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Abstract
Chronic pancreatitis (CP) is a chronic inflammatory 
disease of the pancreas. The main symptom of patients 
with CP is chronic and severe abdominal pain. However, 
the pathophysiology of pain in CP remains obscure. 

Traditionally, researchers believed that the pain was 
caused by anatomical changes in pancreatic structure. 
However, treatment outcomes based on such beliefs are 
considered unsatisfactory. The emerging explanations of 
pain in CP are trending toward neurobiological theories. 
This article aims to review current evidence regarding 
the neuropathophysiology of pain in CP and its potential 
implications for the development of new treatments for 
pain in CP.
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Core tip: Abdominal pain is the main symptom of 
patients with chronic pancreatitis (CP), yet the under
lying mechanisms are not well understood. The 
emerging explanations of pain in CP are trending toward 
neurobiological theories. This article reviews these 
emerging concepts and their potential implications 
for the development of new treatments for pain in 
CP. Three major concepts attempting to explain the 
pathogenesis of CP pain: Pancreatic nociception and 
sensitization-induced pain, neuropathic remodeling, and 
central mechanism of pancreatitis pain are summarized, 
along with the specific molecules involved in each and 
potential therapeutic targets.
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INTRODUCTION
Chronic pancreatitis (CP) is a persistent and chronic 
inflammatory disease of the pancreas. Approximately, 
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80%-90% of patients with CP typically suffer from 
pancreatic pain[1], which is commonly described as a 
constant, severe, and dull pain in the mid-epigastrium 
that radiates to the back and worsens by with high-
fat meals. Unsurprisingly, the pancreatic pain can have 
substantial psychological and economic impact on 
patients. In addition, a recent study confirmed that the 
life quality of patients with CP is significantly worsened 
by pain severity and disease-related complications[2]. 

The pathogenesis of pancreatic pain is still not fully 
understood. Thus, management of this pain cannot 
be specific, leading to unnecessarily high treatment 
costs and ineffective outcomes. Many theories have 
been proposed to explain the pain mechanism based 
on anatomical changes including high pressure within 
the pancreatic duct, high pressure in the pancreatic 
parenchyma, and complications of pancreatic and 
extra-pancreatic structures (i.e., pseudocysts, duodenal 
and bile duct obstruction, and peptic ulcer). These 
anatomical changes are believed to be noxious stimuli 
that activate pancreatic pain via nociceptive pathways. 
However, a number of human studies of CP have 
demonstrated evidence against the above theories, 
finding, for example, no relationship between pain and 
pancreatic duct pressure reduction[3,4], no relationship 
between pain and increase of parenchymal pressure[5], 
no pancreatic duct dilation in some patients with severe 
pancreatic pain[6], and no relationship between pain and 
severity of CP-related structural changes on imaging[7]. 
Therefore, the pain of CP patients cannot be explained 
by mechanical stimulation of nociceptive pathways 
alone.

Since the late 1990s, investigators have been trend
ing toward neurobiological theories to explain pain in 
CP[8]. Therefore, the main objective of this paper was to 
review the current neurobiological theories and emerging 
concepts that might lead to the development of new 
treatment regimens for alleviating pain in CP patients. 

NEUROPHYSIOLOGY OF THE 
PANCREATIC PAIN
The pancreas is innervated by a complex structure of 
two groups of afferent fibers. The first group consists of 
branches of the abdominal vagus nerve, and the second 
fibers that run through the celiac plexus and reach 
the lower thoracic segments of the spinal cord via the 
splanchnic nerves[9]. The latter group is best known for 
stimulating visceral pain. 

The nociceptive pathway in the pancreas begins with 
nociceptors located at the ends of the primary afferent 
neurons and function as afferent nerve endings[10]. Unlike 
those in other visceral organs, these primary afferent 
neurons convey only pain stimuli. One special subset 
of theses nociceptors contains a group called “silent 
nociceptors”, which are only activated during inflammatory 
processes[11]. Furthermore, the pancreatic nociceptors 
can be activated by various noxious stimuli through 

mechanosensitive and chemosensitive mechanisms[12]. 
The former mechanism is located on blood vessels that 
supply the pancreas and pancreatic parenchyma and can 
be stimulated by stretching, ischemia, and necrosis. The 
latter mechanism can be stimulated by inflammatory 
mediators, but the exact location of this mechanism is not 
completely known. 

The pathogenesis of CP is strongly related to 
prolonged exposure to noxious stimuli, which causes 
chronic inflammation. Noxious stimuli not only stimulate 
nociceptors, but can also damage pancreatic tissues 
and nerves surrounding the pancreas[13]. The injured 
tissues can release pro-inflammatory mediators such 
as prostanoid, bradykinin, tachykinin, serotonin, and 
growth factors[14]. Induced by the above mediators, 
primary sensory neurons then become more sensitive 
to further stimulation by either noxious (hyperalgesia) 
or non-noxious (allodynia) stimuli. This process is 
called peripheral sensitization[15], which indicates that 
the noxious stimuli can evoke nociceptor plasticity. 
Moreover, there is another mechanism by which pain 
can be exacerbated via peripheral sensitization, which 
begins with the activation of silent nociceptors by 
peripheral inflammation, and the silent nociceptors 
consequently facilitate and increase afferent activities in 
the spinal cord. 

Once stimulated by pro-inflammatory mediators, 
the nociceptors will transform the stimuli into action 
potentials by unbalancing the Na and K currents on the 
neuronal membrane. The action potentials travel along 
both unmyelinated C-fibers and small myelinated Aδ 
fibers of primary sensory neurons[11,12]. These neurons 
traverse paravertebral and prevertebral ganglia to 
synapse with secondary sensory neurons at laminae Ⅰ, 
Ⅱ, Ⅴ, and Ⅹ of the dorsal horn of the spinal cord at the 
T5-L2 level. Based on an animal study, the secondary 
sensory neurons related to the pancreas are primarily 
located at the T10-T11 level[12]. Consequently, the 
primary sensory axons release glutamate, substance P, 
and calcitonin gene-related peptide (CGRP). Glutamate 
activates both α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionate and N-methyl-D-aspartate (NMDA) receptors, 
while substance P activates NK1 receptors[16,17]. These
three receptors are located on secondary sensory 
neurons within the dorsal horn. At this level of stimu
lation, prolonged stimulation from peripheral sensitization 
can facilitate excitation of dorsal horn neurons, which 
can increase spontaneous activities, decrease the firing 
threshold, and expand the receptive field of the dorsal 
horn neurons. This process is called central sensitization 
and can result in hyperalgesia and allodynia[11]. 

After the activation of secondary sensory neurons, 
action potentials are generated and transmitted to the 
thalamus via the spinothalamic tract to activate tertiary 
sensory neurons. These tertiary sensory neurons then 
transmit the signal to the somatosensory cortex for 
cognitive integration of pain and the limbic system and 
hypothalamus for autonomic/affective integration of the 
pain[18].
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Furthermore, the central nervous system (CNS) 
can modulate pain signaling at the spinal cord level via 
either facilitation, increasing the spinal transmission of 
pain impulses, or inhibition, decreasing the spinal trans
mission of pain impulses. The combination of facilitation 
and inhibition generates the signal that will determine 
the pain perception in the brain. 

After the primary sensory neurons are activated, 
neurotransmitters (glutamate, substance P, and CGRP) 
are not only released to the dorsal horn of the spinal 
cord, but also to primary nerve endings located on the 
pancreas, where they act as inflammatory mediators 
that create pancreatic inflammation characterized by 
vasodilation, edema, and neutrophil infiltration. This 
process is also known as neurogenic inflammation[19-21]. 
Additionally, this neurogenic inflammation can facilitate 
the activation of peripheral sensitization[10]. 

NEUROPATHOPHYSIOLOGY OF 
PANCREATIC PAIN
Chronic inflammation in the pancreas has been shown 
to spread to the pancreatic nerve[22,23]. Additionally, 
perineural inflammatory cells including eosinophils, CD4+ 
and CD8+ lymphocytes, macrophages, and mast cells are 
evidenced in patients with painful CP[24-27]. This finding is 
consistent with the increased percentage of eosinophils 
observed in perineural inflammatory cell infiltrates, 
which may be related to the release of a nociceptive 
substance[13]. In addition, numerous studies[28-34] have 
reported the increase of various perineural inflammatory 
mediators including histamine, serotonin, interleukin, 
bradykinin, substance P, CGRP, tumor necrosis factor-
alpha, and several neurotrophins [i.e., growth-associated 
protein 43, brain-derived neurotrophic factor (BDNF), 
and nerve growth factor (NGF)]. Specifically, BDNF and 
NGF up-regulation has been shown in CP patients[24,26].

Such evidence has recently become the main focus 
of many studies attempting to explain the pathogenesis 
of pain based on three concepts: pancreatic nociception 
and sensitization-induced pain, neuropathic remodeling 
(neuropathic pain), and central mechanism of pan
creatitis pain. Each of these aspects is complex and 
involves specific molecules that are described in the 
following sections. 

PANCREATIC NOCICEPTION AND 
SENSITIZATION-INDUCED PAIN
There is much evidence to support that peripheral 
and central sensitization is largely associated with the 
pancreatic pain in CP. The evidence related to the mole
cules and receptors that have been found to be involved 
in the sensitization mechanisms will be discussed one-
by-one in the following paragraphs.

The transient receptor potential (TRP) family is a group 
of ion channels localized mainly to the plasma membrane 
of neurons. Three molecules strongly related to pain and 

inflammation in the TRP family are TRP vanilloid 1 (TRPV1), 
TRPV4, and TRP ankyrin 1 (TRPA1)[35]. These three TRP 
channels are also associated with pain in CP patients 
through the sensitization of pancreatic afferent neurons 
and development of neurogenic inflammation. The 
primary sensory nerve endings that supply the pancreas 
contain these three types of TRP, which can be stimulated 
by specific stimuli including inflammatory mediators. 
After the receptors are stimulated, primary sensory 
neurons then release substance P and CGRP at both the 
spinal cord and peripheral sites, thus causing pancreatic 
inflammation via neurogenic inflammation[36-40]. The 
mechanism of peripheral sensitization (Figure 1) is 
discussed below.

TRPV1
TRPV1 can be directly activated by many factors, 
including heat, extra-cellular proton and tissue acidosis, 
capsaicin, biologically active compounds (anandamide 
and hydrogen sulfide), and endogenous lipid metabolites 
from the arachidonic acid pathway[41,42]. Furthermore, 
TRPV1 can be indirectly activated by pro-inflammatory 
bradykinin and pro-inflammatory leukotriene[43]. By 
modulating TRPV1 activity, pro-inflammatory bradykinin 
can indirectly activate TRPV1 via B2 receptors residing on 
primary sensory neurons. By binding to their leukotriene 
B4 receptors, pro-inflammatory leukotriene B4 can 
activate TRPV1 via an intra-neural signaling pathway. 
Furthermore, pro-inflammatory agents can sensitize 
TRPV1 by reducing the threshold of thermal stimuli 
(hyperalgesia)[44]. 

In animal and human studies, TRPV1 plays an 
important role in explaining pain in CP. After TRPV1 
receptor activation by capsaicin in rats with induced CP, 
peripheral sensitization is evidenced by the significant 
upregulation of TRPV1 at both mRNA and protein levels 
in the dorsal root ganglion (DRG) and pancreas-specific 
sensory neurons[45]. Moreover, the same study found 
significant reduction of pain behavior and hyperalgesia 
after administration of a systemic TRPV1 antagonist. 
Significant upregulation of TRPV1 is also seen in the 
pancreatic tissue of patients with painful CP; however, 
no relationship was found between the pain score level 
and the level of TRPV1 expression[46].

TRPA1
TRPA1 is responsive to various stimuli that can be 
categorized into five groups: The pungent ingredients of 
spices, environmental irritants, endogenous agonists of 
TRPA1[39], cyclopentenone prostaglandins, and general 
anesthetics[47]. The pungent ingredients of spices include 
mustard oil[48], garlic[48], and cinnamon[48,49], and enviro
nmental irritants include acrolein[48,50], formaldehyde[48,51], 
and cigarette smoke[36,48]. Cyclopentenone prostaglandins 
include PGA2, PGA1, and PGJ2[52,53]. Pro-inflammatory 
agents also sensitize TRPA1 leading to hyperalgesia[54-56]. 

TRPV4
TRPV4 responds to changes in tonicity[57,58], moderate 
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detected in sensory neurons supplying the pancreas; in 
fact, primary sensory neurons could be activated and 
sensitized by administering PAR2-specific proteinase 
activating peptide and trypsin in an in vivo study[66,67]. 
Moreover, both PAR2-specific proteinase activating 
peptide and trypsin-induced behavioral pain response 
have been observed in awake rats[67]. Another study 
discovered that tryptase, a substance released from 
activated mast cells, can stimulate PAR2[27], which might 
explain the relationship between mast cells and pain 
in CP patients. In an experimental animal model of 
pancreatitis pain, the administration of two proteinase 
inhibitors (camostat mesylate and nafamostat mesylate) 
reduced sensitivity to abdominal pain[68]. Likewise, 
nafamostat was associated with a significant reduction 
of pain duration induced by acute pancreatitis[69].

Based on in vitro findings, PAR2 activation causes 
TRPV1 sensitization by enhancing capsaicin; con
sequently, this process leads to the significant release 
of CGRP[70]. Similarly, in in vivo studies, PAR2 activation 
resulted in pain-related behavior[55,70,71]. As additional 
supporting evidence that PAR2 is involved in the 
development of hyperalgesia, PAR2 was significantly 
upregulated in DRG neurons along with decreased 
thermal withdrawal latencies in a rat model of CP[72]. In 
short, PAR2 agonist peptides, trypsin and tryptase, are 
related to the pathogenesis of pain in CP via nociception 
and sensitization caused by the interaction between 
TRPV1 and PAR2.

heat (> 27 ℃)[37], and mechanical pain[37]. Changes in 
tonicity can cause cell swelling and activate phospholipase 
A2; this process leads to the generation of arachidonic 
acid[59], which is an endogenous agonist of TRPV4. In 
addition, 4α-phorbol 12,13-didecanoate (4αPDD) is 
a synthetic TRPV4 agonist[60,61]. Similar to TRPV1 and 
TRPA1, pro-inflammatory agents can sensitize TRPV4 
causing hyperalgesia to mechanical stimuli[62-64].

To the best of our knowledge, the first evidence 
that TRPA1 and TRPV4 contribute to pancreatitis pain 
was reported in rats with induced acute pancreatitis[48]. 
Another study also demonstrated that TRPA1 mediates 
CP pain in mice[54]. In a recent study using mice in which 
CP was induced through repetitive cerulein injections, 
TRPV1 and TRPA1 antagonists were important in allevia
ting neurogenic inflammation in pancreatitis, reducing 
pain-related behavior, and preventing the transition from 
acute to chronic inflammation[65]. Therefore, TRPV1, 
TRPA1, and TRPV4 are likely to be targets for therapeutic 
pain management in CP patients by reducing peripheral 
sensitization and neuropathic inflammation.

Proteinase-activated receptor 2
Proteinase-activated receptor 2 (PAR2) is one of the 
chief regulators of pancreatic exocrine secretion in 
pancreatic acinar cells and ductal epithelium. Notably, 
trypsin is recognized as the strongest activator of 
PAR2. There is also evidence supporting a relationship 
between PAR2 and pancreatic pain. PAR2 expression was 

Atsawarungruangkit A et al . Neuropathophysiology of pain in chronic pancreatitis

Figure 1  The mechanism of peripheral sensitization. PAR2: Proteinase-activated receptor 2; NGF: Nerve growth factor; TRPA1: Transient receptor potential 
ankyrin 1; TRPV1: Transient receptor potential vanilloid 1; BDNF: Brain-derived neurotrophic factor; GAP43: Growth-associated protein 43; LTB4: Leukotriene B4.
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NGF
NGF, a type of neurotrophin, is a protein important 
for the growth, maintenance, regulation of survival, 
and specialization of sensory neurons. Moreover, NGF 
is an essential mediator of peripheral sensitization[73]. 
Although the islets of pancreatocytes typically generate 
NGF, NGF was found to be upregulated and surprisingly 
expressed in pancreatic acinar cells and ductal epithe
lium in a rat model of pancreatitis[74]. However, the 
upregulation of NGF returned to normal after the pan
creatic inflammation resolved[16]. Many studies have 
attempted to explain the mechanism of NGF-induced 
pancreatitis pain on sensitization via modulation of 
TRPV1 and excitability of K and Na currents[73,75-77]. 
Another hypothesized mechanism underlying pain in CP 
is activation of the NGF/trkA pathway[78,79]. In a study 
of rats with CP induced by trinitrobenzene sulfonic acid, 
both anti-NGF antibodies and trkA-immunoglobulin G 
substantially reduced hyperalgesia[80,81]. 

Artemin 
Artemin is a neurotrophin classified as a glial cell line-
derived neurotrophic factor. Overexpression of artemin 
and its co-receptor GFR alpha 3 has been reported to 
strongly relate to the increased frequency and intensity 
of pain in rats with CP[82]. 

BDNF
BDNF is also a member of the neurotrophin family found 
in the brain and periphery. An in vivo study reported 
that BDNF is upregulated in primary sensory neurons in 
rats with CP, and that BDNF antagonist treatment was 
associated with a reduction of pain-related behavior in 
these animals[83]. Another study of pancreatic tissue in 
patients with CP found that pain was positively related 
with BDNF levels and increased in CP patients compared 
to healthy control. These findings suggest that BDNF is 
essential to the nociceptive pathway of CP. 

Other substances 
Studies have also reported associations between pain 
in CP and other substances that could be related to 
peripheral sensitization, for example, the over-expression 
of interleukin 1[84], interleukin 6[85], interleukin 8[86], and 
fractalkine[87].

Neurotransmitter expression
Previous findings in patients with painful CP indicate 
overexpression of neurokinin 1[88], neurokinin 2[88], 
CGRP[16], and substance P[16,88]. Therefore, overexpression 
of these neurotransmitters may result from activation of 
nociceptive pathways and peripheral sensitization.

PANCREATIC NEUROPATHIC 
REMODELING-INDUCED PAIN 
In clinico-pathological studies, the intra-pancreatic 
nerves in patients with painful CP demonstrate immune 

cell infiltration, indicating pancreatic neuritis[13,89], and 
characteristics of pancreatic neuropathy, which can be 
described as the increase of neural density, hypertrophy, 
and spouting[13,90-92]. Both pancreatic neuritis and 
pancreatic neuropathy are believed to relate with the 
inflammatory process, which is a key pathogenic factor 
in CP as indicated by the following evidence. The increase 
of fractalkine and its receptor is correlated with fibrosis, 
neuropathic changes, pain duration of CP and the degree 
of inflammatory cell infiltrate[87,91,92]. Moreover, the 
expression of growth-associated protein 43 (GAP43), 
which is a member of the neurotrophin family, is reported 
to have a relationship with pancreatic neuropathy, 
pancreatic neuritis, and pancreatic pain. Consequently, 
GAP43 may be considered a potential marker of neuronal 
plasticity during development and injury[87,89,91,92].

Patients with painful CP have been reported to demon
strate significant alterations in pancreatic innervation, 
with a marked decrease in sympathetic innervation 
but no statistically significant difference in cholinergic 
innervation[92]. In the same study, stronger expression 
of pain-related behavior was also noted in patients with 
painful CP, indicating neuronal regeneration after neuron 
injury. 

In conclusion, the inflammatory process leaves 
pancreatic neurons damaged and characterized as 
showing either neuropathy or neuritis. Correspondingly, 
these neurons express GAP43, leading to the remodeling 
of pancreatic innervation. This process might explain 
pancreatic pain in CP patients. Such a process is 
similar to pancreatic nociception and sensitization-
induced pain in the sense that both processes involve 
inflammatory mediators. However, the mechanism by 
which inflammatory mediators induce neuropathic pain 
is by destroying the neurons, leading to permanent 
neuronal lesions without involving noxious stimuli and 
the sensitization process.

CENTRAL MECHANISM OF 
PANCREATITIS-INDUCED PAIN
Central sensitization
As previously described, several factors can induce 
pain in CP by triggering the CNS, for instance, chronic 
stimulation of pain through nociceptive pathways, peri
pheral sensitization caused by inflammatory processes 
in the pancreas, and nerve damage. Consequently, 
prolonged peripheral sensitization can lead to central 
sensitization, which will be discussed next.

Using quantitative sensory testing in human experi
ments, researchers found that the brain activity of 
patients with CP demonstrated increased areas of 
referred pain and increased heterogeneity of referred 
pain location compared to the control group after 
electrical stimulation of the esophagus, stomach, and 
duodenum[93]. The sensitization caused by CP could 
decrease the pain threshold and increase the referred 
pain area[94,95]. 
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By using electroencephalography (EEG) to measure 
brain activities, studies of pain in CP can be categorized 
as either resting-state EEG or evoked potential (EP) 
tests[84,96]. In resting-state EEG, alpha activities were 
found to demonstrate increased amplitude strength in 
CP patients compared to healthy volunteers[97], and pain 
duration was negatively correlated with the average 
peak alpha frequency[98]. Notably, the relationship 
between chronic pain and the change in alpha activity 
could be the result of thalamocortical dysrhythmia, 
which is activated by T-type calcium channels[99]. In 
EP tests, constant electrical stimulation of the upper 
gastrointestinal tract significantly decreased latencies 
of the early EP components in CP patients compared 
to healthy volunteers[93]. Moreover, hyperalgesia and 
prolonged latencies of early visceral EPs components 
in the frontal region of the cortex were seen following 
electrical stimulation in CP patients compared to healthy 
subjects[100].

As observed with functional magnetic resonance 
imaging, pain sensation is processed and localized in 
somatosensory cortex, insula, anterior cingulate cortex, 
prefrontal cortex, and thalamus. Recently reported 
evidence indicates that plasticity, i.e., functional or 
structural changes, in the CNS may be associated with 
pain in chronic syndromes. The structural reduction of 
cortical thickness[101] and microstructural changes in the 
insula and frontal cortex[102] also have been observed in 
magnetic resonance imaging studies.

The above findings support the hypothesis that the 
pain experienced by CP patients can be triggered by 
central sensitization, which is derived from sustained and 
increased peripheral nociceptive drivers. Moreover, recent 
studies have demonstrated that descending inhibitory 
modulators are significantly impaired in patients with 
CP compared to healthy controls[95,103]. Descending 
facilitation from the brainstem was also reported to be a 
critical factor in pancreatic pain in rats with CP[20].

POTENTIAL APPLICATIONS
Generally, drug discovery involves finding a new drug 
with the ability to increase or decrease the activities of 
selected targets or unrelated targets. The greater our 

understanding of the neuropathophysiology of pain in CP, 
the better our opportunity to identify potential treatment 
alternatives. Currently, there are two groups of potential 
treatment alternatives and their drug targets, which 
are summarized in Table 1. The first group of potential 
treatment alternatives is directed at attenuating the 
peripheral sensitization process by targeting related 
molecules and receptors, such as NGF, TRPV1, PAR2, 
trypsin, tryptase, interleukin 1, and interleukin 6. The 
second group of potential treatment alternatives focuses 
on attenuating the central sensitization process.

Anti-NGF antibody demonstrated a significant 
effect on attenuating the changes in the excitation of 
pancreatic nociceptors in rats with CP[81]. Tanezumab, a 
humanized monoclonal antibody with specific binding to 
NGF, is able to relieve chronic pain in many conditions, 
for instance, chronic low back pain[8,104], interstitial 
cystitis[8,105,106], and osteoarthritis knee pain[8,107,108]. 
However, to the best of our knowledge, there has not 
been any human study to date using anti-NGF in CP.

A TRPV1 antagonist remarkably reduced both 
visceral pain behavior and referred somatic hyperalgesia 
in rats with CP[45]. Since not only TRPA1 but also TRPV4 
are related to the peripheral sensitization of pain in CP, 
theoretically both TRPV1 and TRPV4 antagonists should 
be able to attenuate pain in CP. Nevertheless, we have 
not seen any study using a TRPV4 antagonist in CP.

Although PAR2 is the receptor that induces peripheral 
sensitization of pain in CP, direct PAR2 antagonists are 
very difficult to create[8]. As already mentioned, both 
trypsin and tryptase are agonists of the PAR2 receptor. 
Therefore, one researcher proposed that PAR2-sensitized 
pain can be inhibited indirectly by using trypsin inhibitors 
and a mast cell stabilizer (ketotifen)[8].

In the inflammatory process, interleukin 1 and 
interleukin 6 are associated with pain in CP. As a result, 
antagonists of both these interleukins may be able to 
attenuate pain. Researchers found that a recombinant 
interleukin-1 receptor antagonist[109] and interleukin-6 
antagonist[85] can have an effect on attenuating pan
creatitis-induced pain in rats with CP. 

Central sensitization of pain in CP can be influenced 
by NMDA receptors, thalamocortical dysrhythmia, and 
impaired modulation pathways. Consequently, we can 
attenuate pain in CP by modifying the activities of these 
influencing factors. Several known drugs can reduce the 
effect of central sensitization, such as ketamine[8,110,111], 
dextromethrophan[8,112], pregabalin[113-115], tricyclic anti
depressants[84], and noradrenaline reuptake inhibitors[84]. 

CONCLUSION 
Chronic pain is an important issue that significantly 
lowers quality of life in patients with CP. The theories for 
underlying causes of pancreatic pain in CP have been 
shifting away from anatomical changes of pancreatic 
structure to changes in neurobiological structure, 
which include peripheral sensitization-induced pain, 
neuropathic remodeling, and central sensitization of 

Table 1  Potential treatment alternatives and their drug targets

Drug target Potential treatment alternatives

NGF Tanezumab 
TRPV1 TRPV1 antagonist
PAR2 Trypsin inhibitors 
Mast cell Ketotifen
Interleukin 1 Recombinant interleukin-1 receptor antagonist
Interleukin 6 Interleukin-6 antagonist
Central sensitization Ketamine, dextromethrophan, pregabalin, 

tricyclic antidepressants, and noradrenaline 
reuptake inhibitors

NGF: Nerve growth factor; TRPV1: Transient receptor potential vanilloid 1; 
PAR2: Proteinase-activated receptor 2.
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pancreatic pain. Furthermore, researchers have identi
fied numerous molecules related to pancreatic pain in 
CP, for example, TRPV1, TRPA1, TRPV4, PAR2, NGF, 
artemin, BDBF, GAP43, and fractalkine. As a result, 
the neuropathophysiological mechanisms of pain in CP 
show strong potential as targets for drug discovery to 
relieve the pain and improve quality of life in this patient 
population.
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