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Abstract
Since their discovery two decades ago, CD4+CD25+Foxp3+ 
regulatory T cells (Tregs) have become the subject of 
intense investigation by immunologists. Unlike other 
T cells, which promote an immune response, Tregs 

actively inhibit inflammation when activated by their 
cognate antigen, thus raising hope that these cells 
could be engineered into a highly targeted, antigen-
specific, immunosuppressant therapy. Although Tregs 
represent less than 10% of circulating CD4+T cells, 
they have been shown to play an essential role in 
preventing or limiting inflammation in a variety of 
animal models and human diseases. In particular, 
spontaneous intestinal inflammation has been shown 
to occur in the absence of Tregs, suggesting that there 
may be a Treg defect central to the pathogenesis of 
human inflammatory bowel disease (IBD). However, 
over the past decade, multiple groups have reported 
no qualitative or quantitative deficits in Tregs from the 
intestines and blood of IBD patients to explain why 
these cells fail to regulate inflammation in Crohn’s disease 
and ulcerative colitis. In this review, we will discuss 
the history of Tregs, what is known about them in IBD, 
and what progress and obstacles have been seen with 
efforts to employ them for therapeutic benefit. 
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Core tip: Regulatory T cells (Tregs) have received 
much interest in animal models of inflammatory bowel 
disease (IBD), but have yet to demonstrate a clear 
defect in human Crohn’s disease or ulcerative colitis. 
This review will detail our current knowledge about 
this important regulatory arm of the immune system in 
human IBD, and discuss the potential role for Tregs as 
immunotherapy. 
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INTRODUCTION
In the summer of 1995, Shimon Sakaguchi published 
the first report of what later came to be recognized as 
regulatory T cells (Tregs) by demonstrating that mice 
depleted of CD4+CD25+ T cells spontaneously developed 
multiorgan autoimmunity, including gastrointestinal (GI) 
inflammation[1]. More importantly, such autoimmunity 
could be prevented by administration of these CD4+CD25+ 
Tregs, suggesting that they might someday represent 
a potent cellular therapy for autoimmune and chronic 
inflammatory conditions. In the twenty years since this 
initial report, well over 10000 original manuscripts have 
been published concerning Tregs, making them one of 
the most intensely studied T cell populations of the 21st 
century. 

Interest in Tregs took a quantum leap forward 
shortly after the turn of the millennium, when it 
was discovered that the gene FOXP3 was central 
to Treg development and function, and could serve 
as an excellent marker for these relatively rare 
cells. A genetic defect in the FOXP3 gene which 
precluded Treg development was found to be the 
cause of a mouse multiorgan inflammatory condition 
called scurfy[2]. At roughly the same time, a similar 
human condition called immune polyendocrinopathy 
enteropathy X-linked (IPEX) was reported to result 
from mutations in the human FOXP3 gene resulting 
in humans with no Tregs[3,4]. As the name implies, an 
inflammatory enteropathy, resembling severe pan-
intestinal Crohn’s disease, is a central feature of IPEX, 
and generally causes fatal malnutrition in the absence 
of a hematopoietic cell transplant (HCT).This condition 
made it clear that the Tregs which had been receiving 
increasing attention in murine models were also critical 
for intestinal immune homeostasis in humans.

TREG MECHANISMAS OF ACTION 
We now know that FOXP3+ Tregs reside within the 
intestinal lamina propria and represent up to 10% of 
circulating CD4+ T cells in humans[5-8]. Tregs recognize 
specific MHC-II-bound peptide antigens though a 
clonally unique T cell receptor (TCR), just like any 
other CD4+ T cells[7,9]. However, while other T cells will 
deliver pro-inflammatory signals upon TCR ligation, 
Tregs do the opposite. They inhibit the activation of 
bystander T cells in a contact-dependent manner[10]. 
While no single molecular mechanism for this inhibition 
has been elucidated, several regulatory signals appear 
to be important (Figure 1), augmentation of which 
would represent an attractive opportunity for IBD 
therapy. 

By definition, Tregs express more CD25 than any 

other T cells[1], and because CD25 is an essential 
component of the high-affinity IL-2 receptor, Tregs 
may absorb local IL-2, depriving nearby T cells of this 
T cell growth and survival factor when its concentration 
is limiting. However, IL-2 is evidently not essential for 
pro-inflammatory T cell growth and survival because 
mice genetically engineered to lack CD25[11] or the beta 
chain of the IL-2 receptor (CD122)[12] do not develop 
immunodeficiency, but rather a lymphoproliferative 
disorder including spontaneous autoimmunity and 
IBD. This was evidently due to a lack of Tregs[13], as 
the latter are uniquely dependent upon IL-2. Thus, 
depriving other T cells of IL-2 is certainly not central to 
the inhibitory effect of Tregs in vivo. 

Tregs also constitutively express more of the 
immunoregulatory CTLA4 molecule (CD152) than 
other T cells[8,14,15], and this molecule appears to be 
necessary for Treg inhibitory function[15,16]. CTLA4 can 
bind up B7-1 (CD80) and B7-2 (CD86) costimulatory 
molecules on the surface of antigen presenting 
cells (APC), preventing them from costimulating 
CD28 receptors on other T cells[17]. Mice lacking the 
CTLA4 gene develop multiorgan autoimmunity[18] 
not unlike mice lacking Tregs. Similarly, patients who 
receive the CTLA4-blocking antibody ipilimumab as 
a cancer immunotherapy can develop spontaneous 
autoimmunity, including enterocolitis in over 20% of 
recipients[19,20], thus demonstrating the importance 
of this molecule in maintaining intestinal immune 
homeostasis. However, whether CTLA4’s role is 
primarily mediated through Tregs is unclear, as 
ipilimumab also limits CTLA4 engagement on activated 
T cells.

TIGIT, a molecule analogous to CTLA4, is also 
enriched on a subset of Tregs[21,22], and likewise binds 
costimulatory molecules (CD112, CD155) on APC, 
preventing them from ligating a costimulatory receptor 
(CD226) on effector T cells, and thereby inhibiting 
the latter[23]. TIGIT+ Tregs have been reported to 
selectively inhibit Th1 and Th17 cells, the CD4+ T cell 
populations commonly associated with autoimmune 
and inflammatory conditions like IBD[24]. Tregs also 
express PD-1 (CD279)[25], an inhibitory receptor that 
interacts with PD-L1 (CD274) and PD-L2 (B7-DC, 
CD273) on APCs and has, like CTLA4, recently become 
a target for cancer immunotherapy[26-29]. Like CTLA4 
blockade, PD-1 blockade has caused spontaneous 
intestinal inflammation in clinical trials, albeit at a 
lower rate, affecting < 10% of recipients[30,31]. 

In addition to their contact-dependent immu
nomodulatory mechanisms, Tregs may control 
inflammation through soluble factors. CD39 is an 
ectonucleotidase preferentially expressed by Tregs, 
which hydrolizes ATP and ADP to AMP, and ultimately 
adenosine[32,33]. ATP has been reported to enhance pro-
inflammatory Th17 cells[34,35], while adenosine may 
inhibit effector T cells through the A2A receptor[36-39], 
so this surface receptor may change the local 
environment of the Tregs to regulate inflammation. 
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Reduced Treg expression of CD39 has been described 
in lupus[40] and multiple sclerosis[32,32,41], but has not 
yet been described in IBD. 

Tregs have also been reported to control infla
mmation through cytokines. TGF-β is expressed 
by Tregs, and has immunomodulatory properties, 
although it may function as a cell-surface protein on 
Tregs[42], and may not be necessary for Treg inhibitory 
function[43]. IL-10 is likewise an immunomodulatory 
cytokine made by Tregs[42], and is essential for pre
venting spontaneous bowel inflammation in mice[44] 
and humans[45]. However, the immunoregulatory 
roles of IL-10 and TGF-β may be more appropriately 
ascribed to other “regulatory T cell” populations that 
do not express FOXP3, namely Tr1[46,47] and Th3 
cells[48], which are beyond the scope of this review. 
More recently, FOXP3+ Tregs have been shown to 
mediate their inhibitory function through the cytokine 
IL-35[49,50]. 

TREGS IN IBD 
A number of clinical observations and experiments 
in animal models[51,52] have suggested that Tregs or 
their inhibitory mechanisms are critical for preventing 
spontaneous intestinal inflammation, and thus 
suggested that a defect in Tregs may be central to the 
pathogenesis of UC and/or Crohn’s disease. Out of 38 
distinct animal models of IBD reviewed in 2003, nine 
involved Tregs or their inhibitory mechanisms[51,53]. 
As an iatrogenic inflammatory bowel disease, human 
gastrointestinal graft vs host disease (GVHD) following 
HCT has been associated with evidence of decreased 
Tregs in the blood[54] and intestinal mucosa[55]. 

Despite this wealth of data implicating Tregs in 
intestinal immune homeostasis, direct evaluation of 
Tregs in the intestines of IBD patients has not identified 
obvious defects. The first report of CD4+CD25+ Tregs 

isolated from the intestinal lamina propria (LP) of 
IBD patients, published more than a decade ago, 
demonstrated that these cells are present, express 
CTLA4, and show in vitro suppressive activity against 
other T cells which is no different from those of 
controls[56]. This and subsequent reports found that 
these Tregs paradoxically represent a greater fraction 
of LP CD4+ T cells in the intestines of IBD patients than 
healthy control subjects[5] and are no less common 
in bowel affected by IBD than in bowel inflamed for 
other reasons, such as infection[51]. Paradoxically, 
Tregs are even more common in actively inflamed 
than uninflamed IBD mucosa[5,57-59], with a reciprocal 
drop in circulating Treg frequency in the peripheral 
blood of symptomatic IBD patients likely reflecting 
sequestration of these cells to the site of inflammation. 
Thus, the mucosal inflammation of IBD appears to be 
different from that of IPEX in that it does not result 
from any local dearth of FOXP3+ cells. 

ACTIVATION INDUCED FOXP3 
EXPRESSION
Confounding these analyses was the discovery that 
FOXP3 expression could be induced de novo in human 
T cells that were originally FOXP3 negative by TCR 
activation in the presence of TGF-β[60,61]. Thus the 
seemingly paradoxical excess of FOXP3+ cells in the 
inflamed mucosa of an IBD patient could simply be 
locally activated T cells. Complicating matters, by 
some accounts, T cells induced to express FOXP3 by 
activation are nonetheless effective regulators of other 
immune cells in vitro[62,63]. Whether these “induced 
Tregs” (iTregs) have all the same suppressive function 
in vivo as constitutively FOXP3+ “natural” Tregs (nTregs) 
has been debated[64], and is difficult to establish 
experimentally in humans. One significant difference 
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Figure 1  FOXP3+ Tregs may mediate their inhibitory function through multiple soluble and cell-surface factors. CTLA4, TIGIT and PD-1 interact with 
costimulatory molecules on antigen presenting cells (APC). CD25 binds the T cell growth factor IL-2. CD39 converts local ATP to adenosine. The cytokines IL-10, 
IL-35 and TGF-β have suppressive functions on nearby immune cells. 
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Like iTregs, Th17 cells require TGF-β for their 
development, but additionally require IL-6, which in 
turn suppresses the formation of FOXP3+ Tregs[77,78]. 
The differentiation of Th17 cells is governed by the 
transcription factor RORγt[74,79] instead of FOXP3. In 
cells that express both transcription factors, FOXP3 
physically interacts with RORγt in the nucleus to 
prevent the latter from promoting IL-17A expression[80]. 
This interaction requires a region of the FOXP3 protein 
encoded by exon 2 of the FOXP3 mRNA[80], which is 
deleted in a splice variant (∆exon 2) that represents 
approximately half the FOXP3 transcripts expressed by 
humans[81]. This would suggest that IL-17-producing 
FOXP3+ T cells, as seen in IBD, could be exclusively 
expressing the ∆exon 2 variant of FOXP3. However, 
no predominance of ∆exon 2 relative to full-length 
FOXP3 expression is seen in IBD, nor are there cells 
which exclusively express ∆exon 2, even among IL-
17-expressing FOXP3+ T cells[57]. Thus, how Th17-like 
FOXP3+ T cells arise in IBD remains a mystery, but 
could be due to an increased responsiveness to IL-6, 
as has been seen in T cells from multiple sclerosis 
patients[82]. 

TREG AND THE INTESTINAL FLORA 
With the recent advent of inexpensive, high-throughput 
nucleic acid sequencing techniques, the bacterial 
flora, or “microbiome”, of the GI tract has recently 
come under intense scrutiny. Differences between 
the intestinal microbiomes of people with and without 
IBD have been described by many independent 
researchers[83-86], although it is difficult to determine 
whether such differences are a cause or effect of IBD 
once sufficient inflammation has occurred in the GI 
tract to diagnose an individual with IBD. Nonetheless, 
a leading hypothesis about the pathogenesis of IBD 
dictates that the immune system is losing tolerance to 
intestinal commensal flora, suggesting a dominant role 
for the microbiome. 

Studies in germ-free mice have demonstrated 
that the gut microbiome is important for development 
of the normal intestinal immune system, as reviewed 
elsewhere[87]. This includes IL-10-producing, peripherally-
induced FOXP3+ Tregs, whose development can be 
driven by specific intestinal microbiota in animal 
models[88,89]. While some intestinal Treg development 
may simply be due to exposure to luminal peptide 
antigens, non-peptide bacterial products, such as 
short-chain fatty acids[90] or specific polysaccharides[88], 
are important for Treg induction in the gut. Likewise, 
ingested micronutrients, such as retinoic acid, have 
been shown to contribute to the peripheral generation 
of FOXP3+ Tregs in the gut[91]. Thus, exposure of 
the intestinal mucosa to the fecal stream may be 
an important means by which the mucosal immune 
system develops tolerance, or perhaps fails to do so in 
IBD. 

between iTregs and nTregs concerns their ability to 
make cytokines. Classical nTregs do not make pro-
inflammatory cytokines, such as IL-2 or IFN-γ, and 
additionally show demethylation of CpG sites in the 
FOXP3 promoter[6]. In contrast, iTregs generated from 
effector T cells retain their ability to produce these 
cytokines[64], and do not demethylate their FOXP3 
promoter[65], although they do up-regulate CD25 and 
CTLA4 to resemble nTregs[64], making it difficult to 
discern the two Treg populations by surface markers. 
Adding to the complexity, it has become clear that 
the “nTregs” that constitutively express FOXP3 in 
vivo are actually a mix of Tregs that either acquired 
FOXP3 expression in the thymus (tTregs) or periphery 
(pTregs), thus reflecting their antigen specificity and 
perhaps phenotype[66]. 

The nuclear protein Helios has been shown to be 
constitutively expressed by thymically-derived tTregs, 
but not in vitro-generated iTregs[67], making this a 
potentially unique marker with which to distinguish 
at least these two populations. The fraction of 
FOXP3+ LP T cells that express Helios is no lower in 
IBD patients than controls[68], suggesting that the 
paradoxically increased FOXP3+ T cells in IBD are 
not exclusively iTregs. However, there is evidence 
that activation-induced FOXP3+ T cells may acquire 
Helios expression[69], thus compromising the reliability 
of Helios as a marker for distinguishing iTregs from 
nTregs. 

The TCR gene is uniquely rearranged in each 
nascent T cell, making it a stable genetic marker 
with which to identify T cells from a common clonal 
origin. By comparing the TCR Vβ hypervariable domain 
repertoires of FOXP3+ and FOXP3- T cell populations 
from the colon LP, it has been shown that these are 
predominantly distinct populations, even in IBD[68]. 
Indeed, LP Helios－ Tregs show no more similarity in 
their TCR repertoire to effector T cells than they do 
to Helios+ Tregs[68]. Thus, the paradoxically increased 
mucosal FOXP3+ cells in IBD cannot be explained 
solely by activation-induced FOXP3 expression among 
effector T cells. 

TREG VS TH17 CELLS 
Several groups have noted that an unusually high 
fraction of mucosal Tregs from IBD patients are 
able to produce IL-17A[70-72]. IL-17A is a potent pro-
inflammatory cytokine associated with neutrophil 
recruitment[73], and hence thought to play a central 
role in anti-bacterial immune responses. It is made 
by a subset of effector T cells, called Th17 cells, which 
can be identified by CCR6[74] and CD161 expression[75], 
and have been implicated in multiple autoimmune 
conditions[76]. Thus, by sharing characteristics 
with a potentially pathogenic class of T cells, the 
copious intestinal FOXP3+ Tregs present in IBD could 
paradoxically promote rather than suppress intestinal 
inflammation. 
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TREG IN IBD THERAPY 
Contemporaneous with the growth of research 
on Tregs in the early 21st century was the use 
of biopharmaceutical therapy for IBD and other 
inflammatory conditions involving TNF-α blockade. 
Perhaps as a consequence, a number of groups 
analyzed the effect of anti-TNF agents, particularly 
infliximab, on circulating FOXP3+ Tregs, and found 
that the latter were enriched in the peripheral blood 
of patients demonstrating a good clinical response to 
therapy[92-95]. This suggests that the blockade of TNF-α 
in vivo may enhance Treg development, expansion, 
or viability if this cytokine normally inhibits Tregs in 
the setting of inflammation. Alternatively, because 
anti-TNF drugs can cause apoptosis of TNF-producing 
cells, and Tregs do not make TNF-α, it is possible this 
effect reflects a selective “pruning” of the FOXP3- 
effector T cell population rather than expansion of 
FOXP3+ Tregs. However, caution should be taken in 
drawing conclusions about IBD from peripheral blood 
analyses, as the intestinal lamina propria houses 
more lymphocytes than the circulation. Thus selective 
sequestration or release of cell populations to or from 
the gut can actually cause the blood to reflect the 
opposite of what is actually happening at the site of 
inflammation in IBD. Indeed, the effect of anti-TNF 
agents on intramucosal Tregs has been less clear, with 
some researchers reporting a drop in FOXP3+ cells on 
therapy[94], and others reporting an increase[95]. Further 
confounding these analyses is the observation that 
histological IBD activity correlates inversely with Treg 
frequency in tissue sections[5,57-59], such that a drop in 
tissue Tregs in the setting of effective therapy could 
obscure any local enrichment, and if mediated by a 
release of Tregs into circulation, produce the observed 
increase in blood Tregs. 

The effect of other immunosuppressive therapies 
on Tregs has been less intensely studied in IBD, but 
data exists from other conditions for which these 
drugs are used. In liver transplant recipients, use of 
the immunosuppressive drug azathioprine has been 
paradoxically associated with decreased colonic FOXP3+ 
cells, although only as cotherapy with prednisone 
and calcineurin inhibitors[96]. Likewise, in autoimmune 
hepatitis, azathioprine use, again in conjunction 
with prednisone, resulted in decreased intrahepatic 
Tregs, although a higher ratio of these Tregs to other 
lymphocytes correlated with biochemical remission[97]. 
Although these effects could be attributed to cotherapy 
with prednisone, studies in asthmatics have shown 
no effect of oral glucocorticoids on circulating Treg 
frequency[97]. Furthermore, as with anti-TNF agents, 
it is difficult to demonstrate that changes in Tregs 
associated with a given therapy represent a cause or 
effect of changes in inflammatory activity. Whether the 
newer anti-integrin biopharmaceutical vedolizumab 
will have an effect on intramucosal Tregs has yet to 
be seen, but a similar agent, natalizumab, did not 

alter the ratio of Tregs to other T cells in the intestinal 
mucosa of Crohn’s patients receiving it[98].

 
TREGS AS IBD THERAPY 
Shortly after their discovery, Tregs were proposed as 
a potential therapy for autoimmune or inflammatory 
disease in more reviews and editorials than can be 
listed here. Indeed, in many animal models, adoptive 
transfer of Tregs proved effective for the prevention or 
treatment of inflammatory conditions, including IBD[99]. 
However, more than a decade later, the application of 
Tregs to human disease has been surprisingly limited. 
Given their rarity in peripheral blood, a major obstacle 
to therapeutic application of Tregs has been simply 
having enough Tregs to administer, so much work went 
into expanding or generating Tregs in vitro into a large, 
stable population with stable suppressive function. 
The earliest and most extensive efforts applying Tregs 
as anti-inflammatory therapy have been directed at 
GVHD complicating HCT[100-102], a condition which, 
like IBD, commonly involves deregulated intestinal 
inflammation. As an alternative to adoptive transfer 
of in vitro expanded Tregs, in vivo expansion of 
Tregs post HCT through the use of low-dose IL-2 has 
demonstrated efficacy against GVHD[103-105]. Low dose 
IL-2 also expanded Tregs in type-Ⅰ diabetes[106,107], 
but it paradoxically accelerated autoimmunity, even 
when given with the immunosuppressant rapamycin, 
perhaps because it also expanded eosinophils and NK 
cells[107]. However, some efficacy has been seen with 
adoptive transfer of Tregs in type-Ⅰ diabetes[108,109]. 

The first trial of adoptive transfer of Tregs as a 
therapy for IBD was recently published as an 8-wk, 
open-label, dose-ranging study involving 20 Crohn’s 
patients[110]. In contrast to the aforementioned trials 
in GVHD and diabetes, the transferred Tregs were 
selected and cloned to be specific for a dietary antigen 
(chicken egg ovalbumin) so that antigen-specific 
activation of the transferred cells could be stimulated 
in the gastrointestinal tract through an egg-intensive 
diet (meringue cake). 40% of recipients demonstrated 
clinical improvement, although the most improvement 
was paradoxically seen in recipients of the smallest 
number of Tregs (106), and only minimal improvement 
was observed by objective measures of inflammation, 
such as C reactive protein and fecal calprotectin. 
Thus, the efficacy of Tregs as IBD therapy was neither 
straightforward nor overwhelming, suggesting that 
other factors, such as Treg antigen specificity or 
inhibitory function, may be more important than 
Treg numbers. Curiously, the number of circulating 
FOXP3+ T cells decreased in responders, while rising 
in non-responders. However, the frequency of Tregs 
in the intestines was not evaluated, so this dichotomy 
could reflect mucosal Treg sequestration if such 
a phenomenon was associated with therapeutic 
response. 
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CONCLUSION
Despite extensive interest in Tregs as central mediators 
of intestinal immune homeostasis, there is surprisingly 
little evidence that a defect in Tregs is associated with 
either form of human IBD. The fact that inflammation 
persists in Crohn’s and UC despite an excess of Tregs 
in the mucosa relative to healthy bowel indicates 
that the inflammation of IBD is resistant to their 
presence. Whether the mucosal Tregs of IBD patients 
are intrinsically defective in their ability to regulate 
mucosal inflammation in vivo is unknown, but in vitro 
assays have shown no such functional defect[56,58,59]. 
Alternatively, Treg-extrinsic factors could undermine 
the immunoregulatory function of Tregs. Other 
immune cells, such as FOXP3-negative effector T cells, 
could be resistant to the inhibitory function of Tregs 
in IBD, as has been described in multiple sclerosis 
and diabetes[82,111]. Mucosal dendritic and other 
antigen presenting cells with which Tregs and other 
T cells interact could deliver signals which undermine 
Treg-mediated inhibition. Finally, the mucosal micro
environment in general, including soluble factors 
and components of the extracellular matrix, such as 
hyaluronic acid[112], could be actively detrimental to, 
or passively unsupportive of, the inhibitory function 
of Tregs in IBD. A better understanding of the factors 
that undermine Treg function in IBD will be necessary 
before the promise of Tregs as an IBD therapy can 
ultimately be realized. 
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