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Abstract
Hernia repair is one of the most frequently performed 
surgical interventions that use mesh implants. This 
article evaluates crucial mesh parameters to facilitate 
selection of the most appropriate mesh implant, con
sidering raw materials, mesh composition, structure 
parameters and mechanical parameters. A literature 
review was performed using the PubMed database. The 
most important mesh parameters in the selection of a 
mesh implant are the raw material, structural parameters 
and mechanical parameters, which should match the 
physiological conditions. The structural parameters, 
especially the porosity, are the most important predictors 
of the biocompatibility performance of synthetic meshes. 
Meshes with large pores exhibit less inflammatory 
infiltrate, connective tissue and scar bridging, which allows 
increased soft tissue ingrowth. The raw material and 
combination of raw materials of the used mesh, including 
potential coatings and textile design, strongly impact the 
inflammatory reaction to the mesh. Synthetic meshes 
made from innovative polymers combined with surface 
coating have been demonstrated to exhibit advantageous 
behavior in specialized fields. Monofilament, large-
pore synthetic meshes exhibit advantages. The value of 
mesh classification based on mesh weight seems to be 
overestimated. Mechanical properties of meshes, such 
as anisotropy/isotropy, elasticity and tensile strength, are 
crucial parameters for predicting mesh performance after 
implantation.
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Core tip: Hernia repair is one of the most frequently 
performed surgical interventions that use mesh implants. 
This article evaluates crucial mesh parameters to facilitate 
selection of the most appropriate mesh implant based 
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on raw material, mesh composition, and structural and 
mechanical parameters. The structural parameters of the 
mesh, especially the porosity, are the most important 
predictors of the biocompatibility performance of synthetic 
meshes. Monofilament large-pore meshes exhibit less 
inflammatory infiltrate, connective tissue and scar 
bridging, which allows increased soft tissue ingrowth. The 
value of mesh classification based on the mesh weight 
seems to be overestimated. Other properties, such as 
the isotropy, elasticity and tensile strength, are crucial 
parameters for predicting the performance of meshes 
after implantation.

Zhu LM, Schuster P, Klinge U. Mesh implants: An overview 
of crucial mesh parameters. World J Gastrointest Surg 2015; 
7(10): 226-236  Available from: URL: http://www.wjgnet.
com/1948-9366/full/v7/i10/226.htm  DOI: http://dx.doi.
org/10.4240/wjgs.v7.i10.226

INTRODUCTION
Synthetic mesh implants are frequently used in many 
surgical interventions, especially in hernia repair. 
Mesh implants are composed of polypropylene (PP), 
polyethylene terephthalate (PET), expanded polytetra­
fluoroethylene (ePTFE), polyvinylidenefluoride (PVDF), 
and absorbable materials, such as polylactide (PLA), 
polyglycolic acid (PGA), polycaprolactone (PCL) 
and polydioxanone (PDO). Potential mesh-related 
complications include chronic infections, chronic pain 
and mesh rupture[1-3]. The reasons for chronic pain 
and the impact of mesh fixation in this context are 
controversial[4,5]. Chronic infections are favored by 
concomitant inflammatory and fibrotic reactions to 
the foreign body, hindering the local clearance from 
bacterial which leads to a chronic inflammatory wound 
with marked scarring, loss of compliance, mesh 
contraction, migration, physiochemical changes, seroma, 
infection, and in some cases, eventual mesh removal 
to resolve the problem[6]. A basic understanding of the 
physicochemical properties of meshes is essential for 
rational selection of the most appropriate device. This 
article evaluates the following crucial mesh parameters 
to facilitate selection of the most appropriate mesh 
implant: raw material, mesh composition, and structural 
and mechanical parameters (Figure 1).

The impact of mesh implants on clinical results is 
the current subject of much litigation in the field of 
stress urinary incontinence and pelvic prolapse, and 
some manufacturers were sued because of allegedly 
defective implants. However, many other factors 
besides mesh parameters must be considered in 
evaluations of the overall outcome of an intervention, 
including the patient’s constitution, the selection 
of a proper operation technique and the operation 
performance, which are essential for the success or 
failure of a therapy.

BIOCHEMICAL FUNDAMENTALS
Implantation of a mesh triggers a foreign-body reaction, 
which plays a crucial role in the incorporation of the 
mesh into the host tissue. Incorporation of mesh into 
tissues is a complicated biochemical healing process. 
Implantation initiates an acute inflammatory cellular 
response that is initiated by protein absorption at the 
surface and attracts local inflammatory cells, such as 
macrophages, that converge to foreign body giant 
cells and eventually create a chronic wound around 
the mesh fibers. New blood vessels and collagen 
form around the mesh[7]. A relatively high level of 
macrophage invasion is detectable 20 min after mesh 
implantation, and these levels increase slightly and 
then decrease within 24 mo[8]. More than 80% of the 
cells in the mesh infiltrate positively express CD68, 
CD8, CD45R0 and vimentin, which indicates a mixture 
of cells of various origins and confirms the existence 
of multiple transition forms that are involved in the 
inflammatory response[9]. Complement and mast cell 
activation may also be involved in the mediation of 
local tissue responses to synthetic hernia meshes[10,11]. 
Cell migration is followed by collagen deposition, with 
an increase in the type Ⅰ to type Ⅲ collagen ratio over 
time[12]. The majority of tissue ingrowth and strength 
may be completed 2 wk after mesh implantation, 
but the final remodeling process is a very significant 
challenge[13]. Mesh-induced foreign body responses must 
be balanced to result in normal wound healing. Swift 
and adequate tissue ingrowth into the mesh results in 
superior biocompatibility and likely improved clinical 
performance. Intense or prolonged inflammation, bad 
infiltration, and immature collagen deposition result 
in scar plate formation, which can be accompanied by 
increased stiffness of the abdominal wall, shrinkage or 
deformation of the biomaterial, recurrence, adhesion, 
fistula or erosion of nearby tissue[14]. 

TEXTILE FUNDAMENTALS
Textile structures consist of mono- or multifilament 
fibers. Figure 2 shows the schematic appearance of 
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Figure 1  Crucial mesh parameters for selection of an ideal mesh. 



meshes are used as mesh implants in exceptional 
cases. 

RAW MATERIAL AND MESH 

COMPOSITION
Raw material
The polymer and fiber surface affect the inflammatory 
response within the granuloma. Most synthetic meshes 
use one of following raw materials: nonabsorbable 
materials, such as PP, PET, PVDF and ePTFE, or ab­
sorbable materials, such as PLA, PGA, PCL, PDO 

knitted, warp-knitted, nonwoven and woven structures. 
Table 1 provides definitions of these different textile 
structures.

Table 2 presents the general essential properties of 
these textile structures. These properties are adjustable 
in a wide range through the selection of production 
technology and through the specific settings of the 
production process parameters. Most textile mesh 
implants are warp-knitted because of the ability of 
these implants to provide large pores and elasticity 
under load. Warp-knitted meshes also do not lose 
material or structural strength at margins when 
trimmed to the size of the surgical need. Nonwoven 
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Figure 2  Textile structures from left to right: Knitted structure, warp-knitted structure, nonwoven structure, and woven structure.

Table 1  Definitions of the knit, warp-knit, nonwoven and woven textile structures

Textile structure Definition

Knitted fabric Knitted fabric consists of a number of consecutive rows of loops, called stitches. Knitted structures are manufactures from 
single yarn systems. Thus, knitted structures can be ribbed off. Trimming of knitted structures often leads to a complete 

falling apart
Warp-knitted fabric Warp-knitted fabric consists of a number of consecutive courses of loops, called stitches. Warp-knitted structures are 

manufactures from multi yarn systems whereby the number of separate strands of yarn equals the number of stitches in a 
row. In contrast to knitted structures warp-knitted structures can be trimmed and sewed

Nonwoven fabric Nonwoven fabric consists of non orientated or to a certain degree orientated staple or endless fibers. After the nonwoven 
formation the structure needs to be bonded which either is realised by mechanical, thermal or chemical bonding

Woven fabric Woven structures consist of two distinct sets of yarns or threads which are interlaced at right angles to form a fabric

Table 2  Essential properties of the knit, warp-knit, nonwoven and woven textile structures

Textile structure Porosity (macropores) Elasticity Mechanical behaviour Trim-ability

Knitted fabric ++ ++ Anisotropic --
Warp-knitted fabric ++ ++ Isotropic, anisotropic ++
Nonwoven fabric - - Isotropic ++
Woven fabric - -- Isotropic ++



and PHB. These materials may also be used in 
combination with each other or a range of additional 
materials, such as titanium and hyaluronate. The 
foreign body reaction is fairly uniform regardless of 
the type of mesh implanted, but the different raw 
materials affect the extent of the reaction. PP meshes 
result in an intensified inflammatory reaction with 
deposition of more collagen fibers and significantly 
higher collagen type Ⅰ/Ⅲ ratios within the resulting 
scar neotissue compared with ePTFE meshes[15]. PET 
meshes induce the greatest foreign body reaction 
and longest-lasting chronic inflammatory response, 
which may be enhanced by the construction of 
PET fibers as a multifilament. Marked fibrosis and 
encapsulation surround ePTFE films[16]. PTFE is a more 
reactogenic material than PP, and it primarily stimulates 
the local production of pro-inflammatory cytokines. 
Therefore, the local anti-inflammatory effect of PP is 
less pronounced in comparison, but the inflammation 
persists for a longer time[17]. PVDF meshes produce 
a significantly reduced foreign body granuloma size 
compared with PP. PP is less stable than PVDF in 
vivo. Clear cracks in the surface of PP filaments have 
been detected 4 wk after implantation (Figure 3)[18]. 

These findings suggest that the raw material strongly 
influences the inflammatory and fibrotic responses.

Mesh composition
The primary aspects of mesh compositions are the 
use of different raw materials with or without surface 
coating in various textile designs.

Coatings may influence the degree of the inflam­
matory response. Nonabsorbable and absorbable 
materials are used for coatings. Absorbable materials 
are preferred if the coating provides a drug-eluting 
function. However, the degradation products may also 
influence the inflammatory response. A comparison 
of PP meshes, PP + polyglactin (PP + PG) meshes 
and PP + titanium (PP + TI) meshes demonstrated a 
reduced inflammatory reaction in the PP mesh group 
and increased reaction in the PP + PG mesh group. 
The PP mesh induced large early elevations in vascular 

endothelial growth factor, cyclooxygenase-2 and 
collagen levels, whereas the PP + PG mesh caused 
only small elevations in the levels of these factors. PP 
+ TI meshes induced inflammatory response levels 
in between those of the other 2 meshes[19]. Human 
fibroblasts colonized on the macroporous PP side of 
a composite mesh made of two PP layers, but no cell 
growth occurred on the film PP side[20]. The suppressive 
effect of the mesh on the transforming growth factor 
b1 was more pronounced for partially absorbable 
materials compared with pure PP meshes, which 
suggests that a change in raw material composition and 
type affects the early biological reaction of connective 
tissue cells to the mesh[21]. Woven and nonwoven 
meshes have received less attention. Raptis et al[22] 
demonstrated that woven PP meshes became fully 
peritonealized intraperitoneally but generated thicker 
and more plentiful adhesions than nonwoven PP. PP 
nonwoven prosthesis are comparable to conventional 
warp-knitted meshes[23]. 

The textile design markedly influences the infla­
mmatory reaction to the mesh. Using the best polymer 
in a poor textile design may lead to pronounced infla­
mmation and scar formation. In contrast, an adequate 
tissue reaction may be achieved with a suboptimal 
polymer if the essential parameters of the textile 
design (e.g., the filament structure and pore size) are 
considered. The particular type of mesh used in hernia 
repair may affect the wound healing response and 
clinical outcome[24]. 

STRUCTURE PARAMETERS
Pore characteristics
The characteristics of the mesh used - primarily the 
pore characteristics especially the collapse of pores 
under strain, amount of mesh material, prosthesis 
weight, and mechanical properties - crucially influence 
the dynamic incorporation. In 1997, Amid[25] identified 
mesh porosity as the decisive factor for risk of 
infection. Amid defined pores larger than 75 μm as 
macropores before large-pore meshes (3-5 mm) were 
developed. Klinge et al[26] evaluated a remarkable 
number of explanted meshes and found that the 
mesh porosity was the most important determinant 
of the tissue reaction and risk of scar entrapment. 
The pore size must be much larger than 75 μm to 
preserve tissue integration without filling the pores 
with scar tissue. A pore size > 1 mm is required for 
PP, and the pore size should be > 3 mm in cases of 
mechanical strain. Meshes with large pores exhibit 
less inflammatory infiltrate, connective tissue, fistula 
formation, calcification, and bridging (i.e., the pores are 
filled by scar tissue) than meshes with small pores[27,28]. 
Granulomas normally form around individual mesh 
fibers as part of the foreign body reaction, but the 
term “bridging” describes the process whereby 
individual granulomas become confluent with each 
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Figure 3  Comparison of the in vivo stability of the surface of polypropylene 
and polyvinylidenefluoride 4 wk after implantation[18]. PP: Polypropylene; 
PVDF: Polyvinylidenefluoride.



other and encapsulate the entire mesh, which leads 
to a stiff scar plate and reduced flexibility[29]. A pore 
that is not completely filled by scar tissue is considered 
“effective” according to Mühl et al[30]. Therefore, large 
pore sizes preserve the “effective porosity” and thus 
avoid formation of scar bridges (Figure 4).

It is difficult to define a best pore size a priori 
because different raw materials result in different 
“effective porosities”. Bridging of granuloma and 
encapsulation of the entire mesh is more likely for PP 
meshes with small pores (< 800 µm)[31]. In contrast, 
PVDF meshes do not exhibit bridging even for pore 
sizes of < 650 µm[32,33]. Klinge et al[26] characterized 
large-pore meshes using a textile porosity > 60% or an 
effective porosity > 0%. Pore shape may also determine 
integration. Lake et al[34] found that hexagonal pores 
resulted in the strongest tissue ingrowth, followed by 
square pores and diamond pores.

Mesh weight
Synthetic meshes may be classified as heavyweight or 
lightweight. The mesh weight depends on the polymer 
weight (raw material) and the amount of material 
used.

Coda et al[35] proposed a classification system based 
on the mesh weight that includes simple, composite and 
combined meshes. Meshes with weight per unit area 
of greater than 140 g/m² are defined as heavyweight 
meshes, meshes with weight per unit area in the 
range 35-70 g/m2 are defined as lightweight meshes 
and meshes with weight per unit area in the range of 
70-140 g/m2 are defined as standard-weight meshes. 
Lightweight meshes generally contain less material 
and induce a less-pronounced foreign body reaction 
and decreased inflammatory response, which results 
in better tissue incorporation, increased prosthesis 
compliance, and decreased patient discomfort and pain. 
In an animal study, restriction of the abdominal wall 
mobility was significantly reduced and the inflammatory 
reaction and connective tissue formation were markedly 
diminished with lightweight meshes compared with 
heavyweight meshes[36]. Randomized prospective trials 
compared lightweight and heavyweight meshes for 
ventral hernia repair and found that they had equal 
outcomes in terms of ventral hernia recurrence[37]. 

Patients with lightweight mesh hernia repair exhibited 
better outcomes in terms of pain and seroma and an 
earlier return to activity[38]. 

Most current lightweight meshes have larger 
pores than heavyweight small-pore constructions[39]. 
However, mesh classification only in terms of weight 
disregards fiber and pore characteristics. Weyhe et 
al[40] considered the textile mesh construction, which 
they characterized in terms of the pore size and 
filament structure, as a more important determinant 
of foreign body reactions after implantation than 
absolute material reduction. This result attenuates 
the importance of mesh weight for the prediction of 
biocompatibility[41]. The advantages of lightweight 
meshes may be primarily related to their tendency to 
utilize a large pore size and/or monofilament.

However, an excessive reduction of mesh weight 
may also decrease the tensile strength. Lightweight 
meshes are sufficiently strong to resist abdominal wall 
pressure, but these meshes lose some burst strength 
compared with heavyweight meshes[32,42]. Experiments 
using small animals suggest that heavyweight small-
pore meshes may withstand greater forces of scar 
contraction than large-pore lightweight meshes and 
may exhibit less shrinkage. Zogbi et al[43] found 
that lightweight PP mesh exhibited greater median 
shrinkage than heavyweight PP mesh in rats 7, 28 and 
90 d after implantation.

MECHANICAL PARAMETERS
Mechanical properties are important parameters to 
consider when determining the suitability of a particular 
mesh for a specific clinical situation. However, surgeons 
typically implant meshes to provide maximum overlap 
over the defect with little regard for the mechanical 
properties of the mesh. Each synthetic mesh is 
composed of a unique combination of the material 
properties of the polymer and the textile design. The 
textile properties depend on the manufacturing process 
and the manufacturing process parameters.

The choice of raw materials determines a material’s 
properties, which in many cases implies a combination 
of the properties of more than one raw material. These 
features ultimately determine the mechanical properties 
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Figure 4  Comparison of the textile porosity (A) and the effective 
porosity (B).A B



of the resulting mesh. An important consequence of 
the manufacturing process is the anisotropy of the 
tensile strength, elasticity, burst strength and stiffness. 
The American Society for Testing and Materials (ASTM) 
specification (D 4850 Terminology of textile structures) 
provides definitions of these properties (Table 3)[44]. 

The actual load on the abdominal wall is of major 
relevance for the selection of the suitability of meshes 
for use in ventral hernia repair. Different groups often 
perform simple tensile tests (N/cm), measurements 
of the inner abdominal pressure (Pa = N/mm²) or 
calculations of the abdominal wall tension (N/cm) using 
the Young-Laplace equation to characterize the native 
abdominal wall properties. The different measuring 
methods and different units should be considered when 
comparing these measurement results. Conversion of 
the inner abdominal wall pressure (Pa = N/mm²) (using 
the Young-Laplace equation) to the abdominal wall 
tension (N/cm) is only possible if the circumference of 
the patient is also provided. Use of the Young-Laplace 
equation requires a distinction between the sphere-like 
anatomy of the groin and the cylinder-like anatomy of 
the abdominal wall.

Hollinsky et al[45] measured the tensile load of the 
linea alba, the anterior and posterior rectus sheath, 
and scar tissue following median laparotomy in fresh 
cadavers and found that the tissue in the epigastric 
region ruptured at a mean horizontal load of 10 N/
mm2 in the linea alba and 6.9 N/mm2 in scar tissue 
and at a mean vertical load of 4.5 N/mm2 in the linea 
alba and 3.3 N/mm2 in scar tissue. In earlier research, 
Williams et al[46] estimated the maximum force applied 
to the abdominal wall after hernia repair surgery as 
22 N/cm in the cranial/caudal direction and 32 N/cm 
in the lateral direction. Cobb et al[47] investigated the 
intra-abdominal pressure using a transurethral bladder 
(Foley) catheter under different physical situations, 
including standing, sitting, bending at the waist, 
bending at the knees, performing abdominal crunches, 
jumping, climbing stairs, bench-pressing 25 pounds, 
arm curling 10 pounds, and performing a valsalva and 
coughing while sitting and standing, and identified a 
pressure of 22.7 kPa (171 mmHg) as the maximum 
pressure during coughing. Deeken et al[48] argued 
that stress in the transverse direction can reach levels 

of 47.8 N/cm in obese males with a large abdominal 
circumference. The true peak pressure in situations 
such as expectoration or sternutation in the abdominal 
wall was not fully addressed, but it is accepted that 
22 N/cm in the cranial/caudal and 32 N/cm in the 
lateral direction are the maximum forces applied to the 
abdominal wall after hernia repair surgery[49]. A load 
of 16 N/cm is accepted as the maximum load in the 
groin because of the more sphere-like anatomy of the 
groin[50]. 

The natural elasticity of the abdominal wall at 32 
N/cm is approximately 38%, with higher resilience 
in the horizontal direction than the longitudinal 
direction[45,46]. DuBay et al[51] indicate that the use of 
meshes in ventral hernia repair increases abdominal 
wall elasticity, which results in lower recurrence 
rates. Lightweight meshes exhibit an elasticity of 
approximately 20%-35% at 16 N/cm, but heavyweight 
meshes exhibit half of this elasticity (4%-15% at 16 
N/cm), which may restrict abdominal distension[39]. 
An inappropriate mesh tensile strength, which results 
in an inappropriate ability of the mesh material to 
stretch, may potentially lead to poor functional results, 
with pain, hernia recurrence or prolapse. Elongation 
rates of greater than 30% indicate that these materials 
may stretch more than the native human abdominal 
wall. These meshes may not maintain functional repair, 
which could result in bulging or recurrence[48]. 

Tensile strengths of greater than 100 N/cm of 
conventional heavyweight meshes (e.g., Prolene) are 
disproportionate and not necessary for effective 
repair[39]. Most synthetic meshes, even the lightest 
meshes, reach a tensile strength of at least 32 N/cm 
and are sufficiently strong. The mean burst strength 
and stiffness of lightweight meshes 5 mo after 
implantation in a pig was significantly less than those 
of heavyweight and middleweight meshes, but the 
burst strength for all meshes tested was much greater 
than the strengths measured for the abdominal wall 
fascia alone[32]. Bellón et al[52] demonstrated that 
the tensile strengths of lightweight and heavyweight 
meshes were comparable 90 d after implantation. 
However, Petro et al[53] recently reported 7 cases 
of mechanical failure or fracturing of lightweight 
monofilament polyester meshes after open incisional 
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Table 3  Definitions of mechanical mesh properties based on the definitions given by the American Society for Testing and Materials[44]

Property Definition

Tensile strength Tensile strength is the maximum force that can be applied to a mesh without tearing or breaking of the mesh. The tensile 
strength is measured in Newton (N) and is usually given in relation to the clamping width as Newton per centimeter (N/cm)

Burst strength The burst strength is the maximum uniformly distributed pressure applied at right angle to its surface that a material will 
withstand under standardized conditions. The burst strength is given in pressure per unit area (Pa/cm²)

Elasticity
(elastic elongation)

Elasticity (elastic elongation) is the property of a material whereby it changes its shape and size under the action of opposing 
forces (%), but recovers its original configuration when the forces are removed. In contrast, to the elastic elongation the plastic 

elongation indicates the elongation ratio which does not recover after unloading the structure
Stiffness Stiffness can be expressed as ratio of steadily increasing or decreasing force acting on a deformable elastic material to the 

resulting displacement or deformation. Stiffness is a crucial aspect that reflects the drapablity of a textile structure, means the 
ability of a textile structure to be adapted to a 3-dimensional geometry



hernia repair. Zuvela et al[3] and Lintin et al[54] reported 
central ruptures of low-weight PP meshes after 
initial sublay incisional hernia repair. These isolated 
case reports are insufficient to question the use of 
lightweight meshes in ventral hernia repair, but one 
should consider that the maximum initial tensile 
strength of synthetic meshes did not predict long-
term strength after implantation[55]. Eliason et al[56] 
demonstrated that BardMesh, Dualmesh, and Prolene 
exhibited significantly reduced tensile strength, and 
BardMesh, Proceed, Prolene, ProLite, ProLite Ultra, and 
Ultrapro exhibited significantly increased permanent 
elongation after exposure to 1000 cycles of repetitive 
loading sequences that simulated changes in the intra-
abdominal pressure. Mesh elongation also led to the 
loss of effective porosity in most meshes, which is an 
important aspect for scar formation and foreign body 
reaction[57]. Stiffness and breaking strength also vary 
widely among available meshes for hernia repair, and 
most meshes exhibit significant anisotropy in terms 
of their mechanical behavior. Pott et al[49] compared 
six meshes composed of different raw materials and 
different textile structures. All six mesh types exhibited 
differences in maximum tensile strength (11.1 ± 6.4 
to 100.9 ± 9.4 N/cm), stiffness (0.3 ± 0.1 to 4.6 ± 
0.5 N/mm), and elongation at break (150% ± 6% 
to 340% ± 20%) based on the load direction: the 
warp direction, or “longitudinal direction”, vs the weft 
direction, or “orthogonal direction”. Deeken et al[58] 
recently evaluated 13 mesh types that exhibited a 
wide range of mechanical properties. Some meshes 
were nearly isotropic, with nearly similar properties in 
the vertical and horizontal strain directions [C-QUR™, 
DUALMESH(®), PHYSIOMESH™, and PROCEED(®)], but 
other meshes were highly anisotropic (Ventralight™ ST, 
Bard™ Mesh, and Bard™ Soft Mesh). Some meshes 
exhibited a nearly linear behavior (Bard™ Mesh), but 
other meshes were non-linear, with a long toe region 
followed by a sharp rise in tension.

Meshes with different mechanical properties are 
treated as uniform and interchangeable, but it is 
important to understand the characteristics of the 
meshes to identify an appropriate mesh for each 
patient and place the mesh in an appropriate position 

to avoid mechanical mismatch, which may impair graft 
fixation, and enable optimized integration into the host 
tissue[59,60]. Therefore, surgeons may use meshes with 
isotropic properties regardless of the mesh orientation, 
but surgeons should pay attention to the orientation 
of meshes with anisotropic properties, which should 
be placed with their major elasticity in the appropriate 
direction to match the physiological stretch abilities 
(Table 4).

NEW DEVELOPMENTS
The evolution of meshes is not complete. New synthetic 
meshes are continuously developed, and new polymers 
and innovative coatings are continuously introduced. 
Ulrich et al[61] examined 3 new warp-knitted synthetic 
meshes composed of different polymers with different 
tensile properties, polyetheretherketone, polyamide 
(PA) and a composite, gelatin-coated PA (PA + G), in 
a rat model. All new materials exhibited better tissue 
integration, new collagen deposition and sustained 
neovascularization compared with PP meshes. 
Therefore, these new materials provide a promising 
alternative for future mesh developments. Meshes 
manufactured from native spider dragline revealed 
rapid cell migration, complete degradation, formation 
of a stable scar with constant tensile strength values 
and the highest relative elongation among standard 
biological and synthetic meshes[62]. 

Biosynthetic meshes are a possible cost-effective 
alternative to synthetic and biological meshes. Bio­
degradable polymers, instead of animal or cadaver 
tissue, provide a temporary scaffold for deposition 
of proteins and cells that are necessary for tissue 
ingrowths, neovascularization, and host integration[63]. 
Powell et al[64] reported good results in the early phase 
for ‘‘synthetic remodeling meshes’’ made from PGA/
trimethylene carbonate in a study of 70 patients who 
underwent hiatal hernia repair. However, Symeonidis 
et al[65] used the same ‘‘synthetic remodeling mesh’’ 
in a pilot study of inguinal hernia repair and reported 
discouraging results, with a 38% recurrence rate after 
a mean follow-up of 2 years, which questions the 
general suitability of this mesh. Another fully absorbable 
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Table 4  Essential properties of hernia meshes used for groin and abdominal wall hernia repair

Property Recommendation

Tensile strength (abdominal wall) 22 N/cm (cranial/caudal )
32 N/cm (lateral)

Tensile strength (groin) 16 N/cm
Elongation 20%-40%
Orientation No specific orientation for meshes with isotropic properties

For meshes with anisotropic properties: orientation in the appropriate direction to match the physiological 
stretchability

Pore size Depending on the used raw material and the foreign body reaction, respectively. To achieve a high effective 
porosity: for PP meshes a pore size ≥ 1000 µm should be used; for PVDF meshes a pore size ≥ 600 µm should be 

used

PP: Polypropylene; PVDF: Polyvinylidenefluoride.



mesh composed of knitted poly-4-hydroxybutyrate 
monofilament fibers, named the Phasix mesh, exhibited 
a strength that was 80%, 65%, 58%, 37% and 18% 
greater than the native abdominal wall at 8, 16, 32, and 
48 wk post-implantation, respectively. The significant 
reduction of the polymers’ molecular weight over time 
demonstrated successful transfer of load-bearing from 
the mesh to the repaired abdominal wall[66]. 

Configurations that include a metal component may 
also add new properties to standard synthetic meshes. 
Mesh shrinkage, migration, and configuration changes 
in the host tissue cause severe complications and 
discomfort after mesh implantation. There is no way to 
revise an implanted mesh postoperatively except for 
access to samples that have been explanted because 
of severe infection, chronic pain and recurrence. 
However, incorporation of small iron particles into the 
polymer provides an effective option for noninvasive 
revision using magnetic resonance imaging[67]. Another 
promising metal to improve mesh performance is nitinol. 
Nitinol-containing memory frame mesh is a valuable 
tool to achieve complete deployment in transinguinal 
preperitoneal repair for inguinal hernias that offers an 
acceptable morbidity and a low recurrence rate[68]. 

Coatings are another effective method to modify 
the properties of synthetic meshes. A titanium-coated 
PP mesh was associated with less postoperative pain 
in the short term, lower analgesic consumption and 
shorter convalescence compared with the Parietex 
composite mesh[69]. Intraperitoneal implantation of PP 
meshes is not recommended because of the likeliness 
of inducing intense adhesion and intestinal fistula. A 
PP mesh coated with poly(L-lactic acid) exhibited an 
additional property of anti-adhesion in a rat model[70]. 
Extracellular matrix-coated PP meshes attenuated 
the pro-inflammatory response with reduced cell 
accumulation, fewer foreign body giant cells and 
decreased collagen density without changes in the 
mechanical properties of the mesh[71,72]. Chitosan-
coated PP meshes elicited preferential attachment of 
myoblasts over fibroblast attachment in vitro, which 
was associated with the restoration of functional 
skeletal muscle with histomorphological characteristics 
that resembled native muscle in vivo[73]. Degradable 
drug delivery coatings with incorporated antibiotics 
provide a specific approach to reduce post-surgical 
infections[74]. These promising laboratory and animal 
trial results may be incorporated in clinical practice in 
the future.

The use of electro-spun nanofibers of various 
polymers as tissue scaffolds in hernia repair has been 
an active research topic in recent years. Electro-
spun materials feature three-dimensional nanofibrous 
structure with high surface-to-volume ratios and high 
porosity with high pore-interconnectivity that are 
similar to the native extracellular matrix. Drugs and 
growth factors for the prevention of incisional hernia 
formation have also been incorporated into electro-
spun nanofibers[75]. Recent research revealed that PET 

and PET/chitosan electro-spun meshes performed 
well during incisional hernia surgery. However, the 
formation of foreign body granuloma in response 
to electro-spun structures was greater than when 
conventional meshes were used[76]. Further studies are 
required to elucidate the mechanisms that underlie 
the interactions between cells/tissues and nanofibrous 
materials.

CONCLUSION
Large-pore, monofilament, lightweight synthetic 
meshes are the current standard of practice. However, 
the risk of infection and other complications associated 
with the use of meshes are inevitable. An ideal synthetic 
mesh should consist of a monofilamentous large-pore 
structure with anisotropic mechanical properties that 
are similar to the native properties of the healthy host 
tissue and composed of a highly biocompatible raw 
material with long-term stability. An optimal mesh 
for intraperitoneal use must resist visceral adhesions 
to limit the risk of bowel obstruction and intestinal 
fistula. The use of innovative raw materials or coatings 
of currently available raw materials are promising 
approaches to realize these ideals. The individual 
response of the patient influences the local response 
after mesh implantation. Therefore, a thorough under­
standing of the biological processes of tissue formation 
and remodeling in the context of wound-healing 
processes after hernia repair is needed.
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