AP-1 and STAT3 
respectively which are able to induce miR-21 and could 
explain miR-21 upregulation during H. pylori infection. 
Matsushima et al[11] characterized miRNA expression 
in H. pylori-infected human gastric mucosa and found 
30 miRNAs significantly decreased in H. pylori-positive 
patients. Eight miRNAs enabled discrimination of H. 
pylori status with acceptable accuracy - miR-204 was 
the most decreased miRNA in H. pylori-infected followed 
by miR-455, miR-141, miR-203, let-7f, and miR-200a, 
whereas miRNA-223 was the only to be significantly 
increased. Gastritis scores of activity and chronic 
inflammation according to the updated Sydney system 
correlated significantly with the expression levels of 
diverse miRNAs. miR-223 expression was significantly 
increased in H. pylori -infected gastric mucosa and 
correlated positively with the degree of neutrophil 
infiltration (activity scores). miR-375 and miR-200c 
were inversely correlated with chronic inflammation 
and H. pylori density scores, respectively. On the other 
hand, in this study no significant correlation was found 
between miRNA expression and the degree of glandular 
atrophy and intestinal metaplasia. Expression levels of 
some miRNAs, including let-7 family, were significantly 
altered following infection with CagA(+) strains but not 
with CagA(-), suggesting that cagA might be involved in 
the regulatory processes of some miRNAs. 

The differential expression of various miRNAs in 
H. pylori-positive gastric human tissues and H. pylori 
-negative controls was also examined in another 
study and significant correlations between 17 miRNAs, 
chronic gastritis and the level of the pro-inflammatory 
cytokines IL-1B, IL-6, IL-8 and TNF-α were found. How
ever, that correlation disappeared in the presence of 
gastric atrophy and was inverse, for IL-6 and IL-8, in 
intestinal metaplasia[67]. Levels of miR-103, miR-375 
and miR-200a were negatively correlated with IL-6, IL-8 

and TNF-α, respectively. Let-7b was also found to be 
inversely correlated with IL-1b levels[67].

H. pylori CagA(+) was shown to decrease let-7 
expression in the gastric epithelium and let-7 family 
expression levels have been shown to be negatively 
associated with histological scores for activity, chronic 
inflammation and H. pylori density[11,68]. Specifically, 
let-7b was significantly decreased in H. pylori -gastritis 
patients in a CagA-dependent manner and TLR4 3’UTR 
mRNA was shown to be a target for let-7b and thus 
let-7b can negatively regulate TLR4 expression post-
transcriptionally[69]. Indeed, Teng et al[69] demonstrated 
that let-7b inhibition lead to increased TLR4 protein 
levels, activation of NF-κB and increased expression of 
COX-2 and CyclinD1, suggesting that H. pylori infection 
upregulates TLR4 expression and its downstream 
genes by downregulating let-7b expression. Further
more, let-7b overexpression was associated with 
MyD88 downregulation and inhibition of NF-κB acti
vity. Thus, decreased let-7b expression in H. pylori 
infection may promote inflammatory responses that 
contribute to the progression of gastric preneoplastic 
conditions. Let-7 was also found participate in cell 
differentiation, proliferation and apoptosis control and 
to be downregulated in several cancers including GC, 
suggesting that it acts as a tumor suppressor miRNA[70]. 
miR-7 was also found to be significantly decreased in 
both gastritis and gastric tumors in a mouse model, 
and in human GC the expression of miR-7 was 
inversely correlated with the levels of IL-1B and TNF-α, 
suggesting that miR-7 downregulation is related to 
the severity of inflammatory responses and possibly 
linked with gastric tumorigenesis[71]. In this regard, 
in vitro experiments showed that CagA significantly 
attenuates let-7 expression and enhances c-Myc, 
DNA methyltransferase 3B (DNMT3B) and Enhancer 
of Zeste homologue 2 (EZH2) expression, leading to 
Ras oncoprotein pathway activation with no associated 
inflammation[72].

miR-451 is also downregulated in both H. pylori 
infection and GC and targets macrophage migration 
inhibitory factor (MIF) and an inverse correlation 
was found between miR-451 and MIF expression in 
GC, suggesting that miR-451 functions as a tumor 
suppressor by silencing MIF expression, leading to a 
proliferative and anti-apoptotic phenotype[73].

Early in the acute phase of the infection H. pylori 
induces strong inflammatory responses and a transitory 
hypochlorhydria through repression of gastric H+, K+/ATP
ase which further facilitates gastric H. pylori colonization. 
NF-κB possesses binding regions in the H+/K+ promoter 
and have been shown to repress its transcriptional 
activity[74]. CagA protein and peptidoglycan-dependent 
mobilization of NF-κB were also implied in H+/K+α 
repression. miR-1289 is upregulated in H. pylori CagA 
infection and miR-1289 overexpression was found to 
attenuate H+/K+α expression through targeting H+/K+α 3’
UTR and thus repressing mRNA translation[75]. 

H. pylori may also deregulate miRNA expression 
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to evade host defenses and successfully persist in the 
gastric niche. TLRs on the membrane of monocytes/
DCs recognize and bind to PAMPs and then trigger 
downstream signaling pathways to initiate inflammatory 
responses. MiRNAs may regulate the tightly controlled 
TLR signaling and the downstream expression of genes 
and molecules in order to fine-tune the innate immune 
response and prevent overwhelming inflammation[76]. 
miR-146a and miR-155 were found to be upregulated 
by H. pylori (independently of cagPAI status) and may 
regulate the acute inflammatory response in myeloid 
cells and/or lymphocytes after pathogen recognition 
by TLR contributing to a negative regulation of the 
proinflammatory immune response[35]. TLR signaling 
activation and inflammatory cytokines such as TNF-α 
and IL-1B have also been shown to upregulate miR-146 
and miR-155 during H. pylori infection[77,78].

miR-146 was found to be rapidly upregulated after 
LPS stimulation and after H. pylori infection in a CagA-
independent and in a NF-κB-dependent manner through 
TLR signaling[79-81]. MiR-146a role was further explored 
and it was found that miR-146a targets and silences 
the TLR-signaling adaptor molecules interleukin-1 
receptor-associated kinase (IRAK1) and TNF receptor-
associated factor 6 (TRAF6) resulting in a negative-
feedback loop regulation of TLR, NF-κB pathway and 
the downstream proinflammatory signaling in response 
to bacterial products, thus avoiding the overproduction 
of proinflammatory IL-1B and TNF-α cytokines[79-82]. 
As a result, the expression of key elements of the 
proinflammatory innate and adaptive immune responses 
like IL-1B, IL-8, TNF-α, growth related oncogene alpha, 
and macrophage inflammatory protein is negatively 
regulated by miR-146a overexpression in H. pylori 
infection[80], suggesting that this single miRNA plays 
an important role in the control of the inflammatory 
response to H. pylori, possibly restraining the tissue 
damage observed in patients with gastritis. Additi
onally, miR-146a overexpression was found to post-
transcriptionally decrease prostaglandin endoperoxide 
synthase 2 expression[83], an enzyme responsible for 
the production of prostaglandin E2 which has been 
associated with H. pylori infection and infiltration of 
inflammatory cells to the gastric mucosa[84].

miR-155 is induced during both bacterial and viral 
infections in myeloid cells through activation of TLR-
signaling pathways and also via a TLR-independent 
component that results partly from the activation of 
MyD88/Trif-independent PAMP receptors by T4SS[77,85]. H. 
pylori was found to upregulate miR-155 expression also 
via a NF-κB- and AP-1-dependent manner and signifi
cantly higher miR-155 levels were found in H. pylori-
positive patients as compared with H. pylori-negative 
controls[86,87]. miR-155 was then found to regulate 
inflammation by targeting and decreasing myeloid 
differentiation primary response protein 88 (MyD88) 
protein levels which subsequently results in decreased 
NF-κB activation and thus in decreased release of 
proinflammatory cytokines like IL-8 and GRO-a, sugge

sting that miR-155 overexpression during H. pylori 
infection is also involved in the negative feedback 
regulation of the host inflammatory response through 
attenuating NF-κB activity[86,87]. Ceppi et al[88] showed 
that miR-155 modulates the TLR/IL-1 signaling pathway 
by targeting TAB2, an important signaling molecule that 
facilitates the activation of TRAF6 and NF-κB. Other gene 
transcripts of the NF-κB pathway like KK-epsilon (IKK), 
SMAD2 and Fas-associated Death Domains (FADD) were 
also described as miR-155 targets in one study[86]. 

Besides this role in the negative feedback regulation 
of the immune host response to H. pylori, miR-155 
seems to be important in adaptive immunity contri
buting to the development of regulatory T cells (Treg), 
Th17 differentiation, induction of IL-17 and thus to the 
control of H. pylori infection. 

H. pylori infection results in a predominantly T-cell 
mediated immunity rather than humoral immunity, with 
Th1 and Th17 responses which increase the production 
of IL-1B, TNF-α and IL-8[64]. Th17 cell differentiation is 
promoted by TNF-α and IL-6 while Th1 responses are 
triggered by IL-12 and INF-gamma[89]. MiR-155 deficient 
mice showed decreased production of IFN-γ and IL-17, 
impaired pathogen-specific Th1 and Th17 responses and 
fail to control H. pylori infection suggesting that miR-155 
expression is required for the Th17/Th1 differentiation[90]. 
Interestingly, miR-155 deficient mice developed less 
severe infection-induced immunopathology such as 
severe chronic atrophic gastritis, epithelial hyperplasia 
and intestinal metaplasia. 

Cholera toxin B subunit (CTB-UE), a multi-epitope 
vaccine composed by the cholera toxin B subunit and 
copies of B and Th cell epitopes from H. pylori urease 
A and B, showed a good therapeutic effect on H. pylori 
infection in a mice model which was closely related to the 
immune response mediated by miR-155 upregulation[91]. 
Indeed, CTB-UE vaccination significantly upregulated 
miR-155 expression which was associated with the 
induction of an immune response biased towards Th1 
cells. In this experiment, miR-155 overexpression was 
also associated with decreased IL-17 production, maybe 
by inhibition of Th17 response, suggesting that CTB-
UE could relieve H. pylori induced gastric inflammatory 
reaction via miR-155 upregulation[92].

Tang et al[93] found that autophagy is decreased in 
patients with chronic H. pylori infection and that miR-
30b is upregulated during H. pylori infection. In their 
experiment mir-30b expression compromised autophagy 
and increased bacterial survival and replication through 
targeting BECN1 and ATG12, although there were 
inconsistent results concerning autophagy between in 
vivo and in vitro infections, suggesting that H. pylori-
mediated autophagic processes may be complex and 
that many factors in vivo may be involved in autophagy 
inhibition[93].

Together these data suggest that H. pylori dere
gulates host miRNA expression to manipulate the host 
inflammatory immune response, which may promote 
bacterial survival and persistence within the gastric 
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mucosa. Besides, as these miRNAs have established 
roles in carcinogenesis as well as innate immunity, they 
could serve as an important link between H. pylori-
induced inflammation and carcinogenesis. The previous 
findings suggest that microRNAs play an important role 
in the fine-tuning of both innate and adaptive immune 
responses and that miRNA deregulation may contribute 
to both H. pylori persistence and to H. pylori -mediated 
pathology. 

MICRORNAS AND DNA METHYLATION - 
THE BRIDGE BETWEEN INFLAMMATION 
AND CANCER?
Gastric carcinogenesis involves gradual accumulation 
of various genetic and epigenetic alterations leading 
to oncogene activation and loss of tumor suppressor 
gene function. Genetic alterations, such as p53, KRAS, 
PIK3CA and MLL mutations, as well as PIK3CA, C-MET, 
ERBB4 and CD44 amplifications are frequently found in 
GC, suggesting that may be key tumorigenic events[94]. 

In cancers arising in inflammatory environments, 
mutagenesis and epigenetic deregulation are the main 
mechanisms driving epithelial cells in the direction of 
cancer. Increased mutation burden of the epithelial 
genome occurs through both the increased occurrence 
of mutations due to direct damage of DNA (e.g., ROS, 
RNS) and deficient repair of mutations prior to DNA 
replication (reduced function of MGM and MMR genes). 
H. pylori infection leads to chronic inflammation, 
accumulation of ROS and oxidative DNA damage in 
the gastric mucosa and was also associated with meth
ylation and silencing of a number of genes through 
aberrant DNA methylation in the gastric mucosa, which 
may contribute to gastric carcinogenesis through the 
silencing of tumor suppressor genes[95-97]. Indeed, 
several inflammatory mediators, such as TNF-α, IL-1B 
and ROS were implicated in aberrant DNA methylation 
during gastric carcinogenesis and a growing body of 
evidence suggests that, in addition to genetic alterations, 
epigenetic changes are also involved in the initiation 
and progression of GC[24,98,99]. Aberrant methylation 
of promoter CpG islands was also demonstrated in 
non-neoplastic tissues with H. pylori gastritis and CpG 
methylation has been shown to be partially reversible 
after H. pylori eradication further supporting the role 
of H. pylori and inflammatory mediators in epigenetic 
regulation[23,27,100,101].

Therefore, DNA methylation seems to be an impor
tant epigenetic process that occurs during malignant 
transformation and the rate of gene methylation is 
considered to be correlated with an increased risk of 
GC[102,103]. DNA methylation is regulated by a family 
of DNMT and includes global hypermethylation and 
hypermethylation of CpG islands confined to the re
gulatory regions of human genes. Methylation of CpG 
islands in promoter regions causes silencing of the down
stream gene, whereas methylation in the coding region 

is usually associated with increased gene transcription. 
Thus, cancers display regional hypermethylation of 
promoter regions and global hypomethylation. The 
extensive epigenetic alteration in the background 
mucosa that gives rise to dysplasia and cancers repr
esents an epigenetic field defect in inflammation and 
infection associated cancers. CpG methylation occurs 
early in gastric carcinogenesis, affecting genes such as 
MLH1, p14, p15, p16, CDKN2A, CDH1 - E-cadherin, 
LOX, APC, RUNX3, thrombospondin-1, tissue inhibitor of 
metalloproteinase 3, COX-2, and MGMT[26,96,98,104,105].

Several reports describe that binding of transcription 
factors to the promoter regions of specific miRNA genes 
activate the transcription of pre-miRNAs, thus increasing 
the expression of mature miRNAs. As an example, 
increased expression of c-Myc leads to the activa
tion of miR-17-92 cluster by binding to its regulatory 
region[106]. On the other hand, intronic miRNAs are 
coordinately expressed with their host gene mRNA, 
while some miRNAs are located at cancer-associated 
genomic regions frequently involved in chromosomal 
abnormalities that may affect the differential expression 
of miRNAs. DNA methylation and histone modification, 
epigenetic changes that play critical roles in chromatin 
remodeling and regulation of gene expression may 
also influence the expression of some miRNAs genes 
by epigenetic alterations in their promoter regions. 
H. pylori infection was found to lead to ubiquitination 
and reduction of Drosha protein levels in GC cells and 
treatment of GC cells with a proteasome inhibitor 
(MG132) was associated with preservation of Drosha 
protein levels despite H. pylori infection, suggesting that 
H. pylori infection enhances the ubiquitin-proteasome 
pathway and may lead to downregulation of miRNAs by 
influencing Drosha expression post-transcriptionally[107].

Several tumor-suppressor miRNAs, including miR-
124a, miR-137, miR-193a and miR-127 were reported 
to be silenced by aberrant DNA methylation of their 
promoter CpG islands in cancers[96]. H. pylori long-
term colonization may induce epigenetic modification 
of gastric mucosal genes, including on the promoter 
regions of tumor suppressor miRNAs, which cannot be 
completely reversed only by bacterial eradication and 
thus miRNA silencing by aberrant DNA methylation is 
probably involved in gastric carcinogenesis[108]. Indeed, 
several miRNAs such as miR-210, miR-375 and miR-
124-a1/a2/a3 were shown to have reduced expression 
in the gastric epithelium of chronically H. pylori -infected 
gastric mucosa due to DNA methylation[96,109]. Epigenetic 
silencing of let-7 with subsequent Ras pathway activation 
was also demonstrated after CagA transfection through 
enhancement of c-myc and DNMT3B and attenuation of 
miR-6a and miR-101 expression[110]. 

Higher levels of miRNA gene methylation were also 
found in noncancerous gastric mucosa of GC patients as 
compared with H. pylori-negative mucosa, suggesting 
that miRNA silencing is involved in the formation of a 
field defect for GC[96]. miR-124a (downregulated in H. 
pylori-infection) was found to down-regulate CDK6, an 
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oncogene involved in cell cycle progression, suggesting 
that miR-124a is involved in gastric carcinogenesis[111]. 
miR-34b and miR-34c (tumor suppressor miRNAs) 
and miR-10b (a miRNA that targets the microtubule-
associated protein oncogene) were also found to be 
epigenetically silenced in GC due to hypermethylation 
of the neighboring CpG islands[112,113]. In the latter 
study, treatment with demethylating agents decreased 
miR-10b methylation and restored its expression, 
suggesting that modulation of miR-10b may represent 
a therapeutic approach for treating GC[113].

CpG island hypermethylation was also associated 
with decreased miR-210 in H. pylori -positive gastric 
mucosa, and miR-210 downregulation was associated 
with STMN1 upregulation, possibly leading to aberrant 
proliferation of gastric epithelial cells during chronic H. 
pylori infection[109]. In this study, miR-210 decreased in 
parallel with increased grades of neutrophil and mononu
clear cell infiltration, atrophy and H. pylori content 
suggesting that miR-210 methylation is associated with 
disease progression of H. pylori-mediated gastric lesions. 
Besides, decreased miR-210 levels were lower in tumor 
tissues than in normal mucosa and 10 oncogenes were 
found to be strongly suppressed by miR-210, namely 
STMN1 (oncoprotein 18) and demethyladenosine 
transferase-1 (DIMT1). STMN1 and DIMT1 upregulation 
was also demonstrated in H. pylori-positive human 
stomachs.

GKN1 is thought to function as an hypomethyla
ting agent and to exert its antiproliferative effects 
through downregulation of DNMT1 and EZH2, a 
histone methyltransferase involved in proliferation and 
epithelial-mesenchymal transition (EMT) promotion 
(by interacting with Snail and suppressing E-cadherin 
expression)[50,52,114]. Indeed, inactivation of DNMT1 and 
EZH2 in GC cells suppressed cell growth through G0/

G1 and G2/M cell-cycle arrest, suggesting that GKN1 
acts as a tumor suppressor through the regulation of 
epigenetic regulatory components and EMT-related 
proteins. Interestingly, expression of DNMT1 and c-myc 
was also positively associated with H. pylori CagA protein 
and methylation status, strongly supporting the view 
that GKN1 may play an important role in epigenetic 
regulation[115]. GKN1 was also found to upregulate 
miR-185 and was positively correlated with miR-185 
expression and inversely correlated with DNMT1 and 
EZH2 expression. DNMT1 and EZH2 were found as 
targets of miR-185, suggesting that miR-185 inhibits 
cell growth by inducing cell-cycle arrest through the 
inactivation of DNMT1 and EZH2[114]. Accordingly, 
miR-185 downregulation was demonstrated in GC and 
lower miR-185 levels were associated with lymph node 
metastasis (LNM) and poorer prognosis[116].

The above results highlight the role of DNA methy
lation as a mechanism for epigenetic silencing of miRNA 
genes during chronic inflammation. Table 1 summa
rizes the microRNAs that were found to be reduced by 
DNA methylation in H. pylori infection and its target 
genes. Since aberrant DNA methylation has also been 
reported in other chronic inflammatory diseases that 
are causative for cancers, it seems that similar inflam
mation-induced DNA methylation leading to miRNA 
gene silencing can be an underlying tumorigenic 
mechanism associated with GC.

GASTRIC PRENEOPLASTIC CONDITIONS 
AND GASTRIC CARCINOGENESIS - THE 
ROLE OF MICRORNAS
From the early stages of H. pylori gastritis, the infection 
and associated inflammation lead to epithelial cell 
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MicroRNA Targets Consequences/associations

miR-210 STMN1 Aberrant proliferation
DIMT1 Increased H. pylori content, atrophy and neutrophil and mononuclear infiltration

miR-375 MDM2 p53 inhibition
JAK1/STAT3 JAK1/STAT3 activation and neoplastic transformation

14-3-3 Bcl binding and cell survival
PDK1 PI3K/Akt pathway

miR-124 CDK6 Cell cycle progression
Let-7a c-myc and DNMT3B Ras pathway activation
miR-34 Bcl-2 Apoptosis inhibition
miR-10b MAPs Microtubule-associated protein oncogene
miR-185 DNMT1 and EZH2 Proliferation and EMT

LNM and poorer prognosis
miR-490-3p Cyclin B1 EMT; proliferation; colony formation; migration; invasion

SMARCD1 Metastasis and poorer survival
Decreased through the spectrum of gastric carcinogenesis

Table 1  MicroRNAs reduced by DNA methylation in Helicobacter pylori  infection

STMN1: Stathmin/oncoprotein 18; DIMT1: DIM1 dimethyladenosine transferase 1 homolog (S. cerevesiae); MDM2: Mouse double minute 2 homolog/E3 
ubiquitin-protein ligase Mdm2; JAK1: Janus kinase 1; STAT3: Signal transducer and activator of transcription 3; PDK1: Phosphoinositide-dependent 
kinase-1; CDK6: Cyclin-dependent kinase 6; DNMT3B: DNA (cytosine-5-)-methyltransferase 3 beta; Bcl-2: B-cell lymphoma 2; MAPs: Microtubule-
associated proteins; DNMT1: DNA (cytosine-5)-methyltransferase 1; EZH2: Enhancer of zeste homolog 2; EMT: Epithelial-mesenchymal transition; LNM: 
Lymph node metastasis; SMARCD1: SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1. 
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mutations, epigenetic, microRNA and gene expression 
changes, genomic instability, altered cellular signaling, 
and imbalance of proliferation and apoptosis of gastric 
epithelial cells, driving the progression from gastritis 
to pre-neoplastic and neoplastic lesions[26]. Shiotani et 
al[117] found a higher expression of oncogenic miRNAs 
(miR-17/92, miR-106b-93-25, miR-21, miR-194 and 
miR-196) in metaplastic intestinal mucosa compared 
with non-intestinal metaplastic mucosa and that H. 
pylori eradication improves miRNA deregulation in the 
gastric mucosa but not in metaplastic glands, suggesting 
that H. pylori long-term colonization induces epigenetic 
modifications not completely reversible by H. pylori 
eradication alone. Wang et al[118] also analyzed miRNA 
expression patterns in H. pylori-related gastritis and 
gastric intestinal metaplasia and found 20 differentially 
expressed miRNAs (DEMs), including 12 up-regulated 
and 8 down-regulated, and the top 5 DEMs were miR-
486p, miR-645, miR-624, miR-504, and hsa-miR-106b. 
Lower expression of miR-106b and miR-204 was also 
found in H. pylori-positive gastric mucosa, suggesting 
that the downregulation of these miRNAs is associated 
with H. pylori-related chronic gastritis[11].

miR-106b was implicated in TGF-β and MAPK 
signaling pathways and miR-204 was related with 
calcium and neurotrophic signaling pathways and axon 
guidance[118]. In another study miR-204 was linked to 
the down-regulation of sirtuin 1 (SIRT1) and to the 
reversion of SIRT1-induced EMT and invasion in GC 
cells[119]. miR-106b was associated with suppression of 
TGF-β-induced cell cycle arrest and promotion of GC 
development in a previous study[120]. The frequency and 
extent of miR-106a (a miRNA overexpressed in GC) 
expression gradually increased during the transition 
from atypical hyperplasia to advanced carcinoma and 
had already positive signals in early precancerous 
lesions but negative signals in normal gastric mucosal 
epithelial cells, suggesting that the early changes of 
miR-106a potentially can become biomarkers for the 
early detection of GC[121]. miR-106a is upregulated in 
GC and targets retinoblastoma protein (RB1), a tumor 
suppressor protein that inhibits transcription factors of 
the E2F family[65]. miR-106a, upregulated in GC, was 
correlated with lymphatic and distant metastasis[65,122].

miR-320, a tumor suppressor miRNA downregulated 
in various solid tumors, targets Mcl-1 anti-apoptotic 
factor expression and miR-320 downregulation by H. 
pylori was demonstrated in a CagA-dependent manner. 
Furthermore, Mcl-1 expression levels were found to 
increase in parallel with the severity of neoplastic 
lesions (nonatrophic gastritis, intestinal metaplasia, or 
adenocarcinoma), Mcl-1 overexpression was associated 
with chemotherapeutic resistance and relapse of tumors 
and Mcl-1 depletion was found to promote apoptosis 
in cancer cells[123]. These findings suggest that H. 
pylori CagA suppresses miR-320 and upregulates 
Mcl-1 leading to inhibition of apoptosis and increasing 
the risk for GC. miR-101 and miR-515-5p are also 
downregulated in H. pylori-positive tissues and in GC 

and their downregulation was associated with an anti-
apoptotic phenotype by targeting Mcl-1, leading to Mcl-1 
overexpression[11,108,124]. Recently, Zhou et al[124] found 
that miR-101 also strongly reduces the expression of 
SOCS2 oncogene in GC cells and that miR-101 levels 
were inversely correlated with SOCS2 expression, 
suggesting that miR-101 acts as a growth-suppressive 
miRNA in H. pylori-related GC. CagA also attenuated 
miR-101 expression, which in turn further attenuated 
let-7 expression by histone and DNA methylation[72].

Another miRNA implicated in the progression 
of gastric preneoplastic conditions is miR-490-3p 
whose expression is progressively downregulated in 
gastritis, intestinal metaplasia and adenocarcinoma 
during H. pylori infection[125]. Hypermethylation of the 
promoter region of miR-490-3p was demonstrated 
in human GC tissues as well as miR-490-3p growth 
and metastasis suppressive effects (inducing G2/M 
and intra-S phase arrest and downregulating cyclin 
B1) through directly targeting SMARCD1 (a SWI/SNF 
chromatin remodelling complex subunit). Indeed, 
SMARCD1 was found to be markedly upregulated 
in GC and its higher expression was associated with 
poorer patients’ survival independent of TNM staging. 
These findings suggest that H. pylori silences miR-
490-3p expression by hypermethylation, which subs
equently activates SMARCD1 conferring malignant 
phenotypes, mechanistically linking H. pylori, chromatin 
remodeling and gastric carcinogenesis[125]. It was 
also shown that miR-490-3p upregulates epithelial 
markers (i.e., syndecan-1 and zo-1), downregulates 
mesenchymal markers (i.e., fibronectin and vimentin) 
and inhibits colony formation, growth, cell migration 
and invasiveness, supporting the role of this miRNA in 
inhibiting EMT. 

Forkhead box M1 (FoxM1), a key positive cell-
cycle regulator is also implied in the pathogenesis 
of several types of cancers and was found to be incr
easingly overexpressed through the spectrum of gastric 
carcinogenesis. Feng et al[126] showed that mRNA 
expression of FoxM1 gradually increased from gastritis 
to cancer as compared with noncancerous tissues (6.7% 
of the cells in noncancerous gastric tissues, 21.7% 
in gastritis, 36.4% in AG/IM and 89.2% in GC). H. 
pylori CagA(+) infection was shown to reduce P27Kip1 

expression (a tumor suppressor which negative regulates 
cell-cycle) and was associated with FoxM1 upregulation 
and increased cell proliferation, alterations partially 
reversed by knockdown of FoxM1, suggesting that FoxM1 
mediates the inhibition of P27Kip1 induced by H. pylori. 
miR-370 directly targets FoxM1 gene reducing FoxM1 
activity. Accordingly, expression of miR-370 gradually 
decreased from superficial gastritis, atrophic gastritis/IM 
to GC samples. Together these findings suggest that the 
miR-370-FoxM1 pathway is involved in the progression 
of H. pylori-induced gastritis to GC by affecting P27Kip1 

expression. The FoxM1 overexpression may reduce 
P27Kip1 and thus increase cell proliferation and promotion 
of gastric carcinogenesis. Furthermore, transcription of 
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P27Kip1 was inhibited by CagA via PI3K/Akt pathway in 
another study[127]. However, Lo et al[128] found that miR- 
370 was overexpressed in GC tissues and in plasma of 
GC patients and higher miR-370 levels were associated 
with LNM and higher clinical stage. TGF-β receptor Ⅱ 
was identified as a target for miR-370 in this study and 
an inverse correlation was found between mir-370 and 
TFG-B-RII in GC tissues. 

miR-584 and miR-1290 upregulation was also 
demonstrated after CagA transfection, with subsequent 
downregulation of Foxa1 expression and promotion 
of EMT in vitro[110]. It was also shown that mice over
expressing miR-584 and miR-1290 developed gastric 
intestinal metaplasia after a long follow-up, suggesting a 
role for these miRNAs in the progression of preneoplastic 
conditions induced by H. pylori.

GKN1, a protein involved in mucosal defense and 
in the regulation of inflammatory pathways, was found 
to be decreased in H. pylori-infected mucosa and a 
progressive decrease from chronic gastritis to atrophy 
and intestinal metaplasia was demonstrated[49,50]. In non-
neoplastic mucosal samples of patients with sporadic 
GC, GKN1 levels were able to predict gastric mucosal 
atrophy and intestinal metaplasia risk with an AUC value 
of 0.865 and 0.973, respectively, implicating GKN1 as an 
important player in gastric mucosal inflammation and a 
marker of the progression of gastric carcinogenesis[115]. 
GKN1 was found to upregulate miR-185 which targets 
DNMT1 and EZH2 expression and thus reduces DNA 
methylation.

Finally, the existence of various metaplastic pro
cesses has been recognized, including goblet cell 
intestinal metaplasia and spasmolytic-polypeptide-
expressing metaplasia (SPEM)[129,130]. CD44 is a major 
adhesion molecule and receptor for hyaluronic acid 
that can coordinate normal and metaplastic gastric 
epithelial progenitor cell proliferation under conditions 
of parietal cell loss and is a putative gastric stem cell 
marker[131]. CD44v, a variant of CD44, was shown to 
interact with xCT (a glutamate-cystine transporter) 
and to contribute to ROS defense in cancer cells[132]. 
Inflammatory response to H. pylori infection leads to 
increased expression of CD44 and CD44v9 in the gastric 
mucosa; CD44v9 was found to be overexpressed in 
SPEM in mice models and CD44 ablation significantly 
attenuated SPEM development by suppressing the 
proliferation of metaplastic cells at the base of their 
gastric glands[133]. Ishimoto et al[134] recently showed that 
CD44v9 expression in gastric mucosal cells is correlated 
with H. pylori infection and that there is an association 
between CD44v9 expression in the gastric mucosa 
adjacent to tumor and in tumor cells, suggesting that 
the development of GC CD44v9+ is associated with de 
novo expression in the mucosa adjacent to the tumor. 
It was shown that H. pylori infection is associated with 
increasing number of myeloperoxidase inflammatory cells 
in the gastric mucosa leading to ROS accumulation which 
can induce miR-328-mediated CD44 overexpression, 
suggesting a role for miR-328 in de novo expression of 

CD44[134]. The authors concluded that CD44v expression 
was regulated by miR-328 suppression and it is possible 
that CD44v promotes the survival and proliferation of 
metaplastic cells which give rise to SPEM.

In vitro studies have also shown that miR-296-5p 
attenuates CDX1 anti-growth effects partly through 
ERK1/2 activation[135]. Indeed, GC tissues presented 
loss of CDX1 when compared with adjacent IM tissues 
and miR-296-5p was inversely correlated with CDX1, 
suggesting that the miR-296-5p-CDX1-ERK1/2 may 
be important to the progression of IM to GC and may 
provide therapeutic targets for the treatment of GC[135].

H. PYLORI RELATED MICRORNAS AND 
EMT, CELL-CYCLE AND APOPTOSIS
The deregulation of cell cycle progression and increased 
cellular proliferation are hallmarks of malignancies. Cell 
cycle progression requires coordinated expression of 
cyclins, which results in sequential activation of cyclin-
dependent kinases (CDKs). miRNA deregulation can 
promote cell cycle progression by upregulating cyclin 
expression and/or down-regulating CDK inhibitors 
expression (p15, 16, 18, 19, 21, 27, 28, 57)[14]. H. 
pylori may possibly exert its carcinogenic effects partly 
by modulating cyclins, CDKs and CDK inhibitors and 
deregulation of host miRNAs may affect the regulation 
of cell cycle and increase the propensity for gastric 
transformation[136].

Cellular transformation is also characterized by 
increased cellular proliferation and evasion of apoptosis. 
Apoptosis can be dependent on either the intrinsic 
or extrinsic pathways. Extrinsic apoptosis pathway is 
initiated through the activation of pro-apoptotic death 
receptors located in the cell surface by ligands like 
TNF. Ligand binding induces receptor clustering and 
the recruitment of the adaptor protein FADD, leading 
to induction of caspases and ultimately cell-death. The 
intrinsic apoptosis pathway is initiated within cells and 
hinges on the balance between pro-apoptotic (e.g., Bax, 
Bak, Bim, BNIP3L, and Bid) and anti-apoptotic (e.g., 
Bcl-2, Bcl-xL, and Mcl-1) proteins. MicroRNAs seem 
to play a role in apoptosis regulation by altering the 
expression of pro-apoptotic and anti-apoptotic factors.

A large number of microRNAs have been associated 
with the development and progression of GC, some 
being indicated as potential biomarkers for early dia
gnosis in patients at risk and others implicated as 
prognostic factors. In this review we summarize the 
evidence about microRNAs associated with both H. pylori 
and GC cancer, as recent reviews focused on the topic of 
microRNAs and GC in general. 

The pro-inflammatory miR-21 was found to be 
overexpressed in H. pylori infection and was associated 
with decreased apoptosis, increased proliferation and 
invasion, suggesting that miR-21 may be important in 
the development of GC[66]. Indeed, miR-21 was found 
to negatively regulate RECK, a tumor suppressor gene 
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and suppressor of metastasis and angiogenesis that 
modulates matrix metalloproteases (MMPs) and is 
decreased in GC samples. Other tumor suppressors 
have been identified as miR-21 targets, such as 
PTEN (phosphatase and tensin homolog - a negative 
regulator of the Pi3K/Akt signaling pathway)[137,138] and 
actin-binding protein[139]. miR-222 is also upregulated 
in H. pylori-infected gastric mucosa and GC, and 
ectopic expression of miR-222 was found to promote 
cell proliferation and colony formation[140]. RECK was 
identified as a target for miR-222 and an inverse 
correlation between miR-222 levels and RECK was found 
suggesting that H. pylori may function as an initiator 
in carcinogenesis by upregulating miR-222, leading to 
RECK inhibition and thus promoting proliferation[140]. 

MiR-146a is involved in the regulation of innate 
immunity and inflammatory response to H. pylori, 
acting as a controller of the inflammatory response 
through the modulation of TLRs and cytokine signaling 
pathways and by reducing NF-κB activity through 
negative regulation of IRAK1 and TRAF6[79,80]. It is also 
well established that TLR2, 4, 5 and 9 are involved 
in H. pylori recognition[62,141] and that NF-κB is a key 
molecule in inflammation-cancer link[142]. miR-146a 
upregulation was found in H. pylori-positive gastric 
mucosa and in GC tissues as compared with matched 
non-tumor adjacent tissues[143]. In this study miR-
146a was found to inhibit apoptosis by decreasing 
levels of SMAD4 (SMAD family member 4 - identified 
as a direct target of miR-146a), suggesting that miR-
146a plays a role in the development of GC. Another 
study also found miR-146a upregulation in a GC mice 
model but identified caspase recruitment domain-
containing protein 10 (CARD10) and COP9 signalosome 
complex subunit 8 (COPS8) as miR-146a targets. 
CARD10 and COPS8 were found to be involved in NF-
κB activation, suggesting that miR-146a inhibits NF-
κB activation thus reducing the expression of NF-κB 
-regulated tumor-promoting cytokines and growth 
factors and suggesting that in fact miR-146a have 
tumor suppressing properties[144]. Further supporting 
that miR-146a acts as a tumor suppressor, Hou et al[145] 
found decreased expression of miR-146a in 84% (36/43) 
of GC tissue samples and lower miR-146a expression 
was significantly associated with increased tumor size, 
poor differentiation and poorer overall survival. In fact, 
in these study miR-146a inhibited cell proliferation and 
promoted apoptosis in GC cell lines[145]. Accordingly, 
miR-146a was associated with suppression of invasion 
and metastasis in GC cells and in a mice model 
through targeting L1 cell adhesion molecule[146]. Lower 
expression levels of miR-146a were also found in GC 
tissues as compared with corresponding noncancerous 
tissue, and lower miR-146a levels were significantly 
associated with LNM, venous invasion and poorer 
overall survival[147]. Inhibition of migration and invasion 
through downregulation of EGFR and IRAK1 expression 
were attributed to miR-146 in the previous study. Pro-
apoptotic effects of miR-146a through COX-2 inhibition 

were also shown in human GC cells and miR-146a 
density was positively correlated with apoptosis rates in 
H. pylori-positive GC tissues and negatively correlated 
with LNM among H. pylori-positive GC patients[148]. The 
previous findings were confirmed in a recent miRNA 
PCR array where it was found that miR-146a-5p is 
downregulated in GC patients, and low-expression of 
mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-
5p was significantly associated with LNM, lymphatic 
invasion, venous invasion and poor differentiation[149]. In 
a different study miR-155 was found to target SMAD2 
and FADD, reducing their expression and leading 
to the downregulation of caspases and inhibition of 
apoptosis, thus suggesting an oncogenic potential for 
this microRNA[86].

In addition to microbial and environmental factors, 
there are a number of host factors that may contribute 
to gastric carcinogenesis namely single-nucleotide 
polymorphisms (SNPs) in inflammation-related miRNA, 
since only a small proportion of infected patients 
ultimately develop GC. Some studies have demonstrated 
that rs2910164 SNPs in miR-146a precursor can reduce 
mature miR-146a production which may modify the 
inflammatory process and miR-146a SNPs are the most 
extensively studied polymorphisms regarding increased 
susceptibility to GC[150,151]. However, some inconsistencies 
were found in the literature. Indeed, Okubo et al[152] 
found that the rs2910164 CC genotype is associated with 
significantly increased susceptibility to GC (OR = 1.30; 
95%CI: 1.02-1.66, P = 0.03) and Song et al[153] reported 
that miR-146a rs2910164 CC carriers had a significantly 
increased risk of IM (OR = 1.42, 95%CI: 1.03-1.97) and 
dysplasia (OR = 1.54, 95%CI: 1.05-2.25) as compared 
with GG carriers and when stratified the analysis by H. 
pylori infection status found that rs2910164 C allele was 
associated with an increased risk of IM and dysplasia 
only among individuals with H. pylori (CC vs GG: OR 
= 1.53, 95%CI: 1.12-2.08, P < 0.05), suggesting that 
mir-146a rs2910164 polymorphism might promote the 
occurrence of IM and dysplasia jointly with H. pylori 
infection.

However, Zeng et al[154] found that subjects with 
GG and GC genotypes had a 58% increased risk of GC 
(adjusted OR = 1.58; 95%CI: 1.11-2.20, P < 0.01) 
and another Japanese study revealed the combined 
effect of miR-146a rs2910164 G/G and TLR4 +3725 
C allele on the increased risk of severe gastric atrophy 
among the H. pylori-infected Japanese subjects[155]. 
Besides, in an European population various gene po
lymorphisms including miR-146a (G>C rs2910164) 
were not associated with the presence of high risk 
atrophic gastritis or GC[156]. Nevertheless, three recently 
published meta-analysis concluded that miR-146a 
rs2910164 GG or GC polymorphisms are associated 
with increased susceptibility to GC, especially in Asian 
population[157-159]. 

H. pylori CagA(+) was shown to decrease let-7 
expression in the gastric epithelium and let-7 family 
expression levels have been shown to be negatively 
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associated with histological scores for activity, chronic 
inflammation and H. pylori density[11,68]. The let-7 family 
acts as tumor suppressors and its target genes are on
cogenes such as Ras, c-myc and HMGA2 (high mobility 
group A2)[160,161]. Indeed, miR-7 is downregulated in 
GC and it has been shown that pre-miR-7 transfection 
into GC cells suppresses cell proliferation and colony 
formation, while let-7b knockdown was associated with 
growth promotion, migration and invasion[71,162]. Lower 
levels of let-7b were also found in H. pylori -infected 
and in GC tissues and collagen triple helix repeat 
containing 1 was found to be its direct target[162]. Let-
7d downregulation was also associated with oncogene 
overexpression contributing to carcinogenesis. 

H. pylori induces an invasive phenotype in epithelial 
cells that resembles EMT through the disruption of 
cell-cell junction and loss of apical-basolateral polarity 
mediated by the interaction of CagA with several 
junction proteins like ZO-1, JAM and E-cadherin[18,163]. 
H. pylori CagA is also associated with B-catenin 
release from E-cadherin and subsequent activation of 
Wnt/B-catenin signaling pathway, and deregulation of 
B-catenin seems to play a crucial role in GI cancers[164]. 
H. pylori CagA transfect into gastric epithelial cells 
results in miR-584 and miR-1290 upregulation, via NF-
κB and Erk1/2 respectively[110]. miR-1290 was also 
implied in miR-584 activation. Foxa1 and Smad2 were 
identified as targets of miR-584 and miR-1290 and 
knockdown of Foxa1 was shown to promote EMT in GC 
cell lines. Overexpression of miR-584 and/or miR-1290 
was also associated with decreased E-cadherin levels, 
suggesting that Foxa1 downregulation by miR-584 and 
miR-1290 promotes EMT. Overexpression of miR-584 
and miR-1290 was also associated with the develop
ment of intestinal metaplasia through interference with 
cell differentiation and remodeling of gastric mucosa[110]. 

The miR-200 family (miR-200a,b,c, miR-141, 
miR-429) was also associated with epithelial differ
entiation and suppression of EMT in several types of 
cancers by inhibition of ZEB 1 and 2 (Zinc-finger E-box 
Binding homeobox 1 and 2 - transcriptional repressors 
of E-cadherin)[165,166]. In GC low miR-200b expression 
was associated with tumor size, LNM and lymphatic 
invasion and a strong correlation was found between 
miR-200b, ZEB2 and E-cadherin mRNA, i.e., in cells 
overexpressing miR-200b ZEB2 mRNA levels were 
lower and E-cadherin expression levels were increased, 
which was associated with significantly reduced 
cellular proliferation, and inhibition of cellular migration 
and invasion, suggesting that miR-200b is a tumor 
suppressor miRNA[167]. ZEB2 also represses cyclin D1 
transcription, a cyclin that promotes G1/S transition 
and is induced via AP-I in gastric epithelial cells during 
H. pylori infection and under CagA dependence[168]. 
The above findings suggest a role for miR-200 family 
and ZEB repression in the EMT-like phenotype in H. 
pylori-infected cells. miR-141, decreased in H. pylori 
-infected gastric tissue[11] targets fibroblast growth 
factor receptor (FGFR), and overexpression of miR-141 

leads to decreased FGFR2 expression and inhibition of 
proliferation[169].

MiR-375 repression and B-catenin-activating mut
ation also was described in hepatocellular adenoma and 
carcinoma[170]. Ye at al[171] demonstrated that H. pylori 
LPS deregulates miR-375 and miR-106b expression 
in gastric epithelial cells and that downregulation of 
miR-375 was associated with increased expression of 
MDM2 (E3 ubiquitin-protein ligase Mdm2), an important 
negative regulator of the p53 tumor suppressor. H. 
pylori LPS also enhanced the tyrosine phosphorylation 
of JAK1, JAK2 and STAT3, and JAK1 and STAT3 were 
found as target genes of miR-106b, suggesting that 
H. pylori LPS may enhance JAK/STAT3 pathway via 
inhibition of miR-375 and miR-106b. These findings 
were confirmed in a recent study where it was found 
that H. pylori infection downregulates miR-375, which 
targets JAK2/STAT3. In these study, gain-of-function 
and loss-of-function experiments have shown that 
decreased miR-375 expression mimics the oncogenic 
effects of the JAK2/STAT3 pathway (which promotes 
neoplastic transformation by affecting the expression 
of Bcl-2 and TWIST1) and that treatment with siRNAs 
targeting JAK2 prevents proliferation and migration 
even in response to H. pylori infection[172]. In accordance 
with these findings, another study showed miR-375 
downregulation in GC and miR-375 was found to reduce 
cell viability by targeting 14-3-3 zeta, an anti-apoptotic 
protein that promotes cell survival by binding to Bad, 
a pro-apoptotic protein[173]. PDK1 (3-phosphoinositide 
dependent protein kinase), a kinase that directly 
phosphorylates Akt and thereby regulates the PI3K/Akt 
signaling pathway was also identified as a direct target 
of miR-375. 

TGF-β is involved in mucosal immunity and in the 
control of the physiological turnover of epithelial cells, 
and the downstream effectors of TFGB-dependent 
cell cycle arrest and apoptosis are the CDK inhibitor 
p21CIP1/WAF1 and the pro-apoptotic factor Bim, respec
tively. miR-25, miR-93, miR-106b, and miR-130 inhibit 
apoptosis by preventing the expression of the pro-
apoptotic protein, Bim[174]. The miR-106b-25 cluster 
(miR-106b, miR-93 and miR-25) was demonstrated to 
be abnormally upregulated in GC and it was associated 
with decreased response of gastric cells to TGF-β by 
interfering with the expression of p21 and Bim, affecting 
both cell cycle and apoptosis[120,175]. Indeed, miR-
106b-25 cluster was found to silence p21CIP1/WAF1, E2F1 
and the proapoptotic factor Bim leading to a decreased 
response of gastric cells to the TGFb tumor-suppressor 
activity and to impairment of p21 tumor suppressor 
activities[120,174]. MiR-25 was also found to target and 
negatively influence Bim and the CDK inhibitors p27 
and p57[176]. 

miR-130b and miR-301a are both upregulated in GC 
and may contribute to tumorigenesis and invasion by 
downregulation of Runx3 expression[177]. Overexpression 
of miR-130b in GC was demonstrated and it is believed 
to contribute to suppression of Bim in TGF-β media
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ted apoptosis by targeting RUNX3, a known tumor 
suppressor silenced by promoter hypermethylation in 
GC[178,179]. mir-301a was also reported to be upregulated 
in GC, and directly downregulates Runx3 expression[180]. 
Together these findings suggest that overexpression of 
these oncogenic miRNAs results in activation of CDK2 
(promoting G1/S phase progression) and in impairment 
of the TGF-β mediated tumor suppressor pathways 
that may be critical steps in the development of gastric 
tumors. 

miR-524-5p was also found to suppress cancer cell 
proliferation and invasion by downregulating Jagged-1 
and Hes-1, two key components of the Notch signaling 
pathway[181] and it was suggested that miR-524-5p may 
also be involved in GC by regulating cell cycle and TGF-β 
signaling pathway[118]. miR-449, a tumor suppressor 
miRNA both downregulated in H. pylori-infected gastric 
mucosa and in GC, targets cyclin E2 and geminin 
(promoters of G1/S and M/G1 cell cycle progression), 
suggesting that miR-449 downregulation may be 
important in cell cycle progression and proliferation[182]. 
miR-449 was also found to target Met, geminin, and 
SIRT1, proto-oncogenes that may be related with 
proliferation, angiogenesis, invasion and metastasis[182]. 

miR-203 expression was found to be lower in H. 
pylori-positive tissues (both tumoral and non-tumoral) 
and in GC cell lines and miR-203 was found to directly 
target CASK (calcium/calmodulin-dependent serine 
protein kinase, a cytoskeletal protein overexpressed 
in various cancers)[183]. Indeed, CASK expression was 
found to be significantly higher in H. pylori-positive 
cells and was inversely correlated with miR-203 levels. 
Furthermore, miR-203 transfection could inhibit cell 
growth, colony formation and cell invasion, suggesting 
its potential tumor suppressor role in H. pylori-induced 
GC[183].	

mir-29a is also significantly downregulated in GC and 
it targets p42.3 which regulates G2/M progression and 
promotes cell cycle progression and proliferation[184,185]. 
miR-29c is a tumor-suppressor miRNA significantly 
downregulated in GC tissues compared with non-tum
oral gastric mucosa[186]. Treatment with celecoxib, a 
selective COX-2 inhibitor, significantly activates miR-
29c expression suppressing anti-apoptotic Mcl-1[108,187]. 
This pathway could be one of the mechanisms of the 
chemopreventive effects of selective COX-2 inhibitors 
and suggesting that selective iCOX-2 may be a clinical 
option for the treatment of GC via restoration of mir-
29c.

miR-181b is increased early after H. pylori infection, 
returns to normal levels early after H. pylori treatment 
(72h) and is upregulated in GC[188]. Timp3 (tissue inhibitor 
of MMP-3 and a pro-apoptotic factor), was identified as 
a direct target of miR-181 and miR-181b overexpres
sion was associated with inhibition of apoptosis, cell 
proliferation, invasion and migration in GC cells. Timp3 
downregulation in esophageal and GC has been linked 
with epigenetic changes namely gene methylation[189,190]. 

Together these data suggest that H. pylori infection 
can promote gastric carcinogenesis through miR-181b 
upregulation which leads to decreasing Timp3 levels, 
promoting proliferation, migration and invasion.

miR-223 is also overexpressed in GC and was 
suggested as an useful serum biomarker for its dete
ction. Significantly higher levels of miR-223 were found 
in H. pylori -infected GC patients and in healthy controls 
with H. pylori infection (vs those without)[191]. In another 
study, Li et al[192] found that miR-223 was associated 
with migration and invasion through downregulation 
of erythrocyte membrane protein band 4.1-like3 (EPB
41L3). Besides, miR-223 upregulation was associated 
with higher proliferation, colony formation, migration 
and invasion of H. pylori-positive GC cells[193]. mir-27a 
has been identified as an oncogenic miRNA in GC by 
targeting the tumor suppressor prohibitin and FOXO1 
(forkhead box protein O1), which may protect cells 
against oxidative stress[194-196]. 

Bcl-2 superfamily are a group of anti-apoptotic 
proteins whose expression can be regulated by tumor 
suppressor miRNAs (e.g., miR-15b, miR-16, miR-34, miR-
181b, miR-181c, and miR-497). These miRNA clusters 
are downregulated in GC cells leading to increased 
expression of Bcl-2 and inhibition of apoptosis[197]. In H. 
pylori-infected gastric mucosa miR-200bc/429 cluster is 
downregulated increasing expression of Bcl-2 and XIAP 
and thus inhibiting apoptosis[194,195,198]. 

Another tumor suppressor miRNA, mir-218 is signifi
cantly decreased in both H. pylori-infected mucosa and in 
GC tissues[199]. MiR-218 was shown to induce apoptosis 
in GC cells through direct targeting of epidermal growth 
factor receptor-co-amplified and overexpressed protein 
(ECOP) leading to inhibition of NF-κB transcriptional 
activation and inhibition of COX-2 transcription, leading 
to an apoptotic response[199]. miR-218 downregulation in 
GC cells was also correlated with increased metastasis 
and invasion through SLIT/ROBO1 signaling pathway 
upregulation[65,199,200]. Thus it seems that downregulation 
of miR-218 in GC cause ECOP overexpression, activation 
of NF-κB activity and COX-2 transcription, ultimately 
inhibiting apoptosis and inducing cell proliferation[199]. 
Tables 2 and 3 summarize the microRNAs that have 
been found to have a role in H. pylori -related gastric 
carcinogenesis. MicroRNAs overexpressed in GC ge
nerally target and repress tumor suppressor genes 
functioning as oncogenic miRNAs (Table 2), while tumor 
suppressor miRNAs that target and repress oncogenes 
are downregulated in GC (Table 3). 

EFFECTS OF H. PYLORI ERADICATION 
ON MICRORNAS
The effect of H. pylori eradication on reducing GC 
incidence is believed to be related to the risk existing at 
the time of eradication therapy[201]. A systematic review 
suggested that atrophic gastritis can undergo regression 
within one or two years after successful eradication of H. 
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pylori [202]. 
However regression of atrophic gastritis after H. 

pylori eradication seems to depend on the size and 
topographical distribution of atrophy, with a subsequent 
meta-analysis suggesting that gastric atrophic changes 
could only be reversible in cases located in the cor
pus but not in the antrum[203].	 The presence of IM 
is a less reversible stage than atrophy alone, with meta-
analysis suggesting that eradication at the IM stage is 
less effective and more likely to progress[203]. Lower H. 
pylori colonization of areas with IM may explain why the 
advantage of eradication is more limited at this stage. 
However, even if H. pylori eradication can’t regress 
intestinal metaplasia, it may be beneficial in decreasing 
cancer risk in patients with widespread IM, as suggested 
in a Japanese multicenter study which showed that 
incidence of new cancers was reduced by one-third 
among those with H. pylori eradication compared with 
those without eradication therapy[204]. Despite this, GC 
still arises in the setting of IM even following H. pylori 
eradication and evidence concerning the ability of H. 
pylori eradication to reduce the risk of cancer in cases 
of widespread IM is lacking, though it seems to reduce 
progression.

Several studies recently assessed the potential 
benefits of H. pylori eradication on the miRNA dere
gulation and methylation status of the gastric mucosa. 
Indeed, aberrant methylation and methylation levels 
of CDH1 are reported to decrease after H. pylori eradi
cation, suggesting that DNA methylation in gastric 
mucosa decreases when H. pylori is eradicated[101]. 
However, Ando et al[96] found that methylation levels 
of miR-124 were not decreased in individuals with 

past infection when compared to patients with current 
infection, suggesting that aberrant methylation induced 
in set cells may persist even after H. pylori eradication.

Shiotani et al[117] evaluated the expression of 21 
miRNAs in gastric biopsies before and after H. pylori 
eradication in patients with history of endoscopically 
resected early GC and non-cancer controls and found 
that the expression of oncogenic miRNAs was signi
ficantly higher in the intestinal metaplastic glands than 
in the non-intestinal metaplastic glands, irrespective 
of H. pylori eradication. In neither group H. pylori 
eradication significantly changed any miRNA expression 
in the intestinal metaplastic glands, despite a beneficial 
effect of H. pylori eradication was seen in the control 
group where eradication decreased miR-223 expression 
and let-7d expression increased. The authors then 
concluded that H. pylori eradication improved miRNA 
deregulation but not in intestinal metaplastic glands[117], 
further supporting the clinical finding that intestinal 
metaplasia is a less reversible stage in the gastric 
carcinogenesis. 

In another study by Shiotani et al[205], expression of 
serum miRNAs was evaluated in patients with history of 
endoscopically resected EGC and age and sex matched 
controls, before and one year after H. pylori eradication 
and it was found H. pylori eradication significantly 
decreased miR-106b levels and increased let-7d only in 
the control group.

Altogether these findings suggest that despite H. 
pylori eradication seems to be of benefit in the improve
ment of miRNA deregulation, some underlying processes 
may continue to promote tissue damage and contribute 
to the progression of the gastric carcinogenesis. 
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MicroRNA H. pylori GC Targets Consequences/associations

miR-21 ↑ ↑ RECK Decreased apoptosis; cell proliferation, invasion
PTEN MMP stimulation
ABP PI3K/Akt signaling pathway activation

miR-106a RB1 E2F transcription; lymphatic and distant metastasis
miR-584 ↑ Foxa1 EMT promotion; decreased E-cadherin
miR-1290 SMAD2 Cell differentiation and remodeling; IM development
miR-296-5p ↑ CDX1 Erk1/2 activation; growth promotion
miR-222 ↑ ↑ RECK Proliferation
miR-223 ↑ ↑ EPB41L3 Migration and invasion
miR-106b-25 cluster ↑ p21CIP1/WAF1 Decreased response to TGF-Β

Bim Cell cycle progression; inhibition of apoptosis
E2F1

miR-130b ↑ RUNX3|Bim Proliferation (CDK2 activation) and invasion
miR-301a RUNX3 Apoptosis inhibition
miR-181b ↑ ↑ Timp3 Inhibition of apoptosis, cell proliferation, invasion and migration
miR-27a ↑ ↑ FoxO1 Increased oxidative stress

Prohibitin

Table 2  Potential oncogenic microRNAs

H. pylori: Helicobacter pylori; GC: Gastric cancer; RECK: Reversion-inducing cysteine-rich protein with Kazal motifs; PTEN: Phosphatase and tensin homolog; 
ABP: Androgen-binding protein; MMP: Matrix metalloproteinase; PI3K: Phosphoinositide 3-kinase; E2F: E2F family; Foxa1: Forkhead box protein A1; 
SMAD2: Mothers against decapentaplegic homolog 2; EMT: Epithelial-mesenchymal transition; IM: Intestinal metaplasia; CDX1: Caudal type homeobox 
1; Erk: Extracellular-signal-regulated kinases; EPB41L3: Erythrocyte membrane protein band 4.1-like 3; p21: Cyclin-dependent kinase inhibitor 1; Bim: Bim 
gene (Bcl-2 family member); TGF-Β: Transforming growth factor beta; RUNX3: Runt-related transcription factor 3; Timp3: TIMP Metallopeptidase Inhibitor 
3; FoxO1: Forkhead box protein O1.
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CONCLUSION
H. pylori infection is a key factor in gastric carcinogenesis 
and influences inflammation, proliferation, cell cycle 
progression and apoptosis, differentiation, migration 
and invasion. Chronic H. pylori gastritis results from 
both innate and adaptive immune responses that seem 
to be tightly regulated by miRNA. The inflammatory 
milieu within the gastric mucosa contributes do DNA 
methylation of tumor suppressor genes and to the 
accumulation of both genetic and epigenetic alterations 
in gastric epithelial cells, contributing to the progression 
of gastric carcinogenesis. Several studies implicate 
miRNA in DNA methylation and in the regulation of 
several inflammatory and neoplastic pathways including 
in GC. However, each miRNA can control the expression 
of hundreds to thousands of genes, making difficult to 

unravel all the processes under miRNA control and thus 
we are just beginning to understand the genetic and 
molecular mechanisms underlying the process of gastric 
carcinogenesis. Nevertheless, the existing studies allow 
us to understand the importance of these small non-
coding nucleotides and to link inflammatory pathways 
to neoplastic transformation at a genetic level, despite 
some studies come from animal models and some 
inconsistencies exist in the literature concerning the 
function of some miRNAs. 

Further studies are undoubtedly needed to continue 
to improve our knowledge about miRNA functions in 
H. pylori -related GC, both at a genetic and at a clinical 
level in order to bring miRNAs to clinical practice as 
markers of disease and as prognostic markers and one 
day epigenetic therapy may have a role in the treat
ment of patients with preneoplastic conditions after H. 
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MicroRNA H. pylori GC Targets Consequences/associations

miR-185 ↓ DNMT1 and EZH2 DNA methylation; proliferation; EMT; LNM; poor prognosis
miR-204 ↓ SIRT1 EMT; invasion
miR-106b ↓ Proliferation (TGF-Β induced cell cycle arrest suppression)
miR-320 ↓ ↓ Mcl-1 Apoptosis inhibition; progression of prenoplastic conditions

Relapse of tumors; chemoterapeutic resistance
miR-101, ↓ ↓ Mcl-1 Apoptosis inhibition
miR-515-5p SOC2; DNMT1 Let-7 attenuation
miR-490-3p ↓ ↓ Cyclin B1 EMT; proliferation; colony formation; migration; invasion

SMARCD1 Metastasis and poorer survival
Decreased through the spectrum of gastric carcinogenesis

miR-370 ↓ ↓ FoxM1 ↓p27 expression; cell cycle progression and proliferation
Decreased through the spectrum of gastric carcinogenesis

miR-328 ↓ CD44v9 Survival and proliferation of metaplastic cells
Let-7 ↓ ↓ Ras Cell proliferation and colony formation

c-myc
HMGA2 Migration and invasion
Cthrc1

miR-200, ↓ ↓ ZEB1/2 Epithelial differentiation; EMT suppression
miR-141, Decreased E-cadherin, inhibition of migration and invasion
miR-429 Cyclin D1 Proliferation

Bcl-2|XIAP Apoptosis inhibition
Tumor size, lymphatic invasion and LNM

miR-141 ↓ FGFR2 Proliferation
miR-375 ↓ ↓ MDM2 p53 inactivation

JAK2/STAT3 Neoplastic transformation; proliferation and migration
3/3/2014 Inhibition of apoptosis

PDK1 PI3K/Akt signaling pathway activation
miR-524-5p ↓ Jagged-1; Hes-1 Cell proliferation and invasion
miR-449 ↓ ↓ Cyclin E2|Met Proliferation, angiogenesis, invasion and metastasis

Gemini|SIRT1
miR-203 ↓ ↓ CASK Cell growth, colony formation and cell invasion
miR-29a ↓ p42.3; Mcl-1 Cell cycle progression and proliferation
miR-29c
miR-15b, 16, 34, 181b, 497 ↓ Bcl-2 Apoptosis inhibition
miR-218 ↓ ↓ ECOP Activation of NF-κB and increased COX-2; apoptosis inhibition

SLIT/ROBO1 Invasion and metastasis

Table 3  Potential tumor suppressor microRNAs

H. pylori: Helicobacter pylori; GC: Gastric cancer; DNMT1: DNA (cytosine-5)-methyltransferase 1; EZH2: Enhancer of zeste homolog 2; EMT: Epithelial-
mesenchymal transition; LNM: Lymph node metastasis; SIRT1: Sirtuin 1; TGF-Β: Transforming growth factor beta; Mcl1: Myeloid cell leukemia 1; SOC2: 
Suppressor of clear homolog; SMARCD1: SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1; FoxM1: 
Forkhead box protein M1; HMGA2: High-mobility group AT-hook 2; Cthrc1: Collagen triple helix repeat containing 1; ZEB1/2: Zinc finger E-box binding 
homeobox 1/2; XIAP: X-linked inhibitor of apoptosis protein; FGFR2: Fibroblast growth factor receptor 2; MDM2: Mouse double minute 2 homolog; JAK1: 
Janus kinase 1; STAT3: Signal transducer and activator of transcription 3; PDK1: Phosphoinositide-dependent kinase-1; Hes-1: Hairy and enhancer of 
split-1; CASK: Calcium/calmodulin-dependent serine protein kinase; ECOP: EGFR-coamplified and overexpressed protein; NF-κB: Nuclear factor kappa B; 
COX-2: Cyclooxygenase-2. 
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pylori eradication and GC via downregulation of onco-
miRNAs and activation of tumor suppressor miRNAs. 
Given the data summarized in this review, we believe 
that let-7, miR-106 family, miR-146a, miR-155, miR-
181b, miR-223 and miR-375 are the miRNAs most 
consistently reported to have important roles in gastric 
H. pylori-related carcinogenesis and thus we suggest 
that these miRNAs deserve greater attention in clinical 
studies to found if they can be used as disease markers. 
Future studies on this topic should focus on both 
miRNA serum and tissue levels in patients in different 
stages of gastric carcinogenesis (not infected with H. 
pylori, chronic H. pylori gastritis, atrophic gastritis, 
intestinal metaplasia, dysplasia, invasive carcinoma 
and metastatic carcinoma). Furthermore, we believe 
that the modulation of miRNAs by H. pylori eradication 
and chemoprevention with COX-2 should also deserve 
attention in future studies.
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