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Abstract
Gastric cancer (GC) is the fourth most common 
cancer and the third leading cause of cancer mortality 
worldwide. MicroRNAs (miRNAs) and long non-coding 
RNAs (lncRNAs) are the most popular non-coding 

RNAs in cancer research. To date, the roles of miRNAs 
and lncRNAs have been extensively studied in GC, 
suggesting that miRNAs and lncRNAs represent a vital 
component of tumor biology. Furthermore, circulating 
miRNAs and lncRNAs are found to be dysregulated in 
patients with GC compared with healthy individuals. 
Circulating miRNAs and lncRNAs may function as 
promising biomarkers to improve the early detection 
of GC. Multiple possibilities for miRNA secretion 
have been elucidated, including active secretion by 
microvesicles, exosomes, apoptotic bodies, high-
density lipoproteins and protein complexes as well as 
passive leakage from cells. However, the mechanism 
underlying lncRNA secretion and the functions of 
circulating miRNAs and lncRNAs have not been fully 
illuminated. Concurrently, to standardize results of 
global investigations of circulating miRNAs and lncRNAs 
biomarker studies, several recommendations for pre-
analytic considerations are put forward. In this review, 
we summarize the known circulating miRNAs and 
lncRNAs for GC diagnosis. The possible mechanism of 
miRNA and lncRNA secretion as well as methodologies 
for identification of circulating miRNAs and lncRNAs are 
also discussed. The topics covered here highlight new 
insights into GC diagnosis and screening.
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Core tip: MicroRNAs (miRNAs) and long non-coding 
RNAs (lncRNAs) are the most popular non-coding RNAs 
in cancer research. The roles of miRNAs and lncRNAs 
have been extensively studied in gastric cancer (GC). 
Concurrently, circulating miRNAs and lncRNAs may 
function as promising biomarkers to improve the early 
detection of GC. In this review, we summarize the 
known circulating miRNAs and lncRNAs for GC diagnosis. 
The possible mechanism of miRNA and lncRNA secretion 
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as well as methodologies for identification of circulating 
miRNAs and lncRNAs are also discussed. The topics 
covered here highlight new insights into GC diagnosis 
and screening.
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INTRODUCTION
Gastric cancer (GC) was the fourth most common 
cancer and the third leading cause of cancer mortality 
worldwide in 2012[1]. To date, the development of 
diagnostic methods and surgical techniques has 
remarkably improved the prognosis of patients with 
GC[2]. However, for advanced GC, the 5-year survival 
rate is 30%-50%, and the most common forms of 
recurrence are lymph node metastasis, hematogenous 
spread and peritoneal dissemination. The prognosis 
for individuals with advanced disease remains poor[3]. 
Early-stage diagnosis of GC potentially reduces the 
mortality of this disease. Many non-invasive methods 
for GC detection are available, such as serum 
pepsinogen and MG-7. However, the sensitivity and 
specificity of these methods remain unsatisfactory. 
Endoscopic screening for GC is currently the most 
reliable diagnostic tool, but its cost and invasive nature 
have limited its use. Therefore, novel, non-invasive, 
cost-effective and highly sensitive biomarkers are 
urgently needed to improve GC detection.

RNA transcripts include mRNA and non-coding 
RNAs; non-coding RNAs are defined as RNA transcripts 
that do not encode a protein. Non-coding RNAs are 
divided into two primary categories: small non-coding 
RNAs (< 200 nt) and long non-coding RNAs (lncRNAs; 
> 200 nt) (Figure 1). Some small non-coding RNAs are 
housekeeping RNAs, such as rRNA and tRNA, which 
are essential for cell physiology, while others, such 
as microRNAs (miRNAs), splicing RNAs, promoter-
associated short RNAs, tiny transcription-initiation 
RNAs, termini-associated short RNAs, antisense 
termini-associated short RNAs and 3’-untranslated 
region (UTR)-derived RNAs, are associated with 
protein-coding gene regulation. 

To date, miRNAs are the most extensively studied 
small non-coding RNAs. miRNAs are endogenous, single-
stranded, non-coding, small RNAs of 21-22 nucleotides 
that are involved in regulating gene expression by 
incorporating into the RNA-induced silencing complex 
(RISC) and preferential binding to specific sequences in 
the 3’-UTR of their target mRNAs to suppress translation 
or to induce mRNA degradation[4]. Since their discovery 

in 1993, accumulating evidence has suggested that 
ectopic expression of miRNAs is responsible for a variety 
of biological processes including embryonic development 
and carcinogenesis[5-8]. Ectopic expression of miRNAs 
involved in tumorigenesis has been well described in 
most tumor types. Up-regulation, down-regulation 
or silencing of specific miRNAs has been described 
previously in the carcinogenesis of GC. A series of 
miRNAs have been identified to be down-regulated and 
act as tumor suppressors in GC by restraining oncogene 
expression or interfering with pathways that regulate 
cellular proliferation. Conversely, a number of miRNAs 
have been detected that are up-regulated and that may 
exhibit oncogenic functions in GC by targeting tumor 
suppressor genes.

lncRNAs have also gained increasing popularity in 
the current research climate. lncRNAs are defined as 
RNA transcripts of more than 200 nucleotides in length 
with no protein-coding capability and are sometimes 
referred to as lincRNAs for long intergenic non-coding 
RNAs. lncRNAs play crucial roles in controlling gene 
expression during various physiological processes. 
Emerging evidence has suggested that ectopic lncRNA 
expression constitutes an important component of 
tumorigenesis and is involved in angiogenesis and cell 
proliferation, migration, and apoptosis[9-11]. lncRNAs 
exhibit a wide spectrum of biological functions and 
may work in conjunction with mRNAs and miRNAs 
to serve the following functions (Figure 2): (1) serve 
as enhancer RNAs (eRNAs) to compete with nascent 
mRNA for negative elongation factor (NELF) complex 
binding at the target promoter for transcriptional 
regulation[12]; (2) serve as a scaffolding base for the 
coordination of epigenetic or chromatin-modifying 
complexes[13]; (3) directly modulate tumor suppressor 
signaling by either transcriptional regulation of tumor 
suppressor genes or mediation of tumor suppressor 
target gene activation[14,15]; (4) serve as molecular 
sponges for miRNAs[16]; (5) gene expression regulation 
by direct lncRNA-mRNA interactions[17]; (6) function 
as a decoy for miRNA or translation factors to regulate 
gene expression[16]; and (7) hybridize with their 
corresponding spliced mRNAs to form dsRNAs, which 
are cleaved by Dicer to generate endogenous small 
interfering RNAs (endo-siRNAs) to modulate gene 
expression[18,19]. Growing evidence suggests that 
lncRNA dysregulation correlates with GC tumorigenesis, 
metastasis and prognosis. H19, HOTAIR, CCAT1, 
GHET1, CDKN2B LSINCT-5, CUDR, LINC00152 and 
MALAT1 can exhibit oncogenic functions in GC, whereas 
GAS5, MEG3, BM742401 and FER1L4 may function 
as tumor suppressors; their critical effects on tumor 
growth may be mediated through competition for 
targeted miRNAs or positive regulation of epithelial-
mesenchymal transition[20].

miRNAs that are protected by exosomes and other 
microparticles have been detected in plasma, serum, 
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urine, saliva, and milk[21-24]. lncRNAs are also detected 
in multiple body fluids. Circulating miRNAs and lncRNAs 
meet the basic conditions for utility as biomarkers that 
may be measured repeatedly and non-invasively in 
a wide array of cancer types to distinguish patients 

from health individuals[8,25-27]. Circulating miRNAs and 
lncRNAs may play an important role in the diagnosis of 
various types of cancer. In this review, the diagnostic 
applications of circulating miRNAs and lncRNAs in GC 
are assessed.
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Figure 2  Mechanisms of long non-coding RNA function. A: Serve as enhancer RNAs (eRNAs) to compete with nascent mRNA for negative elongation factor 
(NELF) complex binding at the target promoter for transcriptional regulation; B: Serve as a scaffolding base for the coordination of epigenetic or chromatin-modifying 
complexes; C: Serve as molecular sponges for microRNAs (miRNAs); D: Function as a decoy for miRNAs or translation factors to regulate gene expression; E: 
Hybridize with their corresponding spliced mRNAs to form dsRNAs, which are cleaved by Dicer to generate endogenous small interfering RNAs (endo-siRNAs) 
to modulate gene expression; F: Gene expression regulation by direct long non-coding RNA (lncRNA)-mRNA interactions; G: Directly modulate tumor suppressor 
signaling by either transcriptional regulation of tumor suppressor genes or mediation of tumor suppressor target gene activation. 
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the highest expression level of all miR-200 cluster 
members in the GC cell lines MKN-45 and OE-19. 
Therefore, miR-200c was chosen for clinical validation. 
A high diagnostic value of circulating miR-200c was 
observed, with an AUC of 0.715, sensitivity of 65.4% 
and specificity of 100%, indicating that miR-200c 
may represent a novel biomarker for GC detection. 
The Cox multivariate regression model was used to 
further explore the relationship between circulating 
miR-200c and clinical outcomes of GC patients, and 
the result revealed that a high expression level of 
circulating miR-200c was an independent prognostic 
factor for progression free survival (PFS) and overall 
survival (OS) in patients with GC. In GC tissues, miR-
200c was significantly down-regulated, which inhibited 
the migration and invasion of GC cells by decreasing 
ZEB1/2 expression[43]. In addition to GC, serum miR-
200c was identified as an emerging metastasis-
predictive and prognostic biomarker for patients with 
colorectal cancer[44].

miR-223, miR-16 and miR-100: Wang et al[45] demon
strated that serum miR-223, miR-16 and miR-100 
play crucial roles in GC screening. The expression 
levels of serum miR-223, miR-16 and miR-100 were 
significantly elevated in the GC group relative to the 
controls, and these levels were associated with the 
tumor-node-metastasis (TNM) stage, tumor size, 
metastatic status and differentiation grade in GC 
patients. AUCs of 0.85 for miR-223, 0.90 for miR-16, 
and 0.71 for miR-100 were observed for GC detection. 
The sensitivity and specificity of miR-223 were 81% 
and 78%, respectively. miR-16 exhibited a sensitivity 
of 79% and specificity of 78%, whereas the maximal 
sensitivity and specificity of miR-100 were 0.71 and 
0.58, respectively, implying that serum miR-223, 
miR-16 and miR-100 may serve as biomarker 
candidates for GC diagnosis. miR-223 and miR-100 
were reported to exhibit elevated expression levels in 
GC tissues. miR-223 was identified to function as an 
oncogene that promotes GC invasion and metastasis 
by targeting FBXW7/hCdc4 and EPB41L3, which are 
tumor suppressor genes[46,47]. Yang et al[48] reported 
that silencing miR-100 expression initiated a robust 
apoptotic response in human GC cells and that HS3ST2 
may be a target gene of miR-100, indicating its 
oncogenic role in GC. The expression level of miR-16 
in GC tissues is inconsistent; Oh et al[49] observed 
that miR-16 was up-regulated in GC, whereas Xia et 
al[50] and Li et al[51] reported that miR-16 was down-
regulated in GC tissue and GC cells. The reasons for 
this difference have not yet been determined. 

miR-16, miR-25, miR-92a, miR-451 and miR-
486-5p: Zhu et al[52] conducted a four-phase study to 
identify and evaluate a cluster of circulating miRNAs as 
novel biomarkers for GC diagnosis. During the discovery 
phase, the authors obtained the circulating miRNA 
expression profiles of gastric non-cardia adenocarcinoma 

PRIMARY CIRCULATING miRNAs USED 
IN GC DIAGNOSIS
Main up-regulated circulating miRNAs used in GC 
diagnosis
miR-1, miR-20a, miR-27a, miR-34a, and miR-
423-5p: Liu et al[28] used Solexa sequencing to identify 
a profile of five serum miRNAs, i.e., miR-1, miR-20a, 
miR-27a, miR-34 and miR-423-5p, as a biomarker for 
GC detection, and the expression levels of these five 
miRNAs were associated with tumor stage. Receiver 
operating characteristic (ROC) curves were used to 
evaluate the diagnostic value of the five-serum miRNA 
signature with a sensitivity of 80% and specificity 
of 81%. The areas under the ROC curves (AUCs) of 
serum miRNAs in sets Ⅰ and Ⅱ were 0.879 (95%CI: 
0.822-0.936) and 0.831 (95%CI: 0.767-0.898), 
respectively, which were higher than those of 
carcinoembryonic antigen (CEA; 0.503; 95%CI: 
0.411-0.595) and carbohydrate antigen 19-9 (CA19-9; 
0.600; 95%CI: 0.507-0.684). The expression levels 
of the five serum miRNAs differed significantly in the 
GC patients at different tumor progression stages. 
miR-20a, miR-27a and miR-423-5p were up-regulated 
in GC tissues, miR-20a promoted GC progression by 
directly targeting early growth response 2[29], miR-
27a suppression inhibited GC cell growth by targeting 
prohibitin[30], and miRNA-423-5p might represent a 
promising therapeutic target for GC because of its 
regulation of tumor cell proliferation and invasion by 
targeting trefoil factor 1[31]. Taken together, current 
research suggests that the onco-miRNA roles of miR-
20a, miR-27a and miR-423-5p in the tumorigenesis 
of GC are important. miR-1 has been suggested to 
function as a tumor suppressor miRNA because of its 
down-regulated expression level in GC tissues, and the 
ability of miR-1 to target MET has been validated[32]. 
However, changes in miR-34a expression were 
inconsistent in GC tissues[33,34]. In 2009, miR-34a was 
first identified to be significantly up-regulated in GC[34]. 
Subsequently, Kim et al[33] used a custom-designed 
Agilent microarray to determine that miR-34a was 
down-regulated in GC tissues, and PDGFR and the 
transcription factor Yin Yang 1 (YY1) were identified as 
targets of the miR-34 family[35,36]. However, the function 
of miR-34a in GC may be fully elucidated in the future. 
Moreover, these five miRNAs have also been reported 
to play a potent role in the development of other types 
of cancer, such as bladder cancer, squamous cell lung 
carcinoma, hepatocarcinoma, colorectal carcinoma, 
prostate cancer and glioblastoma, indicating the 
potential utility of these five miRNAs in cancer therapy 
in addition to their diagnostic value[37-41].

miR-200c: Valladares-Ayerbes et al[42] conducted a 
study that included 52 GC patients and 15 controls 
to explore the potential of using circulating miR-
200c in whole blood as a biomarker for GC diagnosis 
and prognosis. In this study, miR-200c exhibited 

Huang YK et al . Circulating microRNAs and long non-coding RNAs in GC diagnosis



9867 September 14, 2015|Volume 21|Issue 34|WJG|www.wjgnet.com

(GNCA) patients and controls using TLDA chips with 
pooled samples, and differentially expressed circulating 
miRNAs (miR-16, miR-25, miR-92a, miR-451 and 
miR-486-5p) were validated by real-time quantitative 
polymerase chain reaction (qRT-PCR). During the 
independent validation phase, the five identified 
miRNAs were examined in a larger independent sample 
and found to be consistent with the previous phase, 
suggesting that these five plasma miRNAs might serve 
as promising biomarkers for early GNCA detection with 
a sensitivity of 72.9%, specificity of 89.2% and AUC 
of 0.812. In addition, miR-16, miR-92a and miR-25, 
but not miR-486-5p or miR-451, were identified as 
secretory miRNAs in BGC823 and MGC803 cell lines. 
miR-25 and miR-92a were also found to be up-regulated 
in GC tissues. miR-25 promotes GC cell motility and 
proliferation by targeting LATS2 and RECK[53,54], and 
miR-92a promotes GC cell growth by targeting E2F1 and 
HIPK1[55], supporting the onco-miRNA roles of miR-25 
and miR-92a in GC. miR-16, miR-451 and miR-486-
5p have exhibited inconsistent expression levels in GC 
tissues in different research studies[33,51,56,57] potentially 
due to different methodologies for miRNA detection. In 
addition to GC, aberrant expression of miR-16, miR-92, 
miR-25, miR-451 and miR-486-5p was also found to 
participate in the development of many other types of 
cancer[58-69].

miR-16 and miR-93 were also identified by Song 
et al[70] as suitable reference genes for serum miRNA 
analysis in GC patients and healthy controls. In 
their study, Song et al[71] identified seven candidate 
reference miRNAs from the sera of GC patients. miR-16 
and miR-93 were identified as the top two most stable 
miRNAs serving as reference genes for serum miRNA 
analysis for GC detection. miR-93 was significantly up-
regulated in GC specimens compared with healthy 
controls, and the prognostic value of miR-93 was 
observed in resectable gastric adenocarcinomas[71]. 
In addition to GC, circulating miR-93 also exhibits 
potential diagnostic value for breast cancer detection[72]. 
Du et al[73] demonstrated that miR-93 functioned as a 
potent suppressor of DAB2, which was identified as a 
tumor suppressor gene in multiple cancer types, and 
miR-93 overexpression correlated with poor survival 
of patients with lung cancer, indicating the vital role of 
miR-93 in cancer development and progression and in 
GC diagnosis.

miR-421: Zhou et al[74] reported that circulating 
miR-421 in mononuclear cells (MNCs) could serve 
as a distinctive biomarker for circulating tumor cells 
(CTCs). In their study, the authors used reverse 
transcription-polymerase chain reaction (RT-PCR) to 
evaluate the diagnostic value of miR-421 in peripheral 
blood for GC detection, and the sensitivity, specificity 
and AUC of miR-421 were 94.12%, 62.50% and 
0.773, respectively. In addition, the authors observed 
that the miR-421 inhibitor repressed the proliferation 
and viability of GC cells in vivo and in vitro, indicating 

that miR-421 might act an onco-miRNA in GC. Wu 
et al[75] also validated the high diagnostic efficiency 
of serum miR-421 in a large sample set composed 
of 90 GC patients and 90 controls with a maximal 
sensitivity of 95.5%, maximal specificity of 89.1% and 
maximal AUC of 0.821, which was superior to cancer 
antigen 125 (CA125) and CEA for GC detection. The 
expression level of miR-421 in GC tissues was up-
regulated, which was consistent with the circulating 
levels. Furthermore, one of the targets of miR-421 
was identified as caspase-3[76], which is important for 
apoptosis. In addition, miR421 was identified to play 
a crucial role in the tumorigenesis and development 
of many other cancer types, including breast cancer, 
nasopharyngeal carcinoma, and SKX squamous cell 
carcinoma[76-80].

miR-378: Liu et al[81] used microarrays to obtain 
serum genome-wide miRNA profiles and identified 
serum miR-378 as a biomarker for the early detection 
of GC. In their article, three miRNAs (miR-187, miR-
371-5p, and miR-378) were detected in all 30 samples 
and exhibited significantly higher expression in GC 
serum than in controls or in the colorectal cancer 
group. Further, the authors performed qRT-PCR in 
another independent set composed of 40 GC serum 
samples and 41 healthy controls to verify the diagnostic 
value of the three miRNAs in discriminating GC 
patients from controls. Subsequently, ROC curve and 
multivariate logistic regression analyses indicated that 
miR-378 was a potential biomarker for GC detection 
with a sensitivity of 87.5%, specificity of 70.73% and 
AUC of 0.861, whereas serum miR-187 and miR-371-
5p could not improve GC diagnosis. Serum miR-378 
expression levels did not differ significantly among the 
different TNM stages. Meanwhile, the expression level 
of miR-378 in GC tissues was down-regulated relative 
to normal tissues, indicating that miR-378 might serve 
as a tumor suppressor miRNA in GC. MAPK1 may be 
the target of miR-378 to assist miR-378 in inhibiting 
the progression of human GC cells[82]. However, 
miR-378 was overexpressed in ovarian cancer cells and 
tumor specimens vs normal ovarian epithelial cells[83], 
indicating that the expression pattern of miR-378 was 
dependent on the type of cancer. Moreover, miR-378 
was identified as an ideal biomarker candidate for 
breast cancer, renal cell carcinoma, non-small cell lung 
cancer and colorectal cancer[84-86].

miR-199a-3p: Li et al[87] conducted a study to explore 
the expression levels of tumor-associated miRNAs 
in the plasma of patients with early GC. The authors 
determined that the expression of miR-199a-3p in 
the plasma of 30 early GC patients was significantly 
higher relative to healthy controls and patients with 
gastric precancerous diseases (GPDs). Meanwhile, 
the expression level of plasma miR-199a-3p in the 
postoperative patients was significantly reduced 
compared with the preoperative patients. Moreover, 
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the AUC of plasma miR-199a-3p for early GC diagnosis 
was 0.818, which was significantly higher than that 
of combined tumor markers such as CEA, CA125, 
CA724, CA199, CA242 and CA50. The sensitivity, 
specificity, and accuracy of plasma miR-199a-3p 
for early GC diagnosis were 76%, 74%, and 75%, 
respectively. Peng et al[88] suggested that miR-199a-
3p was down-regulated in gastric carcinoma tissues 
and regulated human GC cell proliferation by targeting 
the mTOR signaling pathway. However, Wang et al[89] 
demonstrated that miR-199a-3p was significantly 
up-regulated in GC tissues and cell lines and that 
its oncogenic activity in GC might involve the direct 
targeting of ZHX1. The expression level of miR-199a-
3p in GC tissues is inconsistent, and the controversy 
may be resolved by stricter and more reliable studies.

miR-106a and miR-17: Zhou et al[90] performed 
a study to identify circulating miRNAs to detect 
circulating tumor cells in peripheral blood for GC 
diagnosis. The authors observed that the expression 
levels of miR-106a and miR-17 in the circulation 
were higher in GC patients compared with controls. 
Ninety GC patients and 27 controls were recruited to 
evaluate the diagnostic value of miR-106a and miR-17 
in peripheral blood, and the result revealed that the 
AUC, sensitivity and specificity of miR-106a were 
0.684, 48.15% and 90.24%, respectively, whereas 
the AUC, sensitivity and specificity of miR-17 were 
0.743, 51.85% and 92.68%, respectively. Additionally, 
the AUC, sensitivity and specificity of the combination 
of miR-106a and miR-17 were 0.741, 62.96%, 
80.49%, respectively. Zeng et al[91] suggested that 
the expression level of serum miR-17 was significantly 
reduced in both GC and benign gastric disease patients 
compared with healthy controls. The AUC for serum 
miR-17 to discriminate GC patients from controls was 
0.879, with a sensitivity of 90.6% and specificity of 
57.5%. To discriminate benign gastric disease patients 
from controls, the AUC, sensitivity and specificity 
of serum miR-17 were 0.725, 62.9% and 81.2%, 
respectively. In GC tissues, miR-17 was overexpressed 
to function as an onco-miRNA to promote cell 
proliferation, and UBE2C and FBXO31 were identified 
as the targets of miR-17[92,93]. Concurrently, miR-106a 
overexpression was observed in GC tissues, and miR-
106a might play an oncogenic role in GC by targeting 
TIMP2 and FAS[94,95]. miR-106a in gastric juice was also 
demonstrated to exhibit potential diagnostic value for 
GC detection, with a sensitivity of 73.8%, specificity 
of 89.3%, and AUC of 0.871[96], which was consistent 
with the diagnostic value of circulating levels. In 
addition to GC, miR-106a and miR-17 were also found 
to be widely used as promising diagnostic or prognostic 
biomarkers for various types of cancer such as 
hepatocellular carcinoma, non-small cell lung cancer, 
prostate cancer, breast cancer and nasopharyngeal 
carcinoma[97-100].

miR-103, miR-107, miR-194 and miR-210: Rotkrua 
et al[101] established a mouse line to recapitulate human 
diffuse-type GC (DGC) morphologically and molecularly 
by E-cadherin/p53 double conditional knockout 
(DCKO). Subsequently, the authors employed miRNA 
microarrays to screen candidate miRNAs in individual 
mouse samples at different ages. miR-103, miR-107, 
miR-194, miR-210 and miR-291b-5p were identified as 
DGC-related miRNAs. To evaluate the accuracy of the 
microarray data, the authors measured the expression 
levels of these five miRNAs in serum samples using 
TaqMan qRT-PCR. miR-107, miR-103, miR-194 and 
miR-210 exhibited significantly increased expression 
levels in the sera of 6-12-mo-old DCKO mice (early-
stage DGC) with histologically proven intramucosal 
DGC compared with the control group, suggesting that 
the four miRNAs had the potential to identify DGC at 
an early stage. In 12-mo-old DCKO mice (advanced-
stage DGC), the expression levels of miR-107, miR-103 
and miR-194 in the sera were significantly increased 
compared with controls, whereas the expression level 
of miR-210 was unchanged, indicating that miR-210 
might be an inappropriate biomarker of advanced DGC. 
To discriminate DGC cases from controls, miR-103 
exhibited a sensitivity of 81.8%, specificity of 95.7% 
and AUC of 0.881; miR-107 exhibited a sensitivity of 
90.9%, specificity of 95.7% and AUC of 0.909; and 
miR-194 exhibited a sensitivity of 90.9%, specificity 
of 95.7% and AUC of 0.925. For differentiating early 
early-stage DGC cases from controls, miR-210 exhibited 
a sensitivity of 72.7%, specificity of 87.0% and AUC 
of 0.846. The expression levels of miR-107, miR-103 
and miR-210 in human GC tissues were inconsistent. 
miR-107 expression was up-regulated in eight studies 
and down-regulated in one study[33,34,47,49,51,57,102-104], 
miR-103 expression was up-regulated in seven studies 
and down-regulated in one study[33,34,47,49,57,102-104], and 
miR-210 expression was up-regulated in one study 
and down-regulated in two studies[30,33,47]. However, 
these differences may be due to the different detection 
methods and small patient samples. miR-194 was 
significantly down-regulated in GC tissues, indicating 
its tumor suppressor role in GC development[105]. 
miR-103, miR-107, miR-194 and miR-210 were also 
found to modulate the proliferation, migration or 
multidrug resistance of GC cells[106-109]. Moreover, these 
four miRNAs were identified to play crucial roles in the 
oncogenesis of many other malignant tumor types, 
such as cervical cancer, colorectal cancer, pancreatic 
cancer, non-small cell lung carcinoma and endometrial 
cancer[69,109-113].

miR-18a: Tsujiura et al[114] assessed plasma miR-18 
as a biomarker in patients with GC. The authors 
determined that the expression level of miR-18 in
creased significantly in GC tissues compared with 
normal gastric tissues. The diagnostic value of 
circulating miR-18 in plasma was evaluated, and the 
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results indicated that the AUC of miR-18 was 0.8059, 
with a sensitivity of 0.846 and specificity of 0.692. 
Concurrently, plasma miR-18 exhibited significantly 
lower expression levels in postoperative patients 
compared with preoperative patients, indicating that 
circulating miR-18 in the plasma might function as 
a biomarker for GC screening and tumor dynamic 
monitoring. Su et al[115] also validated the diagnostic 
value of plasma miR-18a for GC detection and reported 
AUC, sensitivity and specificity values for discriminating 
GC patients from healthy controls to be 0.907, 80.5% 
and 84.6%, respectively. STAT3 was identified as the 
target of miR-18a to promote its onco-miRNA activity 
in GC[116]. In addition to GC, plasma/serum miR-18a 
also exhibited potential as a next-generation biomarker 
in the screening of other types of cancer, such as 
pancreatic cancer (AUC = 0.936), esophageal cancer 
(AUC = 0.944), hepatocellular cancer (AUC = 0.881) 
and colorectal cancer with a clinically satisfactory 
degree of specificity and sensitivity[117]. 

miR-223 and miR-21: Li et al[118] reported that 
the expression levels of miR-223 and miR-21 in the 
plasma were significantly higher in GC patients than 
in healthy controls, whereas miR-218 was significantly 
lower. The study they conducted comprised of 60 
GC patients and 60 healthy controls in the validation 
stage. The combination of miR-223, miR-21 and 
miR-218 yielded an AUC of 0.9531 with a sensitivity 
of 84.29% and specificity of 92.86% in differentiating 
GC patients from healthy controls. The use of a single 
miRNA in the plasma as biomarker for GC detection 
produced sensitivity values of 84.29% and 74.29%; 
specificity values of 88.57% and 75.71%; and AUC 
values of 0.9089 and 0.7944 for miR-223 and miR-21, 
respectively. In addition to this, the expression 
level of miR-223 in the plasma was associated with 
Helicobacter pylori (H. pylori) infection status. miR-21 
overexpression in the circulation also correlates with 
lymph node metastasis, tumor size and TNM stage in 
GC patients[119,120]. A meta-analysis suggested that the 
AUC of plasma miR-21 as a biomarker for GC diagnosis 
was 0.80, with a pooled sensitivity of 66.5% and 
pooled specificity of 83.1%[121]. Concurrently, miR-21 
in gastric juice exhibited high diagnostic values for 
GC detection, with a sensitivity of 85.7%, specificity 
of 97.8%, and AUC of 0.969[96], consistent with those 
in the circulation. The expression levels of miR-223 
and miR-21 in GC tissues were elevated, consistent 
with their expression levels in the circulation[46,122,123]. 
miR-223 functions as an oncogene in GC by targeting 
FBXW7/hCdc4, EPB41L3 and Stathmin1[46,47,124], and 
miR-21 promotes tumor proliferation and invasion or 
confers cisplatin resistance in GC by targeting NF-kB 
and PTEN[125-127]. In addition to GC, the two miRNAs 
were found to participate in tumorigenesis and 
enhance chemosensitivity in various other types of 
cancer, including prostate cancer, esophageal cancer, 
osteosarcoma, hepatocellular carcinoma and lung 

adenocarcinoma[128-132]. 

miR-21 and miR-106b: Shiotani et al[133] investigated 
the expression levels of serum miRNAs in high-risk 
GC patients before and after H. pylori eradication. The 
study recruited 87 early-stage, non-cardia, intestinal-
type GC patients without lymph node metastasis and 
114 sex- and age-matched healthy controls. Serum 
miR-106b was significantly up-regulated in the GC 
group before and after H. pylori eradication compared 
with healthy controls, whereas serum miR-21 also 
manifested higher expression levels in the GC group 
relative to healthy controls immediately after H. pylori 
eradication. ROC analyses revealed that the AUC, 
sensitivity and specificity values of miR-106b for early 
GC screening were 0.61, 55.6% and 70.3% before H. 
pylori eradication, respectively. For early GC screening 
after H. pylori eradication, the AUC values of miR-106b 
and miR-21 were 0.70 and 0.72; the sensitivity values 
of miR-106b, miR-21 and the combination of miR-
106b and miR-21 were 75.8%, 58.6% and 69.0%; 
and the specificity values of miR-106b, miR-21 and the 
combination of miR-106b and miR-21 were 51.4%, 
51.4% and 69.4%, respectively, superior to serum 
pepsinogen Ⅰ and Ⅱ. Zeng et al[91] also suggested that 
serum miR-106b yielded an AUC of 0.856, sensitivity 
of 75.0% and specificity of 92.5% for discriminating 
GC patients from healthy controls; an AUC of 0.700, 
sensitivity of 87.2% and specificity of 45.0% for 
discriminating GC patients from benign gastric disease 
patients; and an AUC of 0.739, sensitivity of 75.0% 
and specificity of 68.7% for discriminating benign 
gastric disease patients from healthy controls. In 
addition, the expression level of the miR-106b~25 
cluster (miR-106b, miR-93 and miR-25) in the plasma 
was suggestive of significant correlation with TNM 
stage, tumor size and Bormann type of GC[134]. Recent 
observations also demonstrated that miR-106b is up-
regulated in GC tissues to function as an oncogene by 
targeting PTEN, p21, E2F5 and p57[135-137].

miR-221, miR-376c and miR-744: Song et al[138] 
conducted a multi-stage, nested case-control study 
from two large cohorts to explore the potential 
use of serum miRNAs in GC detection. The study 
was composed of four stepwise phases, and 82 GC 
patients, 46 dysplasia patients and 128 controls with 
superficial gastritis or atrophic gastritis were recruited. 
The results indicated that a combination of miR-221, 
miR-376c and miR-744 was an efficient biomarker for 
GC diagnosis with a sensitivity of 82.4% and specificity 
of 58.8%. For early GC detection, the three-miRNA 
panel exhibited an interesting diagnostic value with a 
sensitivity of 73.3%. Concurrently, the three-miRNA 
panel could also discriminate dysplasia from controls 
with a sensitivity of 56.5% and specificity of 47.8%. 
Furthermore, a significant positive correlation between 
the expression levels of two serum miRNAs (miR-221, 
miR-376c) and the poor differentiation of GC was 
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observed. In GC tissues and cell lines, miR-221 is 
up-regulated to function as an oncogene to promote 
GC invasion and metastasis by targeting PTEN, and 
its expression level is associated with the TNM stage 
and venous invasion[139,140]. However, miR-376c and 
miR-744 have not been well elucidated in GC. In 
addition to GC, serum miR-376c exhibits potential in 
the detection of breast cancer, and miR-221, miR-376c 
and miR-744 play pivotal roles in the development of 
multiple other types of cancer[141].

Main down-regulated circulating miRNAs used in GC 
diagnosis
let-7a: Wang et al[142] demonstrated that let-7a 
exhibited a lower expression level in the sera of GC 
patients than in healthy individuals, corresponding with 
lower let-7a expression levels in gastric adenocarcinoma 
tissues relative to peritumoral tissues. The expression 
levels of let-7a in serum samples and tumor tissues 
were significantly correlated, indicating that let-7a could 
be a diagnostic biomarker of GC. In that study, in vitro 
experiments revealed that let-7a might function as a 
tumor suppressor miRNA in GC by suppressing CCR7. 
Tsujiura et al[143] found that the expression levels of 
miR-17-5p, miR-106b, miR-106a and miR-21 were 
significantly elevated in GC patients compared with 
controls, whereas let-7a exhibited a lower plasma 
concentration in GC patients compared with controls. 
To evaluate the diagnostic value of these circulating 
miRNAs for GC detection, large-scale validation including 
69 GC patients and 30 controls was performed, and 
the result indicated that the ratio of miR-106a/let-7a 
exhibited a sensitivity of 85.5%, specificity of 80.0% 
and maximum AUC of 0.879. Tchernitsa et al[102] used 
miRNA microarrays and reported that let-7a was up-
regulated in GC compared with non-neoplastic tissue, 
which was inconsistent with the research by Wang et 
al[142]. However, the result of Oleg Tchernitsa’s study 
revealed marginal significance with a P-value of 0.0474, 
which should be validated in a larger scale study. In 
addition to GC, let-7a also exhibits a potent role in 
regulating cell proliferation or chemosensitivity in other 
types of cancer such as hepatocellular carcinoma, 
breast cancer, lung cancer, bladder cancer, colorectal 
cancer, nasopharyngeal carcinoma, prostate cancer, 
esophageal cancer, pancreatic cancer and ovarian 
cancer[144-154], indicating its extensive and universal 
function in tumor development.

miR-375: Zhang et al[155] conducted a study to 
explore the miRNA profile of distal gastric adenocar
cinoma (DGAC) and identified miR-375 as significantly 
down-regulated in DGAC tissue and GC cell lines 
(MGC-803, BGC-823, and SGC-7901) relative 
to normal gastric tissues and cell lines (GES-1). 
Concurrently, in an independent set composed of 20 
patients with preoperative DGAC and 20 age-matched 
healthy individuals, serum miR-375 was identified 
as a biomarker candidate for discriminating patients 

with DGAC from healthy controls. The AUC of serum 
miR-375 was 0.835, with a sensitivity of 80% and 
specificity of 85%. Previous studies of miR-375 in GC 
had emphasized that miR-375 was frequently down-
regulated in GC tissues. JAK2, ERBB2, STAT3 and 
p53 were identified as targets of miR-375, suggesting 
its tumor suppressor role in GC[156-160]. In addition to 
GC, miR-375 also exhibits a tumor suppressor miRNA 
role in many other malignant tumors, and circulating 
miR-375 is a potential diagnostic marker for other 
malignant tumors such as hepatocellular carcinoma[161], 
prostate cancer[162], non-small-cell lung cancer[163] and 
pancreatic cancer[164].

miR-218: The expression levels of miR-218 was 
identified to be significantly lower in GC patients 
than in healthy controls by Li et al[118] as well. As a 
single biomarker in plasma for GC detection, miR-218 
produced a sensitivity of 94.29%, specificity of 44.29%, 
and AUC of 0.7432. In addition to this, miR-218 in 
the sera of patients with GC was also up-regulated 
after cytoreductive surgery (CRS) and hyperthermic 
intraperitoneal chemotherapy (HIPEC), and its 
expression level in the sera correlated with GC tumor 
grade, stage and metastasis[165,166], suggesting that 
circulating miR-218 might exhibit a prognostic value 
for GC patients. miR-218 expression in GC tissues was 
reduced significantly, and miR-218 overexpression 
notably inhibited GC cell proliferation, indicating 
the tumor suppressor role of miR-218 in GC. NF-
kB, Robo1 and VOPP1 were identified as targets of 
miR-218[122,167,168]. In addition to GC, miR-218 were 
found to participate in tumorigenesis in various other 
types of cancer[131,169-171]. 

Other circulating miRNAs used in GC diagnosis
Cai et al[172] demonstrated that plasma miR-106b, 
miR-20a and miR-221 might serve as potential non-
invasive biomarkers for GC detection with AUCs of 
0.7733, 0.8593 and 0.7960, respectively. Tsai et al[173] 
suggested that serum miR-196a is significantly down-
regulated in postoperative GC patients compared with 
preoperative GC patients and that the expression level 
of serum miR-196a is significantly increased when 
patients experience recurrence, indicating that miR-
196a might serve as a promising biomarker for GC 
detection and disease relapse. Plasma miR-192 and 
miR-122 were also identified to exhibit potential in 
distinguishing GC patients with distant metastasis 
(GC/DM) from those with non-distant metastasis 
(GC/NDM), and the results indicated that the AUCs for 
discriminating GC/DM from GC/NDM were 0.732 for 
miR-192 and 0.808 for miR-122 and that the AUCs to 
discriminate GC patients from healthy controls were 
0.818 for miR-192 and 0.815 for miR-122[174]. Gorur 
et al[175] stated that plasma miR-195-5p was most 
significantly down-regulated, with more than 13-fold 
changes in the expression in GC patients compared 
with control groups, suggesting its potential as a 
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biomarker for GC detection. Moreover, the expression 
levels of serum miR-146a, miR-21 and miR-148a were 
associated with GC pN stage, and the combination 
of these three miRNAs could represent a biomarker 
candidate for differentiating LN metastasis of GC 
patients from LN-negative GC patients with an AUC 
of 0.764[120]. Wang et al[176] demonstrated that the 
expression levels of plasma miR-17-5p and miR-20a 
were significantly associated with the differentiation 
status and TNM stage of GC and that the elevated miR-
17-5p/20a levels in plasma indicated poorer overall 
survival of patients with GC.

Summary of circulating miRNAs used in GC diagnosis
The characteristics of circulating miRNAs in GC 
detection are summarized in Table 1. The AUC, 
sensitivity and specificity ranges were 0.684-0.9531, 
48.15%-94.29%, and 44.29%-95.7%, respectively. 
The combination of miR-223, miR-21 and miR-218 
exhibited the highest diagnostic value for GC detection 
in humans, regardless of tumor site, tumor stage and 
pathological type, with an AUC of 0.9531, sensitivity 
of 84.29% and specificity of 92.86%. Among these 
circulating miRNAs, the combination of miR-16, 
miR-25, miR-92a, miR-451 and miR-486-5p; miR-210; 
the combination of miR-221, miR-376c and miR-744; 
miR-199a-3p; and the combination of miR-21 and 
miR-106b were observed to exert effective diagnostic 
values for the detection of early GC with an AUC 
range of 0.7-0.846, sensitivity range of 72%-75.8% 
and specificity range of 51.4%-89.2%. Of all of these 
combinations, the combination of miR-16, miR-25, 
miR-92a, miR-451 and miR-486-5p is indicative of 
the highest diagnostic value, with an AUC of 0.89, 
sensitivity of 84.1% and specificity of 90.8%. For 
non-cardiac early GC detection specifically, miRNA-
199a-3p demonstrates the highest AUC of 0.818, 
with a sensitivity of 74% and specificity of 75%. 
Improvement of the early diagnosis of GC is the best 
way to improve the prognosis of patients with GC. For 
non-cardiac GC diagnosis, the combination of miR-16, 
miR-25, miR-92a, miR-451 and miR-486-5p produces 
the highest AUC value of 0.89, with a sensitivity 
of 84.1% and specificity of 90.8%. Concurrently, 
miR-375 has been identified to have potential in 
discriminating distal gastric adenocarcinoma (DGAC) 
patients from healthy individuals, with an AUC of 
0.835, sensitivity of 80% and specificity of 85%. 
However, few studies have been conducted to examine 
the diagnostic value of circulating miRNAs for cardiac 
GC detection. miR-103, miR-107, miR-194 and 
miR-210 are utilized for the detection of diffuse-type 
GC (DGC), with a sensitivity range of 72.7%-90.9%, 
specificity range of 87.0%-95.7% and AUC range 
of 0.846-0.925. Of these miRNAs, miR-194 exhibits 
the highest diagnostic value with an AUC of 0.925, 
sensitivity of 90.9% and specificity of 95.7%; however, 
these miRNAs were detected in mouse lines rather 
than in humans, and the sample size was small (5 

advanced-stage DGCs, 6 early-stage DGCs and 18 
healthy controls)[101]. Therefore, these results must 
be validated in GC patients on a larger scale. As 
presented in Table 2, miR-1, miR-17-5p, miR-16, miR-
18a, miR-20a, miR-21, miR-25, miR-27a, miR-34a, 
miR-92a, miR-100, miR-103, miR-106a, miR-106b, 
miR-107, miR-146a, miR-148a, miR-192, miR-194, 
miR-196a, miR-199a-3p, miR-200c, miR-210, 
miR-221, miR-223, miR-376c, miR-378, miR-423-5p, 
miR-421, miR-451, miR-486-5p, miR-744 and miR-93 
are up-regulated in the circulation of GC patients; on 
the contrary, miR-195-5p, let-7a, miR-218, miR-375 
and miR-122 are down-regulated in the circulation. 
Among these miRNAs, miR-17-5p, miR-18a, miR-20a, 
miR-21, miR-25, miR-27a, miR-92a, miR-100, miR-
106a, miR-106b, miR-192, miR-221, miR-223, miR-
423-5p, miR-421, and miR-93 are overexpressed in 
GC tissues, and these data suggest that this group of 
miRNAs represent onco-miRNAs in GC. In contrast, 
the expression levels of miR-1, miR-146a, miR-148a, 
miR-194, miR-200c, miR-218, miR-375 and miR-378 
are down-regulated in GC tissues, indicating that these 
miRNAs act as tumor suppressor miRNAs. miR-16, 
miR-34a, miR-103, miR-107, miR-196a, miR-199a-3p, 
miR-210, miR-451, miR-486-5p and let-7a manifest 
inconsistent expression in GC tissues among different 
research studies, which may be the result of different 
inclusion or exclusion criteria of study subjects, 
different accuracies of profiling platforms, different 
protocols for specimen collection and processing, 
previous cytotoxic treatments, underestimated hypoxia 
and infection and tumor heterogeneity. However, the 
reason for these differences should be elucidated 
sufficiently in the future. In all the circulating miRNAs, 
the expression levels of miR-1, miR-146a, miR-148a, 
miR-194, miR-200c, miR-218, miR-375 and miR-378 in 
GC tissues are inconsistent with their circulating levels, 
suggesting that these miRNAs are actively secreted 
into the circulation or by other mechanisms rather than 
by being passively released. Although the function and 
origin of circulating miRNAs in patients with GC have 
not been systematically clarified, they have exhibited 
superior diagnostic value as biomarkers for GC 
detection compared with conventional tumor markers 
such as CA199, CA125, CA724, CA242, CA50 and 
CEA. To standardize the results of global investigations 
of circulating miRNA biomarker studies, formal 
recommendations for pre-analytic considerations have 
been put forward[177]. Circulating miRNAs have gained 
in popularity as biomarker candidates for GC diagnosis 
and screening.

PRIMARY CIRCULATING lncRNAs USED 
IN GC DIAGNOSIS
Main up-regulated circulating lncRNAs used in GC 
diagnosis
H19: Arita et al[178] suggested that plasma H19 
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Table 1  Diagnostic efficiencies of circulating miRNAs in gastric cancer

Circulating miRNA Species Samples Sensitivity Specificity AUC Population

miR-1, miR-20a, miR-27a, 
miR-34a and miR-423-5p[28]

Human Serum 80% of miR-1 + miR-20a 
+ miR-27a + miR-34a + 

miR-423-5p

81% of miR-1 + miR-20a 
+ miR-27a + miR-34a + 

miR-423-5p

0.879 of miR-1 + miR-20a + 
miR-27a + miR-34a + miR-

423-5p

82 GC patients and 63 
healthy controls

miR-16, miR-25, miR-92a, 
miR-451 and miR-486-5p[52]

Human Plasma 84.1% of miR-16 + 
miR-25 + miR-92a + 

miR-451 + miR-486-5p

90.8% of miR-16 + 
miR-25 + miR-92a + 

miR-451 + miR-486-5p

0.89 of miR-16 + miR-25 + 
miR-92a + miR-451 + miR-

486-5p

106 non-cardiac early 
GC patients and 160 

healthy controls
miR-223, miR-16 and 
miR-100[45]

Human Serum 81% of miR-223, 79% 
of miR-16 and 71% of 

miR-100

78% of miR-223, 78% 
of miR-16 and 58% of 

miR-100

0.85 of miR-223, 0.9 of 
miR-16 and 0.71 of miR-100

50 GC patients and 47 
healthy controls

miR-18a[114] Human Plasma 84.6% 69.2%   0.8059 104 GC patients and 65 
healthy controls

miR-18a[115] Human Plasma 80.5% 84.6% 0.907 82 GC patients and 65 
healthy controls

miR-106a and miR-17[90] Human Whole 
blood

62.96% of miR-106a + 
miR-17, 48.15% of miR-

106a and 51.85% of 
miR-17

80.49% of miR-106a + 
miR-17, 90.24% of miR-

106a and 92.68% of 
miR-17

0.741 of miR-106a + 
miR-17, 0.684 of miR-106a 

and 0.74 of miR-17

90 GC patients and 27 
healthy controls

The ratio of miR-106a/let-
7a[90]

Human Serum 85.5% 80% 0.879 69 GC patients and 30 
healthy controls

miR-103, miR-107, miR-194 
and miR-210[101]

Mouse Serum 81.8% of miR-103, 90.9% 
of miR-107, 90.9% of 

miR-194 and 72.7% of 
miR-210 only for early-

stage DGC

95.7% of miR-103, 95.7% 
of miR-107, 95.7% of 

miR-194 and 87.0% of 
miR-210 only for early-

stage DGC

0.881 of miR-103, 0.909 of 
miR-107, 0.925 of miR-194 
and 0.846 of miR-210 only 

for early-stage DGC

5 advanced-stage DGC 
patients, 6 early-stage 
DGC patients and 18 

healthy controls

miR-223, miR-21 and 
miR-218[118]

Human Plasma 84.29% of miR-223 + 
miR-21 + miR-218, 
84.29% of miR-223, 

74.29% of miR-21 and 
94.29% of miR-218

92.86% of miR-223 + 
miR-21 + miR-218, 
88.57% of miR-223, 

75.71% of miR-21 and 
44.29% of miR-218

0.9531 of miR-223 + miR-21 
+ miR-218, 0.9089 of 

miR-223, 0.7944 of miR-21 
and 0.7432 of miR-218 

60 GC patients and 60 
healthy controls

miR-21[121] Human Plasma 66.5% 83.1% 0.80 251 GC patients and 184 
controls

miR-21 and miR-106b[133] Human Serum 69% of miR-21 + miR-
106b, 58.6% of miR-21 
and 75.8% of miR-106b

69.4% of miR-21 + miR-
106b, 86.1% of miR-21 
and 51.4% of miR-106b

0.72 of miR-21 and 0.7 of 
miR-106b

87 non-cardiac early GC 
patients and 114 healthy 

controls
miR-17 and miR-106b[91] Human Serum 83.3% of miR-17 + miR-

106b, 80.6% of miR-17 
and 75.0% of miR-106b

87.5% of miR-17 + miR-
106b, 87.5% of miR-17 
and 92.5% of miR-106b

0.913 of miR-17 + miR-
106b, 0.879 of miR-17 and 

0.856 of miR-106b

40 GC patients, 32 BGD 
patients and 36 healthy 

controls
miR-106b, miR-20a and 
miR-221[172]

Human Plasma Null Null 0.773 of miR-106b, 0.8593 
of miR-20a and 0.7960 of 

miR-221

60 GC patients and 60 
healthy controls

miR-122 and miR-192[174] Human Plasma Null Null 0.808 of miR-122 for 
discriminating GC/DM 

from GC/NDM and 
0.815 of miR-122 for 

discriminating GC/DM 
patients from healthy 

controls; 0.732 of miR-192 
for discriminating GC/

DM from GC/NDM 
and 0.818 of miR-192 for 
discriminating GC/DM 

patients from healthy 
controls

36 GC/DM patients, 36 
GC/NDM patients and 

36 healthy controls

miR-195-5p[175] Human Plasma Null Null Null 20 GC patients and 190 
healthy controls

miR-196a[173] Human Serum Null Null Null 20 Pre- and post-
operative GC patients

miRNA-199a-3p[87] Human Plasma 74%   75% 0.818 80 early GC patients, 
20 patients with gastric 

precancerous
diseases and 70 healthy 

controls
miR-200c[42] Human Whole 

blood
   65.4% 100% 0.715 52 GC patients and 15 

healthy controls
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represents an important complementary biomarker 
for GC detection. The expression level of plasma H19 
was significantly higher in GC patients than in healthy 
controls. When GC patients underwent surgery, the 
expression level of plasma H19 decreased significantly, 
indicating that plasma H19 was potentially able to 
discriminate GC patients from healthy individuals, with 
a sensitivity of 74%, specificity of 58% and AUC of 0.64. 
H19 was reported to be up-regulated in GC tissues[179]. 
Recent studies have suggested that H19 targets 
RUNX1 and ISM1 to promote GC cell proliferation, 
migration and invasion[180,181], indicating that H19 
functions as an oncogene in GC. In addition to GC, 
aberrant H19 was also found to play a crucial role in 
the development of multiple other types of cancer such 
as adrenocortical carcinoma, ovarian cancer, prostate 
cancer, glioma breast cancer, renal cell carcinoma, 
pancreatic cancer and bladder cancer[182-186].

LINC00152: Several novel studies have demon
strated that long intergenic non-protein-coding RNA 
152 (LINC00152) is overexpressed in GC tissues[187,188]. 
Li et al[189] analyzed the level of circulating LINC00152 
in plasma samples from 79 GC patients and 81 healthy 
volunteers by qRT-PCR. Their results suggested that 
plasma LINC00152 had significantly higher expres
sion levels in GC patients compared with healthy 
individuals and had potential as a promising non-
invasive biomarker for GC screening, with an AUC of 
0.657, sensitivity of 48.1% and specificity of 85.2%. 
Gastric juice can also be a source of biomarkers for 
GC detection; Pang et al[187] found that LINC00152 
levels were significantly increased in gastric juice from 
patients with GC compared with healthy controls. 
Accordingly, we speculate that LINC00152 may 
function as an oncogene to promote tumorigenesis in 
GC. However, the function of LINC00152 in GC should 
be investigated further.

Main down-regulated circulating lncRNAs used in GC 
diagnosis
FERL4: Liu et al[190] demonstrated that FER1L4, a 
newly identified lncRNA, is down-regulated in GC 

tissues and that low expression levels of FER1L4 are 
associated with histological grade, tumor diameter, 
TNM stage, lymphatic metastasis, perineural invasion, 
venous invasion, and serum CA724. The authors 
further examined the expression level of plasma 
FER1L4 and observed no differences in the levels 
between preoperative GC patients and healthy 
individuals; however, a sharp decline in expression 
levels was observed in GC patients two weeks after 
surgery, suggesting that FER1L4 might serve as a 
potential biomarker for clinical prognosis evaluation 
of patients with GC. Song et al[191] were the first to 
report that FER1L4 is down-regulated in GC tissues 
relative to normal gastric specimens. Subsequently, 
Xia et al[192] suggested that FER1L4 is involved in a 
cancer-associated ceRNA network containing eight 
lncRNAs (FER1L4, GACAT1, GACAT3, AC009499.1, 
H19, LINC00152, RP4-620F22and 3AP000288.2.) and 
nine miRNAs (miR-106a-5p, miR-106b-5p, miR-139-
5p, miR-18a-5p, miR-18b-5p, miR-19a-3p, miR-195-
5p miR-20b-5p and miR-31-5p) to modulate tumor 
development and invasion in GC, thereby suggesting 
that FER1L4 functions as a tumor suppressor lncRNA in 
GC. However, the mechanism and function of FER1L4 
should be further explored.

CUDR, LSINCT-5 and PTENP1: Dong et al[193] 
measured the expression levels of 39 candidate 
cancer-associated circulating lncRNAs by RT-qPCR 
in the sera of 110 patients with GC, 15 patients with 
benign gastric ulcer and 106 healthy individuals. Their 
results suggested that CUDR, LSINCT-5 and PTENP1 in 
the sera were the most significantly down-regulated in 
GC patients compared with the control group. During 
the validation phase of this study, the combination of 
CUDR, LSINCT-5 and PTENP1 provided the greatest 
predictive ability to distinguish GC patients from 
healthy controls, with an AUC of 0.92, sensitivity of 
74.1% and specificity of 100%. For early GC detection, 
the three-lncRNA panel indicated a strong diagnostic 
value, with an AUC of 0.832, sensitivity of 77.8% and 
specificity of 97.0%. In addition, the three serum 
lncRNAs were also identified to be sufficiently sensitive 
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When a combination of circulating miRNAs is characterized, a (+) is included between the listed circulating miRNAs. AUC: Area under the curve; GC: 
Gastric cancer; DGC: Diffuse-type gastric cancer; DYS: Dysplasia; BGD: Benign gastric disease; DGAC: Distal gastric adenocarcinoma; GC/DM: Gastric 
cancer with distant metastasis; GC/NDM: Gastric cancer with no distant metastasis.

miR-221, miR-376c and 
miR-744[138]

Human Serum 82.4% of miR-221 + 
miR-376c + miR-744

58.8% of miR-221 + 
miR-376c + miR-744

0.7 of miR-221, 0.74 of 
miR-744 and 0.71 of miR-

376c

38 advanced GC 
patients, 30 early 

GC patients, 46 DYS 
patients and 128 healthy 

controls

73.3% of miR-221 + 
miR-376c + miR-744 for 

early GC detection 
miR-375[155] Human Serum 80% 85% 0.835 20 DGAC patients and 

20 healthy controls
miR-378[81] Human Serum    87.5%      70.73% 0.861 40 GC patients and 41 

healthy controls
miR-421[74] Human Whole 

blood
     94.12%    62.5% 0.773 40 GC patients and 17 

healthy controls
miR-421[75] Human Whole 

blood
   95.5%    89.1% 0.821 90 GC patients and 90 

healthy controls
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Table 2  Expression levels of circulating miRNAs in gastric cancer tissues and their targeted genes

Circulating 
miRNA

Expression in 
the circulation

Expression in 
tissue 

Validated target genes

miR-1 Up-regulation Down-
regulation

MET, Coronin1C, API-5, Slug, PIK3CA, NRF2, CCND2, CXCR4, SDF-1α, TAGLN2

miR-17-5p Up-regulation Up-regulation YES1, STAT3, SMAD7, SOCS6, Beclin1, P21, P130, PCAF, TP53INP1, VDUP1, HBP1, AIB1, 
miR-16 Up-regulation Inconsistent 

direction of 
expression

ABCF2, ABHD10, ACP2, ACTR1A, ACVR2A, ADSS, ALG3, ANAPC16, ARHGDIA, ARL2, ASXL2, ATG9A, 
AURKB, BCL2, BMI1, BRCA1, C14orf109, C17orf80, C2orf43, C2orf74, C4orf27, C9orf114, C9orf167, C9orf89, 
CA12, CACNA2D1, CADM1, CAPRIN1, CARD8, CCDC109A, CCDC111, CCDC76, CCND1, CCND3, CCNE1, 
CCNT2, CDC14B, CDK5RAP1, CDK6, CENPJ, CEP63, CFL2, CHORDC1, CHUK, CREBL2, CRHBP, CSHL1, 
DNAJB4, ECHDC1, EGFR, EIF4E, EPT1, FAM122C, FAM69A, FGF2, FNDC3B, GALNT7, GFM1, GFPT1, 
GNL3L, GOLGA5, GOLPH3L, GPAM, GSTM4, GTF2H1, H3F3B, HACE1, HARS, HARS2, HBXIP, HDHD2
HERC6, HMGA1, HMOX1, HRSP12, HSDL2, HSP90B1, HSPA1A, IFRD1, IFRD2, IGF2R, IPO4, ITGA2, JUN, 
KCNN4, KPNA3, LAMC1, LAMTOR2, LAMTOR3, LUZP1, LYPLA2, MCL1, MLLT11, MMS19, MRPL20, 
MSH2, MYB, NAA15, NAA25, NAPG, NIPAL2, NOB1, NOTCH2, NPR3, NT5DC1, OMA1, OSGEPL1, 
PAFAH1B2, PANX1, PDCD4, PDCD6IP, PHKB, PHLDB2, PISD, PLK1, PMS1, PNN, PNPLA6, PPIF, PPM1D, 
PPP2R5C, PRIM1, PSAT1, PTCD3, PTGS2, PURA, PWWP2A, RAB21, RAB30, RAB9B, RAD51C, RARS, RFT1, 
RHOT1, RNASEL, RTN4, SEC24A, SERPINE2, SHOC2, SKAP2, SLC12A2, SLC16A3, SLC25A22, SLC35A1, 
SLC35B3, SLC38A1, SLC38A5, SLC7A1, SPTLC1, SQSTM1, SRPR, SRPRB, TIA1, TMEM109, TMEM43, 
TNFSF9, TOMM34, TP53, TPI1, TPM3, TPPP3, TXN2, UBE2S, UBE2V1, UBE4A, UGDH, UGP2, UTP15, 
VEGFA, VPS45, VTI1B, WIPF1, WNT3A, WT1, YIF1B, ZNF384, ZNF559, ZNF622, NFKB1, ZYX

miR-17 Inconsistent 
direction of 
expression

Up-regulation APP, BCL2, BCL2L11, BMPR2, CCL1, CCND1, CCND2, CDKN1A, DNAJC27, E2F1, E2F3, FBXO31, GPR137B, 
ICAM1, JAK1, MAP3K12, MAPK9, MEF2D, MUC17, MYC, NCOA3, NPAT, OBFC2A, PKD2, PTEN, PTPRO, 
RB1, RBL1, RBL2, RUNX1, SELE, SMAD4, TGFBR2, THBS1, TNFSF12, VEGFA, WEE1, YES1, ZNFX1, PTEN

miR-18a Up-regulation Up-regulation CCNL1, CSRNP3, CTGF, ESR1, HSF2, NCOA3, NR3C1, PTEN, SMAD4, SPPL3, TGFBR2, THRA, TNFSF11, 
TSC22D3, ATM

miR-20a Up-regulation Up-regulation APP, BCL2, BMPR2, BNIP2, CCND1, CCND2, CDKN1A, E2F1, E2F3, HIF1A, MAP3K12, MAPK9, MEF2D, 
MUC17, MYC, NRAS, PTEN, RB1, RBL1, RBL2, RUNX1, SMAD4, TGFBR2, THBS1, VEGFA, WEE1, EGLN3, 
IRF2, KIT

miR-21 Up-regulation Up-regulation ANKRD46, APAF1, BASP1, BCL2, BMPR2, BTG2, CCR1, CDC25A, CDK2AP1, DAXX, DERL1, E2F1, E2F2, 
EGFR, EIF2S1, EIF4A2, ERBB2, FMOD, HNRNPK, ICAM1, IL1BISCU, JAG1, JMY, LRRFIP1, MARCKS, 
MEF2C, MSH2, MSH6, MTAP, MYC, NCAPG, NCOA3, NFIB, PCBP1, PDCD4, PDHA2, PLAT, PLOD3, PPIF, 
PTEN, PTX3, RASA1, RASGRP1, RECK, REST, RHOB, RPS7, RTN4, SERPINB5, SOX5, SPATS2L, SPRY2, 
TGFBI, TGFBR2, TGFBR3, TGIF1, TIAM1, TIMP3, TM9SF3, TNFAIP3, TOPORS, TP53BP2, TP63, TPM1, 
WFS1, WIBG, ANP32A, CCL20, DOCK4, DOCK5, DOCK7, DUSP10, NFKB1, PIAS3, PPARA, SMARCA4, SP1, 
DAPK1, EZH2, MAP2K3, MAPK8, PLXNB1, POU4F2, PTEN, SRGAP1, ING4, XBP1, ACVR2B, WNK1

miR-25 Up-regulation Up-regulation BCL2L11, CDKN1C, KAT2B, KLF4, PRMT5, TP53, CCL26, CDH1, WDR4
miR-27a Up-regulation Up-regulation FOXO1, HIPK2, MYT1, PHB, SP1, SP3, SP4, SPRY2, THRB, ZBTB10, APC, FBXW7, IGF1, MMP13, PAX3, 

WEE1
miR-34a Up-regulation Inconsistent 

direction of 
expression

AXIN2, BCL2, BIRC3, CCND1, CCND3, CCNE2, CD44, CDC25A, CDC25C, CDK4, CDK6, CEBPB, DLL1, 
E2F1, E2F3, E2F5, EMP1, FOXP1, GRM7, HMGA2, HNF4A, IFNB1, JAG1, MAGEA12, MAGEA2, MAGEA3, 
MAGEA6, MAP2K1, MAP3K9, MDM4, MET, MYB, MYC, MYCN, NOTCH1, NOTCH2, PEA15, SIRT1, 
SPI1, TNFRSF6B, VAMP2, VEGFA, WNT1, YY1, ZAP70, EPHA5, FOSL1, IMPA1, IMPDH2, MET, NANOG, 
PDGFRA, SOX2, STX1A, SYT1, ULBP2

miR-92a Up-regulation Up-regulation ARID4B, BMPR2, CPEB2, ESR2, HIPK3, ITGA5, KAT2B, MYLIP, SMAD4, TGFBR2, THBS1, TP63, BCL2L11, 
CDH1, KLF2

miR-100 Up-regulation Up-regulation ATM, EGR2, FGFR3, ID1, MMP13, PLK1, IGF1R
miR-103 Up-regulation Inconsistent 

direction of 
expression

CCNE1, CDK2, CREB1, DICER1, GPD1, CAV1

miR-106a Up-regulation Up-regulation APP, ARID4B, CDKN1A, E2F1, HIPK3, IL10, MYLIP, RB1, RUNX1, VEGFA, FAS
miR-106b Up-regulation Up-regulation APP, CCND1, CCND2, CDKN1A, E2F1, E2F3, ITCH, KAT2B, MAPK9, PTEN, RB1, RBL1, RBL2, TCEAL1, 

VEGFA, WEE1, EOMES
miR-107 Up-regulation Inconsistent 

direction of 
expression

ARNT, BACE1, CCNE1, CDCA4, CDK6, CRKL, DICER1, FBXW7, GRN, HIF1A, MYB, NFIA, PLAG1, RAB1B, 
VEGFA

miR-146a Up-regulation Down-
regulation

BRCA1, BRCA2, CCNA2, CD40LG, CDKN1A, CDKN3, CFH, CXCR4, ERBB4, FADD, FAF1, FAS, IL8, IRAK1, 
IRAK2, KIF22, MTA2, NFKB1, PA2G4, ROCK1, TLR2, TRAF6, EGFR, SMAD4, TLR4

miR-148a Up-regulation Down-
regulation

CCKBR, DNMT1, DNMT3B, HLA-G, NR1I2, RPS6KA5, TGIF2

miR-192 Up-regulation Up-regulation ABCA8, ABCC3, ABCG2, AKAP9, ALCAM, ATP10D, ATXN7, B3GALNT1, BARD1, BCL2, BRD3, C1D, 
CADM1, CD164, CDC7, CDKN1B, CLIC1, CUL3, CUL5, DDOST, DDX3X, DLG5, DTL, E2F5, EGR1, ENOSF1, 
ENTPD3, ERCC3, ERLIN2, GOLGA6A, GRIA1, HOXA10, HRH1, HSP90B1, KIDINS220, KIF20B, LMNB2, 
LOXL2, MAD2L1, MAP3K1, MCM10, MFSD10, MIS12, MSN, ODC1, PANX1, PDE2A, PERP, PIK3R4, PIM1, 
PRPF38A, PTP4A3, RAB2A, RABGAP1, RACGAP1, RANBP3, RBL2, RRM1, SEMA4D, SEPT10, SETD4, 
SMARCB1, SPARC, STX7, TFG, TRAPPC2P1, WDR44, WNK1, XPA, ACVR2B, ERCC4, RB1

miR-194 Up-regulation Down-
regulation

CDH2, DNMT3A, EP300, HBEGF, IGF1R, ITGA9, PTPN12, PTPN13, RAC1, SOCS2, ACVR2B, SOX5
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and specific to distinguish benign peptic ulcers from 
GC patients, with an AUC of 0.902, sensitivity of 
91.7% and specificity of 83.3%, indicating that the 
three-lncRNA serum signature might represent a novel 
biomarker candidate for GC detection. Concurrently, 
this study reported that a lower expression level of 
the three-lncRNA panel predicted higher survival rates 
in patients with GC, implying that these three serum 
lncRNAs can predict the prognosis of GC patients. 
However, CUDR, also termed UCA1, was observed 
to be overexpressed in GC tissues and gastric juice, 
indicating its potential as an onco-lncRNA and as 
a diagnostic biomarker in GC[194,195]. LSINCT-5 has 
also been reported to be up-regulated in GC tissues 
and to exhibit oncogenic activity to promote cellular 
proliferation. Concurrently, LSINCT-5 overexpression 
predicts the negative prognosis of GC patients[196]. 
The expression levels of CUDR and LSINCT-5 in GC 
tissues are inconsistent with their circulating levels, 
which should be validated by more reliable studies in 
the future. PTENP1 has not been well characterized 
in GC; however, previous studies have emphasized 

PTENP1 down-regulation in hepatocellular carcinoma, 
endometrial cancer and clear cell renal cell carcinoma, 
suggesting that it serves as a tumor suppressor to 
inhibit tumorigenesis[197-199]. Nonetheless, little is 
known regarding the functions and mechanisms of 
CUDR, LSINCT-5 and PTENP1 in GC; these lncRNAs 
should be thoroughly examined in future studies.

Summary of circulating lncRNAs used in GC diagnosis
In addition to miRNAs, human blood may contain 
abundant lncRNAs, which can be detected by RNA-
seq deep-sequencing technologies or microarrays 
and validated by RT-PCR, implying the potential 
application of circulating lncRNAs in GC detection; the 
AUC, sensitivity and specificity ranges were 0.64-0.92, 
48.1%-77.8%, and 58%-100%, respectively (Table 
3). The combination of CUDR, LSINCT-5 and PTENP1 
provides the strongest diagnostic value of GC detection 
among all of the circulating lncRNAs, with an AUC of 
0.92, sensitivity of 74.1% and specificity of 100%. For 
early-stage GC detection, the combination of CUDR, 
LSINCT-5 and PTENP1 reveals an AUC of 0.832 with 
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miR-196a Up-regulation Inconsistent 
direction of 
expression

Annexin A1, HOXB7, HOXB8, NME4, p-JNK, TIMP1, MMP1/9, NFKBIA, IκBα, FOXO1, p27Kip1, NTN4, 
HOXA5, NOBOX, HOXA9, HOX-C8, HOX-B7, BMP4

miR-199a-
3p

Up-regulation Inconsistent 
direction of 
expression

mTOR, MET, AXL, ZHX1, COX2, NLK, Aurora kinase A, c-Met, LKB1, Caveolin-2, STAT3, CD44, ZNF217, ZEB1

miR-200c Up-regulation Down-
regulation

ADAM12-L, CYP1B1, Zeb2, Snail1, BMI-1, E2F3, HO-1, ZEB1, ZEB2, UBQLN1, USP25, HMGB1, PTEN, KRAS, 
VEGFR2, MUC4, MUC16, ERG, DLC1, ATRX, HFE, TUBB3, TRKB, ETS1, FLT1, FHOD1, PPM1F, BRD7, 
PPP2R1B

miR-210 Up-regulation Inconsistent 
direction of 
expression

ABCB9, ACVR1B, AIFM3, APC, ATP11C, BDNF, CASP8AP2, CBX1, CDK10, CHD9, CLASP2, CPEB2, DDAH1, 
E2F3, EFNA3, ELK3, FAM116A, FGFRL1, GPD1L, HECTD1, HOXA1, HOXA3, HOXA9, ISCU, KIAA1161, 
MDGA1, MIB1, MID1IP1, MNT, MRE11A, NCAM1, NIPBL, NPTX1, P4HB, PIM1, PTAR1, PTPN1, RAD52, 
SEH1L, SERTAD2, SMCHD1, TNPO1, TP53I11, UBQLN1, XIST, XPA

miR-221 Up-regulation Up-regulation BBC3, BMF, BNIP3, CDKN1B, CDKN1C, CORO1A, DDIT4, ESR1, FOS, FOXO3, HOXB5, ICAM1, KIT, NAIP, 
PTEN, SELE, SSSCA1, TCEAL1, TICAM1, TNFSF10, TP53, DICER1, DIRAS3, ETS1, TIMP3

miR-223 Up-regulation Up-regulation CHUK, E2F1, LMO2, MEF2C, NFIA, NFIX, RHOB, STMN1, EPB41L3, FBXW7, IGF1R, SLC2A4
miR-376c Up-regulation Null SMAD4, PC-TP, GRB2, TGFα, ALK5, ALK7, IGF-1R, ALK7
miR-378 Up-regulation Down-

regulation
GALNT7, MYC, NPNT, TOB2, VEGFA

miR-423-
5p

Up-regulation Up-regulation TFF1

miR-421 Up-regulation Up-regulation Caspase-3, Menin, ATM, FOXO4, SERPINE 1, FXR, DPC4/Smad4
miR-451 Up-regulation Inconsistent 

direction of 
expression

ABCB1, AKT1, BCL2, CAB39, MIF, MMP2, MMP9, SSSCA1, MYC, RAB14

miR-486-
5p

Up-regulation Inconsistent 
direction of 
expression

CD40, Pim-1, ARHGAP5

miR-744 Up-regulation Null Zbed4, Lrsam1, Ddx21, AW555464, c-Myc, eEF1A2, TGF-β1, Ccnb1
miR-93 Up-regulation Up-regulation CDKN1A, E2F1, ITGB8, KAT2B, MAPK9, TP53INP1, TUSC2, VEGFA, PTEN
miR-195-
5p

Down-
regulation

Null CDK4, CDK6, CCNE1, GLUT3

Let-7a Down-
regulation

Inconsistent 
direction of 
expression

AMMECR1, APP, BCL2, CASP3, CASP8, CASP9, CCND2, DICER1, E2F1, E2F2, EGR3, EIF2C4, FOXA1, 
HMGA1, HMGA2, HNRPDL, HRAS, IGF2, IL6, ITGB3, KRAS, LIN28A, MEIS1, MYC, NEFM, NF2, NFKB1, 
NKIRAS2, NR1I2, NRAS, PRDM1, RAVER2, SLC20A1, THBS1, TRIM71, TUSC2, UHRF2, VDR, ZFP36L1, 
CDC34, EWSR1, IGF2BP1, MPL

miR-218 Down-
regulation

Down-
regulation

ACTN1, BIRC6, CDKN1B, EBP, EFNA1, IKBKB, LAMB3, LASP1, MAFG, MBNL2, MRPS27, NACC1, NFE2L1, 
NUP93, SP1, STAM2, VOPP1, BIRC5, GJA1, RICTOR, ROBO1

miR-375 Down-
regulation

Down-
regulation

ELAVL4, JAK2, MTDH, PDK1, PLAG1, RASD1, TIMM8A, YAP1, YY1AP1

miR-122 Down-
regulation

Null DLX4, Cyclin G1, MEF2D, TRAIL, PKM2, Wnt/β-catenin, AKT3, PI3K/Akt, c-Myc, CAT1, PBF, IGF1R, p53, 
ALDOA, ARHGAP1, BCAT2, CS, GNPDA2, IQGAP1, LAMC1, LMNB2, MTHFD2
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a sensitivity of 77.8% and specificity of 97%, but the 
sample size is small (9 early-stage GC patients, 18 
healthy subjects and 15 gastric peptic ulcer subjects), 
and the result must be validated in GC patients on a 
larger scale. However, few studies have focused on 
the diagnosis of GC classified by different tumor sites, 
different tumor stages or different pathological types 
(e.g., early-stage or advanced-stage GC, cardiac or 
non-cardiac GC, and intestinal-type, diffuse-type or 
mixed-type GC). To promote the prognosis of GC, 
studies of circulating lncRNAs for different subtypes of 
GC, particularly for early-stage GC detection, should 
be a focus of future research. Taken together, the 
sensitivity and specificity of a single tumor-associated 
circulating lncRNA as a biomarker remain poor; 
however, a circulating lncRNA signature, especially 
the combination of various circulating lncRNAs, can 
promote the diagnostic efficiency of GC detection 
considerably. Among these lncRNAs (Table 4), H19 and 
LINC00152 are up-regulated in the circulation, while 
FER1L4, LSINCT-5, PTENP1 and CUDR (UCA1) are 
down-regulated. FER1L4 is also down-regulated in GC 
tissues, indicating that it acts as a tumor suppressor 
in GC. In contrast, H19, LINC00152, LSINCT-5 and 
CUDR (UCA1) manifest up-regulated expression levels 
in GC tissues, suggesting that the oncogene roles they 

play in GC. However, the expression levels of LSINCT-5 
and CUDR (UCA1) in tissues are inconsistent with their 
circulating levels, active secretion may underlie this 
discrepancy, but the inconsistent direction of expression 
should be validated in future studies. lncRNAs in gastric 
juice also exhibit potential in the early diagnosis of 
GC. Shao et al[200] suggested that lncRNA-AA174084 
in gastric juice might serve as a promising biomarker 
for GC detection, with an AUC of 0.848. The rapidly 
expanding catalog of circulating lncRNAs strongly 
supports their clinical utility in GC diagnosis.

MECHANISM OF miRNA AND lncRNA 
SECRETION
Many studies have explored the mechanism underlying 
the secretion of miRNAs and lncRNAs. Multiple 
possibilities for miRNA secretion have been elucidated: 
(1) Active secretion by microvesicles (MVs), exosomes 
and apoptotic bodies. To be resistant to RNase activity, 
miRNAs destined for release are ultimately present in a 
stable, protected size that is much smaller than that of a 
typical epithelial cell such as exosomes and membrane-
bound particles[25]. Skog et al[201] demonstrated that 
microvesicles are useful delivery vehicles for miRNA 
secretion in glioblastoma. The authors isolated mic

Table 3  Diagnostic efficiencies of circulating lncRNAs in gastric cancer

Circulating lncRNA Species Samples Sensitivity Specificity AUC Population

FER1L4[190] Human Plasma 67.2% 80.3%   0.778 83 GCs (Pre- and post-
operative patients)

H19[178] Human Plasma  74%  58% 0.64 43 GCs and 34 healthy 
controls

CUDR, LSINCT-5 
and PTENP1[193]

Human Serum 74.1% of CUDR + 
LSINCT-5 + PTENP1 for 

GC detection, 

100%  of CUDR + LSINCT-5 
+ PTENP1 for GC detection,   
97.0% of CUDR + LSINCT-5 

+ PTENP1 for early GC 
detection

0.92 of CUDR + 
LSINCT-5 + PTENP1 

for GC detection, 0.832 
of CUDR + LSINCT-5 

+ PTENP1 for early GC 
detection

9 early-stage GCs, 64 
advanced-stage GCs, 15 

benign Peptic ulcer patients 
and 86 healthy controls77.8% of  CUDR + 

LSINCT-5 + PTENP1 for 
early   GC detection 

LINC00152[189] Human Plasma 48.1% 85.2% 0.657 79 GCs and 81 healthy 
controls

When a combination of circulating lncRNAs is characterized, a (+) is included between the listed circulating lncRNAs. AUC: Area under the curve; GC: 
Gastric cancer.

Table 4  Expression levels of circulating lncRNAs in gastric cancer tissues and their target miRNAs

Circulating 
miRNA

Expression in the 
circulation

Expression in 
tissue

Validated targeted miRNAs Putative targeted miRNAs in GC

H19 Up-regulation Up-regulation miR-675, let-7 and miR-200 
family

miR-17-5p, miR-18a-5p, miR-18b-5p, miR-19a-3p, miR-20a-5p, 
miR-20b-5p, miR-106a-5p, miR-106b-5,

LINC00152 Up-regulation Up-regulation miR-130b-3p, miR-217 miR-18a-5p, miR-18b-5p, miR-31-5p, miR-139-5p, miR-195-5p, 
miR-497-5p

FER1L4 Down-regulation Down-regulation Null miR-18a-5p, miR-18b-5p, miR-106a-5p, miR-133b, miR-139-5p, 
miR-195-5p, miR-497-5p

LSINCT-5 Down-regulation Up-regulation  Null Null
CUDR (UCA1) Down-regulation Up-regulation miR-216b, miR-1, miR-143 Null
PTENP1 Down-regulation Null miR-17, miR-19b, miR-20a, 

miR21 and miR-26a 
Null

GC: Gastric cancer.

Huang YK et al . Circulating microRNAs and long non-coding RNAs in GC diagnosis
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rovesicles from glioblastoma-conditioned medium, 
performed microarrays and quantitative miRNA RT-
PCR to identify 11 miRNAs that were abundant in donor 
cells and microvesicles to promote tumor growth and 
invasion, suggesting an intriguing insight into miRNA 
secretion. Kosaka et al[202] suggested that miRNAs 
are secreted within CD63-positive exosomes via a 
ceramide-dependent pathway but without ESCRT 
machinery. Ceramide is a key molecule that triggers the 
secretion of small membrane vesicles called exosomes, 
and the biosynthesis of ceramide is modulated by 
neutral sphingomyelinase 2 (nSMase2). The authors 
stated that the expression of exogenous miR-146a was 
attenuated by nSMase2 siRNA compared with control 
but was not affected by siRNA targeting Alix, an ESCRT-
associated protein. Another underlying mechanism of 
miRNA secretion may be apoptotic bodies. Zernecke 
et al[203] reported that miR-126 is enriched in apoptotic 
bodies and that endothelial cell-derived apoptotic bodies 
transmitted paracrine alarm signals to recipient vascular 
cells to trigger CXCL12 generation, which is regulated 
by miR-126; (2) miRNA secretion associated with other 
molecules. Vickers et al[204] demonstrated that a novel 
intercellular communication pathway is involved in 
miRNA transportation and cellular communication by 
high-density lipoproteins. miRNAs are also released 
via protein complexes. Argonaute (Ago) complexes 
that mediate mRNA silencing activity were identified 
to serve as significant carriers of miRNAs in plasma[24]. 
Nucleophosmin 1 (NPM1), an RNA-binding protein, was 
found to protect miRNAs from degradation and to play 
a crucial role in packaging and exporting extracellular 
miRNAs[205]; and (3) Passive leakage from cells due 
to chronic inflammation, necrosis or injury. Previous 
studies have suggested that the secretion of some 
circulating miRNAs was due to tissue injury, such as 

myocardial injury, liver injury and kidney injury[206-209].
 The mechanism underlying lncRNA secretion 

has not been systematically investigated. Circulating 
lncRNAs may be secreted in the same manner as 
extracellular miRNAs. In recent studies, circulating 
lncRNAs have been detected in exosomes, where 
they are protected from RNase[189,210]. Other types of 
extracellular vesicles, including apoptotic bodies and 
microvesicles, may also participate in the secretion 
pathway[189,211]. Despite recent research exploring the 
potential mechanism of miRNA and lncRNA secretion, 
significant work remains to be performed. Circulating 
miRNAs and lncRNAs might play general and pivotal 
roles as signal-conducting molecules in multiple 
physiological and pathological processes. Additional 
studies will be needed to explore these exciting 
mysteries and their mechanisms.

METHODOLOGIES FOR THE 
IDENTIFICATION OF CIRCULATING 
miRNAs AND lncRNAs IN GC
Increasing evidence suggests that cell-free circulating 
miRNAs and lncRNAs could serve as diagnostic 
and prognostic biomarkers for multiple types of 
cancer. Reliable methodologies and strategies for the 
quantification of circulating miRNAs and lncRNAs are 
urgently needed for clinical utility or experimental 
purposes (Figure 3). Different matrixes may exhibit 
different expression profiles of these circulating 
miRNAs and lncRNAs. Most studies use serum and 
plasma samples, with few reports utilizing whole 
blood or peripheral blood mononuclear cell samples. 
Conclusive research has suggested that the levels 
of miRNAs or lncRNAs detected in the serum are 

Sample preparation

Blood draw time
   Fasting vs  non-fasting
   Time of drawing

Duration time
   Serum preparation
   Plasma preparation

Anticoagulant
   EDTA
   Critrate
   Heparin

RNA isolation

Trizonal
   Initial fluid volume
   RNA precipitation
   Quality control

miRNA
miRVana, miRNeasy et al
Trizol-based reagents

lncRNA
   Trizol-based reagents

RNA quatification

Microarray or NGS 

qRT-PCR
   Internal controls
   Biological reproducibility

Statistical analysis

Figure 3  Flow diagram and schematic summary of circulating miRNA and lncRNA analyses. miRNAs: MicroRNA; lncRNA: Long non-coding RNA; qRT-PCR: 
Real-time quantitive polymerase chain reaction.
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consistent with the levels in plasma in the same 
pathology if cellular contaminants are avoided; 
miRNAs and lncRNAs are both generally detected in 
hemocytes such as thrombocytes and erythrocytes[26]. 
Consequently, because the blood cell fraction may 
generate background noise, using serum or plasma 
will decrease the background noise and promote 
higher accuracy for circulating miRNAs and lncRNAs 
detection over whole blood[212]. Nonetheless, hemolysis 
frequently occurs at low levels during the sampling 
and processing of blood. To estimate the suitability 
of serum/plasma samples for analysis, the extent of 
hemolysis should be estimated by measuring the free 
hemoglobin and endogenous RNAs[213]. 

miRNAs and lncRNAs can be extracted using 
different approaches. Acid guanidinium thiocyanate-
phenol-chloroform (AGPC) extraction is used pri
marily for RNA isolation, followed by either column-
based RNA purification from the aqueous solution 
or precipitation of the RNA-containing aqueous 
solution. RNAs can be precipitated from aqueous 
solutions by adding 2-isopropanol and then stored 
overnight at -20 ℃ or -80 ℃. Currently, standard 
protocols, including commercial kits directing small 
RNA enrichment or TRIzol-based reagents, have 
garnered wide acceptance[214]. If we target miRNAs, 
a miRVana extraction kit may improve the detection 
precision. However, discrepancies may be observed 
between different methods of extraction; most of the 
variabilities discovered between replicates are due to 
the different RNA extraction processes[213]. Therefore, 
to reduce the heterogeneity of circulating miRNA and 
lncRNA profiles, selective and consistent extraction 
methods throughout an entire study are strongly 
recommended[215]. 

Microarrays and next-generation sequencing 
(NGS) are performed to obtain large-scale profiles 
of circulating miRNAs and lncRNAs following the 
extraction of miRNAs and lncRNAs. miRNA qPCR arrays 
and lncRNA PCR arrays are also utilized to capture 
miRNA and lncRNA profiles. Each method has its own 
advantages and limitations. NGS can identify novel 
miRNAs and lncRNAs but is less cost-effective and 
less efficient compared with microarrays. Git et al[216] 
analyzed three biological samples across six miRNA 
microarray platforms and compared their hybridization 
performance. Only 53 miRNAs were consistent among 
the 4 microarrays. The sensitivity and specificity of the 
different platforms vary significantly. Different methods 
for the detection of circulating lncRNAs and miRNAs 
can lead to discrepancies in GC diagnoses. A large 
sample size is recommended to improve the reliability 
of the results.

After large-scale profiling of GC, the differential 
circulating miRNAs and lncRNAs between patients 
and healthy individuals must be validated in larger 
cohorts[217]. The standard reference for miRNA and 
lncRNA qualification is qRT-PCR. With low detection limits 
and high sensitivity, this method is suitable for circulating 

miRNA and lncRNA identification. Endogenous controls 
are important for qRT-PCR. U6, miR-93 and miR-16 
are the most frequently used endogenous controls for 
miRNA normalization in qRT-PCR for GC detection. Chen 
et al[218] stated that the combination of let-7g, let-7d and 
let-7i could function as a reference gene superior to U6 
and miR-16 for the normalization of circulating miRNAs. 
Kraus et al[219] investigated the expression stability of 
90 lncRNAs in 30 tissue specimens, including anaplastic 
astrocytoma, human diffuse astrocytoma, glioblastoma 
and normal white matter. Their results indicated that 
4 lncRNAs (BC200, Zfhx2as, H19 upstream conserved 
1 and 2, and HOXA6as) were suitable for use as 
normalizers of lncRNA expression profiling in glioma 
and normal brain. Nonetheless, no current consensus 
exists with respect to a reference for the normalization 
of circulating lncRNAs. cDNA synthesis of miRNAs and 
lncRNAs is crucial for qRT-PCR, and universal poly-A 
tailing and stem-loop primer extension are two current 
methods. Dunnett et al[220] suggested that poly-A tail 
extension exhibited more amplification than stem-loop 
primer extension and that using poly-A tail extension 
might be best, particularly when low traces of sample 
are available. Universal poly-A tail extension may 
be an interesting method for miRNA identification in 
bodily fluids. Chugh et al[221] suggested that sequence-
specific stem-loop primer extension failed to generate 
a signal (CT) for low-abundance miRNAs compared 
with universal poly-A tailing assays; however, universal 
poly-A tailing generated a quantitative signal with 
significant non-specific amplification. cDNA synthesis 
of lncRNA has not been extensively studied at present; 
most researchers use commercial kits. Speth et al[222] 
suggested a simple and sensitive protocol that allows the 
quantification of mRNAs, selected sRNAs, and lncRNAs 
in one cDNA sample by qRT-PCR.

CONCLUSION
GC was the world’s third leading cause of cancer 
mortality in 2012 and was responsible for 723000 
deaths[223]. Delayed diagnosis is the largest obstacle 
to the treatment of GC; thus, the effective means 
to improve the prognosis of GC is to search for ideal 
biomarkers for early GC detection. Many serum 
markers, including CA199, CA125, CA724, CA242, 
CA50, CEA, and pepsinogen, are widely utilized in 
the clinic for GC detection. However, low sensitivity 
or low specificity diminishes their clinical value for 
GC diagnosis. A large number of non-protein-coding 
transcripts were formerly regarded as “noise” or 
“garbage” within the genome. With the progression of 
high-throughput sequencing technologies (microarray 
or RNA-seq), something important that had been 
hidden in the diverse non-coding RNAs has attracted 
the attention of many researchers and has driven them 
to search for promising functions of non-coding RNAs in 
the pathogenesis of diseases[224]. More importantly, the 
study of miRNAs and lncRNAs has gradually become 
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prominent in RNA biology. Emerging evidence has 
suggested that the dysregulated expression of miRNAs 
and lncRNAs in cancer alters the spectrum of disease 
progression and might serve as an independent 
biomarker of multiple types of cancer[14]. The detection 
of circulating miRNAs and lncRNAs may be valuable 
for improving the diagnostic and prognostic value of 
GC. In this review, we have highlighted circulating 
miRNAs and lncRNAs in GC detection and summarized 
the potential mechanisms underlying extracellular 
miRNA and lncRNA secretion. The use of miRNAs and 
lncRNAs has several limitations such as the diverse 
methodologies for miRNA and lncRNA detection and the 
small cohort size for the validation steps in the present 
studies. Nonetheless, circulating miRNAs and lncRNAs 
exhibit higher diagnostic values relative to conventional 
tumor markers such as CA199, CA125, CA724, CA242, 
CA50, CEA, and pepsinogen. The combination of 
biomarkers may improve the diagnostic accuracy, and 
the combination of circulating miRNAs, lncRNAs and 
other screening methods may be particularly useful in 
cancer detection. Prospective studies should validate 
the feasibility of using circulating miRNAs and lncRNAs 
as diagnostic biomarkers for GC detection in different 
populations. These circulating small nucleic acids 
(miRNAs, lncRNAs and others) may have potential 
in distinguishing patients with GC from healthy 
individuals, with the advantages of practicability, non-
invasiveness and cost-effectiveness.
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