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Abstract
AIM: To investigate whether heat shock pretreatment 
(HSP) improves mesenchymal stem cell (MSC) repair 
via  autophagy following hepatic ischemia-reperfusion 
injury (HIRI).

METHODS: Apoptosis of MSCs was induced by 250 
mM hydrogen peroxide (H2O2) for 6 h. HSP was carried 
out using a 42 ℃ water bath for 1, 2 or 3 h. Apoptosis 
of MSCs was analyzed by flow cytometry, and Western 
blot was used to detect Bcl-2, Bax and cytochrome C 
expression. Autophagy of MSCs was analyzed by flow 
cytometry and transmission electron microscopy, and 
the expression of beclin Ⅰ and LC3-Ⅱ was detected 
by Western blot. MSCs were labeled in vivo  with the 
fluorescent dye, CM-Dil, and subsequently transplanted 
into the portal veins of rats that had undergone HIRI. 
Liver levels of proliferating cell nuclear antigen (PCNA) 
were quantified by fluorescent microscopy. Serum 
aminotransferase activity and the extent of HIRI were 
also assessed at each time point.
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RESULTS: HSP for 2 h reduced apoptosis of MSCs 
induced by H2O2 as seen by a decrease in apoptotic 
rate, a decrease in Bax and cytochrome C expression 
and an increase in Bcl-2 expression (P  < 0.001). In 
addition, HSP for 2 h induced autophagy of MSCs 
exposed to H2O2 as shown by an increase in acidic 
vesicular organelle-positive cells, beclin 1 and LC3-Ⅱ 
expression, and autophagosome formation (P  < 0.05). 
Treatment with 3-methyladenine attenuated HSP-
induced autophagy and abolished the protective effects 
of HSP on the apoptosis of MSCs. Rapamycin failed to 
have additional effects on either autophagy or apoptosis 
compared with HSP alone. The phosphorylation of 
p38MAPK was significantly elevated and the pho
sphorylation of mTOR was downregulated in heat 
shock pretreated MSCs. Treatment with the p38MAPK 
inhibitor, SB203580, reduced HSP-induced autophagy in 
MSCs. In vivo  studies showed that the transplantation 
of HSP-MSCs resulted in lower serum aminotransferase 
levels, lower Suzuki scores, improved histopathology 
and an increase in PCNA-positive cells (P  < 0.05).

CONCLUSION: HSP effectively induces autophagy 
following exposure to H2O2 via  the p38MAPK/mTOR 
pathway, which leads to enhanced MSC survival and 
improved MSC repair following HIRI in rats.

Key words: Hepatic ischemia-reperfusion injury; Heat 
shock pretreatment; Mesenchymal stem cells; Autophagy; 
Transplantation
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Core tip: We investigated the interaction between 
autophagy and apoptosis in mesenchymal stem cells 
(MSCs) exposed to H2O2. We found that heat shock 
pretreatment (HSP)-induced autophagy served as 
a protective mechanism. HSP for 2 h improved the 
therapeutic potential of MSCs in the treatment of 
ischemia-reperfusion (I/R) injury in rats and enhanced 
autophagy via  the p38MAPK/mTOR pathway, which 
is involved in the protective effects of HSP on H2O2-
induced MSC apoptosis. Systemic administration 
led to an increase in HSP-MSCs homing to I/R liver 
cells compared with MSCs, resulting in a significant 
improvement in liver function, accelerated mitogenic 
response and alleviation of histopathological damage.

Qiao PF, Yao L, Zhang XC, Li GD, Wu DQ. Heat shock 
pretreatment improves stem cell repair following ischemia-
reperfusion injury via autophagy. World J Gastroenterol 2015; 
21(45): 12822-12834  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v21/i45/12822.htm  DOI: http://dx.doi.
org/10.3748/wjg.v21.i45.12822

INTRODUCTION
During surgical trauma, particularly liver transplantation, 

hepatic ischemia-reperfusion injury (HIRI) may occur, 
which is associated with a significant reduction in liver 
function[1,2]. Effective treatment strategies aimed at 
reducing HIRI may therefore offer major benefits in 
hepatic surgery and liver transplantation. A previous 
study demonstrated the specific involvement of bone 
marrow mesenchymal stem cells (MSCs) in the repair 
of HIRI[3]. However, due to local hypoxia, inflammation, 
and especially oxidative stress in the targeted tissue, 
the transplanted MSCs did not withstand the difficult 
microenvironment caused by ischemia-reperfusion (I/R) 
injury. Thus, low cell survival reduced the therapeutic 
effect[4]. It was also reported that < 1% of transplanted 
MSCs survived to the fourth day in an immunodeficient 
mouse heart model[5]. The poor MSC survival rate 
was also observed after transplantation into lungs and 
kidneys with I/R injury[6,7]. Therefore, it is imperative 
to protect MSCs from oxidative stress and other pro-
apoptotic factors to improve their therapeutic effect.

Heat shock pretreatment (HSP) is known to 
activate certain types of self-protective proteins and 
protects cells in vitro from various environmental 
insults[8-10]. Several reports have shown that HSP 
of transplanted cells enhanced their survival in a 
heart model both in vivo and in vitro[11,12]. Thus, we 
hypothesized that HSP of MSCs could enhance their 
survival following transplantation into the liver after 
I/R injury. Recently, the induction of autophagy was 
shown to be a novel method of protecting MSCs from 
apoptosis[13,14]. Several reports have shown that heat 
shock treatment can activate autophagy in multiple cell 
types[15,16]. However, it is unknown whether autophagy 
can be activated by heat shock treatment or how it 
affects MSCs. 

Autophagy is an essential cellular mechanism 
that occurs in eukaryotic cells[17,18]. In recent years, 
it has been found that autophagy plays a vital role 
in cell apoptosis and its role depends on cell type 
and cellular conditions. Autophagy can lead to pro-
survival pathways, while inappropriate autophagy can 
induce cell death[19]. Under ischemia or hypoxia/serum 
deprivation (H/SD), autophagy can protect MSCs from 
apoptosis by eliminating reactive oxygen species and 
damaged organelles to provide energy[13,20]. Moreover, 
H/SD-induced autophagy has also been demonstrated 
to induce apoptosis in some cell types. Autophagy 
can also directly promote type Ⅱ programmed cell 
death[21]. However, the functional role of autophagy 
in oxidative stress-induced apoptosis in MSCs has not 
been fully elucidated.

 Mitogen-activated protein kinase (p38MAPK) is 
a positive regulator of autophagy and is regulated 
by heat shock treatment to improve cardiac cell 
survival[8]. p38MAPK can be activated in response to 
exogenous stress such as hypoxia, starvation and 
heat shock, which in turn activates mitogen-activated 
protein kinase kinases (MKK)-3/4/6 and their effector 
kinases to stimulate autophagy[22]. However, little is 
known about the function of the p38MAPK pathway 

12823 December 7, 2015|Volume 21|Issue 45|WJG|www.wjgnet.com

Qiao PF et al . HSP improves MSC survival



in regulating the activation of autophagy in MSCs 
following heat shock treatment.

The aim of this study was to examine the function 
of autophagy in MSC apoptosis induced by oxidative 
stress injury. Further, we investigated whether HSP 
activates autophagy via the p38MAPK/mTOR pathway 
to protect MSCs against apoptosis.

MATERIALS AND METHODS
Animals
Thirty-two male Sprague-Dawley rats (about 220 g; 10 
wk old) from the Animal Center of the Second Affiliated 
Hospital, Harbin Medical University were used in this 
study. The rats were cared for in accordance with the 
guidelines published by the US National Institutes of 
Health. All study procedures were approved by the 
Harbin Medical University Institutional Animal Care 
and Use Committee. The study was conducted in 
compliance with the Guide for the Care and Use of 
Laboratory Animals published by the National Academy 
Press.

Cell culture and treatment
MSCs were collected as previously described[3], and 
density centrifugation was performed to isolate MSCs[23]. 
The femurs and tibias from male Wistar rats aged 4 wk 
were flushed, and bone marrow cells were collected and 
then fractionated in Lymphoprep™ density solution. 
Following centrifugation at 800 × g for 20 min, the 
cells at the interface were collected and cultured in 
Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco, 
United States) containing 10% fetal bovine serum 
and 1% penicillin/streptomycin. Cells were incubated 
at 37 ℃ with 95% humidity and 5% CO2. After 48 
h, the culture medium was changed to remove 
non-adherent cells. After the fourth passage, MSCs 
were washed with phosphate buffered saline (PBS), 
exposed to HSP for different time periods (1, 2 or 3 
h) in a 42 ℃ water bath and then incubated at 37 ℃ 
in a humidified atmosphere containing 5% CO2 for 
24 h (HSP-MSC group). Control cells were cultured 
under normal conditions without HSP (MSC group). 
To simulate tissue I/R microenvironment in vitro, 
MSCs were treated with 250 mM H2O2 (Sigma-Aldrich, 
United States) for 6 h[24,25]. The autophagy inhibitor, 
3-methyladenine (3-MA; 5 mM; Sigma-Aldrich, 
United States), the autophagy promoter, rapamycin 
(10 nM; Cell Signaling Technology, United States), or 
the p38MAPK inhibitor, SB203580 (5 mM; Beyotime, 
China), was added to further examine the role of 
autophagy on MSC apoptosis.

Evaluation of autophagy and apoptosis by flow 
cytometry
Cell apoptosis was examined using the Annexin V-FITC/
PI Kit (Becton-Dickinson, United States). Briefly, 
MSCs were collected in 200 mL medium. Following 

resuspension, approximately 10 mL of Annexin V 
solution were added and incubated for 15 min at room 
temperature in the dark. Then, 300 mL medium buffer 
and 5 mL propidium iodide (PI) were added and the 
cell suspension was incubated for 15 min at room 
temperature in the dark. The cell suspension was then 
immediately analyzed by flow cytometry (Becton-
Dickinson, United States). Cell Quest software was 
used to analyze 104 cells. 

Cell autophagy was examined by detecting acidic 
vesicular organelles (AVO) using acridine orange 
(AO) stain (Solarbio, China) according to published 
protocols[26]. Briefly, cells were stained with 1 mg/mL 
AO for 15 min and collected in PBS. In AO-stained 
cells, the cytoplasm fluoresces bright green, whereas 
AVOs, including lysosomes and autolysosomes, 
fluoresce bright red. The green (510-530 nm) and 
red (650 nm) fluorescence emission from 104 cells 
illuminated with blue (488 nm) excitation light was 
measured by flow cytometry using Cell Quest software.

Transmission electron microscopy
MSCs were harvested and fixed with 2.5% glutaral
dehyde at 4 ℃ for 2 h. Cells were then suspended in 
PBS containing 1% osmic acid at 4 ℃ for 2 h, Following 
dehydrating and embedding[13], ultrathin sections were 
prepared on uncoated copper grids using an Ultrotome 
(Leica, Reichert Ultracuts) and stained with uranyl 
acetate and lead citrate. Images were captured using a 
transmission electron microscope (JEM1230; JEOL).

Western blot
Protein lysates were separated using SDS-PAGE and 
transferred to nitrocellulose membranes (Amersham 
Pharmacia Biotech, United States). Membranes were 
probed with the appropriate primary antibodies 
(Supplemental Table 1). Alexa Fluor® 680 donkey anti-
mouse IgG (H + L) or Alexa Fluor® 680 donkey anti-
rabbit IgG (H + L) were used as secondary antibodies 
(1:5000; Invitrogen, United States). Fluorophores 
were detected using the Odyssey™ Infrared Imaging 
System (Li-Cor, Lincoln, NE, United States). 

Labeling of MSCs
The transplanted MSCs were labeled with 10 µmol/
L CM-Dil (Invitrogen, United States) according to 
published protocols[27].

Model of HIRI and cell transplantation
HIRI in the rat model was performed as previously 
described[3]. Briefly, a midline laparotomy was 
performed following anesthesia administration with 
intraperitoneal sodium pentobarbital (60 mg/kg). 
The left lateral and medial lobes of the liver were 
then clamped at their bases using an atraumatic clip. 
Ischemia was induced in 70% of the segmental liver 
and prevented ischemia in the mesenteric veins[28]. 
Throughout the administration of anesthesia, body 
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temperature, and then a streptavidin-biotin peroxidase 
complex solution (Nichirei, Japan). The chromogen, 
3, 3’-diaminobenzidine tetra-hydrochloride, was 
used as a 0.02% solution containing 0.005% H2O2 
in 50 mmol/L ammonium acetate-citrate acid buffer 
(pH 6.0). Sections were counterstained with Mayer’
s hematoxylin and mounted. Negative controls were 
established by replacing the primary antibody with 
normal rabbit serum. No staining was detected in the 
negative controls.

Histological analysis
The degree of HIRI was assessed by histological 
analysis as previously described[3].

Statistical analysis
The data were expressed as the mean ± SD, and 
representative results were from at least three 
independent experiments. For quantitative continuous 
data, the differences between two groups were 
examined and the data were analyzed using t-tests. 
When multiple comparisons were possible, ANOVA 
coupled with Tukey’s post-hoc test correction was 
used. P < 0.05 was considered statistically significant. 
Statistical analyses were carried out using SPSS 
version 21 (SPSS Inc., Chicago, IL, United States) or 
the GraphPad Prism 5.0 software package (GraphPad 
Software, Inc., La Jolla, CA, United States).

RESULTS
Heat shock pretreatment protected MSCs exposed to 
H2O2 against apoptosis 
The apoptotic rate and levels of the pro-apoptotic 
proteins, Bax and cytochrome C, were all reduced. 
The anti-apoptotic protein, Bcl-2, was increased in the 
HSP1h and HSP2h groups compared to the control and 
H2O2 group (Figure 1; P < 0.01). However, in the HSP3h 
group, the apoptotic rate and expression of Bax and 
cytochrome C were increased, while Bcl-2 expression 
was reduced (Figure 1; P < 0.01). These results 
suggest that 2 h of HSP protected MSCs from H2O2-
induced apoptosis.

HSP induced time-dependent autophagy in MSCs
To examine whether HSP activated autophagy in 
MSCs, the cells were pretreated with heat shock 
for 1, 2 or 3 h, and then exposed to H2O2 for 6 h. 
The number of AVO-positive cells identified by flow 
cytometry was increased in the HSP group compared 
with the control group (Figure 2A; P < 0.05). Different 
durations of HSP led to a time-dependent increase 
in the action of autophagy in MSCs exposed to H2O2, 
which peaked in the HSP3h group (P < 0.01). HSP-
MSCs showed a significant time-dependent increase in 
the expression of LC3B-Ⅱ and the autophagic marker, 
beclin 1, compared to the control group (Figure 2D). 
Autophagosomes observed in HSP-MSCs exposed to 

temperature was monitored by a rectal probe and 
maintained at 37 ℃ by a heating lamp. The clamp 
was removed after 60 min, and 1 × 106 CM-Dil-labeled 
MSCs or HSP-MSCs suspended in 200 µL PBS were 
immediately transplanted into the portal vein using 
a 30-gauge needle, in the MSC group and HSP-MSC 
group, respectively. The control group underwent 
laparotomy only and received 200 µL PBS. The 32 rats 
were randomly divided into 4 groups. At 24 h after 
transplantation, 2 mL blood was harvested from the 
inferior vena cava before the animals were sacrificed 
by cervical spine dislocation. Livers were harvested 
immediately.

Immunofluorescence microscopy
The chest was opened following tracheal intubation 
and the rats were perfused with 4% paraformaldehyde 
(Sigma-Aldrich, United States) in 0.01 M PBS following 
an overdose of anesthesia (sodium pentobarbital; 100 
mg/kg, intraperitoneal) for 2 min[29]. Harvested livers 
were cryopreserved in 30% sucrose at 4 ℃ overnight, 
embedded in optimal cutting temperature (OCT) 
compound, and cut into 4 µm-thick sections using a 
cryostat. The sections were rinsed twice with PBS, 
fixed in 4% paraformaldehyde for 20 min at room 
temperature, and washed three times with PBS. After 
permeabilization with 0.2% Triton X-100, the sections 
were blocked at 4 ℃ overnight in 1% BSA/0.05% 
Triton X-100. Sections were then incubated with 
an antibody against PCNA (1:200) at 37 ℃ for 2 h. 
After washing three times with PBS, the sections 
were incubated with Alexa Fluor® 488-conjugated 
Affinipure goat anti-rabbit IgG (H + L) secondary 
antibody (1:200; ZSGB-Bio, China) for 1 h at room 
temperature. After extensive washing, the sections 
were examined under a fluorescence microscope[30]. 

Measurement of liver function
To evaluate the severity of HIRI, the serum levels 
of aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT) were measured by an automatic 
analyzer (Hitachi, Japan) as described previously[31].

Immunohistochemical staining 
Tissue sections of 1.5 cm × 1.5 cm × 2 mm were 
subjected to immunohistochemical staining to assess 
PCNA 24 h after cell transplantation. Immunohis
tochemical staining of sections for PCNA expression 
was performed by a standard streptavidin-biotin 
peroxidase complex method[32]. Tissue sections (4 
mm) were deparaffinized and rehydrated by standard 
protocols, autoclaved at 95 ℃ for 20 min, and cooled 
to 30 ℃. Normal rabbit serum (10%) was used to 
block non-specific binding sites. Sections were then 
incubated with anti-PCNA primary antibody (1:100) 
in PBS containing 1% bovine serum albumin at 4 ℃ 
overnight. The sections were washed in PBS, incubated 
with biotinylated anti-rabbit IgG for 30 min at room 
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H2O2 are shown in Figure 3. These results suggest that 
HSP promoted autophagic activity in MSCs exposed to 
H2O2 in a time-dependent manner.

HSP protects MSCs against H2O2-induced apoptosis by 
activating autophagy
We found that HSP2h achieved the greatest protective 
effect against H2O2-induced apoptosis using flow 
cytometry and Western blot (Figure 1). To determine 
the role of autophagy in MSCs, we exposed cells 
to HSP for 2 h with 3-MA or rapamycin and H2O2 
treatment for 6 h, and assessed autophagy and the 
apoptotic rate. Following 6 h of H2O2 treatment, 3-MA 
attenuated both the activation of autophagy and the 
anti-apoptotic capacity in MSCs treated with heat shock 
for 2 h, as shown by fewer AVO-positive MSCs (Figure 
2C), lower expression of LC3-Ⅱ and beclin 1 (Figure 
4B) and fewer autophagosomes in MSCs (P < 0.01; 
Figure 3). In addition, a higher apoptotic rate (Figure 
4A), increased expression of Bax and cytochrome C, 
and decreased expression of Bcl-2 (Figure 4B) were 
found compared with the control group (P < 0.01) and 

the HSP2h group (P < 0.05). In addition, rapamycin 
failed to have any effect on autophagic activity and the 
apoptotic rate in MSCs pretreated with heat shock for 2 
h. These results indicated that activation of autophagy 
by HSP for 2 h may serve as a protective mechanism 
against apoptosis in MSCs exposed to H2O2.

The p38MAPK/mTOR pathway is involved in HSP-
induced autophagy
To investigate whether HSP induced autophagy by 
activating the p38MAPK pathway, the p38MAPK 
inhibitor, SB203580, was used and the levels of 
autophagy were evaluated in HSP-MSCs exposed 
to H2O2. The results revealed that the expression of 
p38MAPK and mTOR did not significantly change in 
any of the groups. However, the phosphorylation of 
p38MAPK was upregulated and the phosphorylation 
of mTOR was downregulated in the HSP2h group 
compared with the control group (Figure 5). SB203580 
reduced autophagy in the HSP2h group, as shown by 
a decrease in the number of AVO-positive MSCs (P < 
0.05) (Figure 2C), expression of LC3-Ⅱ and beclin 1 
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(Figure 5) and autophagosome formation (Figure 3). 
Furthermore, treatment with SB203580 abrogated the 
effects of p38MAPK phosphorylation, but failed to have 
any effect on the phosphorylation of mTOR. These 
data suggested that the p38MAPK/mTOR signaling 
pathway had a stimulatory role in the effects of HSP 
on MSC autophagy under H2O2 conditions.

HSP increased the homing and survival rate of 
transplanted MSCs to I/R livers in vivo
We then investigated the survival rate and homing 
of transplanted MSCs to livers. Representative 
fluorescence microscopic images of MSCs after 
transplantation are shown in Figure 6. CM-Dil-labeled 
cells were detected only in sections that received 
transplanted MSCs. The total number of double-
positive MSCs labeled by CM-Dil and PCNA in the HSP-

MSC-treated group was higher than that in the MSC-
treated group (P < 0.05). CM-Dil-labeled MSCs also 
showed PCNA reactivity.

HSP improved the therapeutic potential of MSCs in the 
treatment of HIRI in rats
Twenty-four hours after MSC transplantation, liver 
function was assessed by serum AST and ALT levels. 
Compared with the control group, transplantation 
of MSCs improved liver function in rats. However, 
HSP-MSC-treated rats had lower AST and ALT levels 
compared with MSC-treated animals (Figure 7A; P < 
0.05). A histological score was then assigned to the 
liver and the expression of PCNA was examined 24 
h after transplantation. As expected, all I/R-induced 
livers showed sinusoidal congestion, cytoplasmic 
vacuolization and focal necrosis, which are indicative 

Figure 3  Representative electron micrographs demonstrating autophagic vacuole formation in each group. The arrows indicate the double-membrane 
vacuoles digesting organelles or cytosolic contents.
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of severe damage. When compared with the I/R 
control group and the MSC-treated group, the HSP-
MSC-treated group showed significantly improved 
histopathology and lower Suzuki scores 24 h after 
transplantation (Figure 7B). Moreover, compared with 
the I/R control group and PBS-treated rats, the livers 
from HSP-MSC-treated and MSC-treated rats showed 
a significantly increased number of PCNA-positive 
cells. Interestingly, the number of PCNA-positive cells 
in livers from HSP-MSC-treated rats was significantly 
increased compared with MSC-treated rats (Figure 7C; 
P < 0.05).

DISCUSSION
In the present study, we investigated the interaction 
between autophagy and apoptosis and the protective 
mechanism of autophagy activation by HSP in MSCs 
exposed to H2O2. Our results show that HSP for 2 h 

improves the therapeutic potential of MSCs in the 
treatment of HIRI in rats and enhances autophagy via 
the p38MAPK/mTOR pathway, which partly acted in 
the protective role of HSP on MSC apoptosis induced 
by H2O2. When administered systemically, more 
viable HSP-MSCs homed to the I/R liver compared 
with MSCs, which led to a significant improvement 
in liver function, an accelerated mitogenic response 
and alleviation of histopathological damage in the rat 
model. 

In a previous study, we found that transplanted 
MSCs attenuated HIRI by suppressing oxidative 
stress and inhibiting apoptosis in rats[3]. However, 
the I/R microenvironment is detrimental to graft 
cells and induces cell death, thereby attenuating the 
therapeutic effect of stem cell transplantation[5-7]. 
Implanted MSCs must have a long life to ensure long-
term MSC-based therapy in I/R tissues. It has been 
reported that short-term HSP can significantly improve 
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the viability of transplanted cells and thus enhance 
their tissue repairing capabilities in I/R tissue[10,11]. As 
H2O2 was previously shown to be a critical mediator 
of I/R-induced cell death[24,32], we induced a HIRI 
microenvironment by treating MSCs with H2O2 to 
investigate the function of HSP in vitro. We found 
that HSP for 2 h resulted in the most significant anti-
apoptotic effects in MSCs exposed to H2O2 compared 
to the other groups. In addition, H2O2-induced 
apoptosis of MSCs was aggravated in the HSP3h group 
(Figure 1). More importantly, exposure to HSP for 2 
h before transplantation enhanced the survival rate 
and therapeutic outcome of MSCs in vivo. These data 
suggest that HSP at 42 ℃ for 2 h was the optimal 
period for improving the effect of MSCs transplantation 
in the repair of HIRI in rats. The HSP procedure is a 
simple method to improve implanted cell survival with 
little risk and can be performed not only in the liver, 
but also other organs.

Autophagy has been implicated in many processes, 
including cell differentiation, growth, development and 
survival[33]. Autophagy can be activated by various 
stresses involved in mediating cell survival or death[25]. 
In the present study, we found that HSP ranging from 
1 to 3 h leads to a time-dependent increase in the 
action of autophagy in MSCs exposed to H2O2 (Figure 
2A and D; Figure 3). In addition to the anti-apoptotic 
effect of HSP in MSCs, these findings suggest that 
autophagy induced by HSP for 2 h results in the most 
significant anti-apoptotic effect in MSCs exposed to 
H2O2. We therefore performed HSP for 2 h to examine 

the effect of H2O2-induced apoptosis and the protective 
effect of autophagy against apoptosis in MSCs. The 
protective effect of autophagy against apoptosis has 
previously been reported in models of I/R injury[34], 
including a model using H2O2. One well-established 
view is that appropriate autophagy is essential for cell 
survival[35]. More recently, Herberg et al[20] reported 
that the SDF-1/CXCR4 axis plays a key role in 
mediating MSC survival exposed to H2O2 by activating 
autophagy. Consistent with these results, our data 
show that the autophagy inhibitor, 3-MA, abrogates 
the anti-apoptotic effect observed in the HSP2h group, 
and the autophagy inducer, rapamycin, does not 
reduce apoptosis of MSCs exposed to H2O2. These 
data suggest that moderate activation of autophagy 
mediated by HSP for 2 h may play a critical role in HSP 
to improve the survival of MSCs exposed to H2O2. It is 
known that autophagy is considered a double-edged 
sword in terms of cell survival. Moreover, we found 
that the activation of autophagy by HSP in MSCs is not 
paralleled by a corresponding increase in tolerance to 
H2O2-induced apoptosis. HSP for 1 and 2 h induced 
autophagy, which was an anti-apoptosis mechanism 
rather than a pro-apoptosis pathway in MSCs exposed 
to H2O2. Prolonged or excessive autophagy, which 
was mediated by HSP for 3 h, may digest essential 
components and lead to cell death. Thus, activation of 
autophagy may be a new mechanism in the process of 
HSP protecting MSCs from H2O2-induced apoptosis.

p38MAPK appears to have a dual role in that it has 
a positive or negative role in autophagy depending on 
conditions, cell type or type of cell stress[36-39]. In the 
present study, we assessed p38MAPK/mTOR pathway 
activation levels to determine the mechanisms 
underlying HSP-induced autophagy in MSCs exposed 
to H2O2. Interestingly, we found that HSP for 2 h 
increases p38MAPK activation and correspondingly 
alleviates mTOR activation. Moreover, p38MAPK 
inhibition abrogates autophagy induced by HSP for 2 
h, but does not significantly impair mTOR suppression. 
In addition, our results indicate that treatment with 
rapamycin does not further induce autophagy of MSCs 
compared with HSP alone in the presence of H2O2, 
indicating that HSP may be involved in the same 
mechanism as rapamycin to activate autophagy in 
MSCs. These data suggest that the p38MAPK/mTOR 
signaling pathway may be involved in the mechanism 
of HSP-induced autophagy in MSCs exposed to H2O2.

To confirm the observations in the in vitro assay, 
we investigated the protective effect of HSP on MSCs 
in vivo. We determined the extent of MSCs localized 
in I/R livers of the recipient group by counting the 
number of CM-Dil fluorescent-labeled cells. It is well 
established that PCNA, which is synthesized in the 
cell nucleus, is a nuclear antigen related to the cell 
life cycle. PCNA is expressed in the G1 and S phases, 
and performs the essential function of providing 
replicative DNA polymerases in eukaryotic cells. The 
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Figure 6  Heat shock pretreatment increases the homing and survival rate of transplanted mesenchymal stem cells in I/R livers in vivo. CM-Dil-labeled positive 
cells (red color, B1, C1), PCNA-conjugated with FITC (green color, B2, C2) and their co-localization (yellow color, B3, C3) were detected by immunofluorescence 
microscopy, respectively (magnification × 100). The total number of double-positive cells labeled by CM-Dil and PCNA in the heat shock pretreatment-mesenchymal stem 
cell (MSC)-treated group was higher than that in the MSC-treated group. The arrows indicate positive stained cells by CM-Dil, PCNA or their co-localization, respectively. 
The data represent the results of three separate experiments. 
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level of PCNA in resting cells is low, but is substantially 
increased in multiplying and transformed cells[40,41]. As 
shown in Figure 6, the HSP-MSCs group show more 
double-positive cells labeled by CM-Dil and PCNA than 
the MSCs group, which indicates that more HSP-MSCs 
subsequently underwent cell division and that HSP 
enhances the survival rate of transplanted MSCs in 
the liver. Furthermore, a marked decrease in serum 
aminotransferase levels, improved histopathology, 
lower Suzuki scores and an increased number of 
PCNA-positive cells in response to transplantation of 
HSP-MSCs were observed compared with the MSC 
group and the control group (Figure 7). These results 
indicate that HSP increases the homing and survival 
rate of transplanted MSCs, and thus improves the 
therapeutic potential of MSCs in the treatment of HIRI 
in vivo.

In summary, we found, for the first time, that HSP 
effectively enhances the homing and survival rate of 
MSCs, and thereby improves the therapeutic outcome 
of MSCs in the treatment of HIRI. The activation of 
autophagy via the p38MAPK/mTOR pathway may be 
a novel mechanism of HSP to improve the survival 
of MSCs exposed to H2O2. Activation of autophagy 
by HSP may be an attractive method of preventing 
apoptosis of MSCs and promoting their application in 
cellular therapies in regenerative medicine.

COMMENTS
Background
Mesenchymal stem cells (MSCs) exert a protective effect in hepatic ischemia-
reperfusion injury (HIRI). However, due to local hypoxia, inflammation, and 
particularly oxidative stress in the targeted tissue, the transplanted MSCs 
do not withstand the difficult microenvironment due to ischemia-reperfusion 
(I/R) injury and low cell survival reduces the therapeutic effect. Autophagy is 
a complex ‘‘self-eating’’ process and can reduce apoptosis of MSCs exposed 

to H2O2. Heat shock pretreatment (HSP) is known to protect cells from various 
environmental insults and has been shown to induce autophagy in some cell 
lines. Previous studies show that HSP can regulate mitogen-activated protein 
kinase (p38MAPK), a positive modulator of autophagy in MSCs. Therefore, 
the authors designed this study to determine the role of HSP in autophagy 
activation via the p38MAPK/mTOR pathway to protect MSCs against apoptosis 
induced by oxidative stress injury.

Research frontiers
Autophagy is an evolutionarily conserved process that occurs in all eukaryotic 
cells. Evidence suggests that under hypoxia/serum deprivation (H/SD) 
conditions, autophagy can protect MSCs by providing energy or eliminating 
reactive oxygen species and damaged organelles, and can reduce apoptosis. 
In addition, several reports show that HSP increases survival rate following cell 
transplantation in the heart. However, it is unknown whether autophagy can be 
activated by HSP or its effect and exact mechanism in MSCs.

Innovations and breakthroughs
This study shows that activation of autophagy was a protective mechanism 
of HSP in MSCs. The results show that HSP for 2 h improves the therapeutic 
potential of MSCs in the treatment of HIRI in rats and enhances autophagy via 
the p38MAPK/mTOR pathway, which mediates, at least partly, the protective 
effects of HSP on MSC apoptosis exposed to H2O2. When administered 
systemically, more viable HSP-MSCs home to the I/R liver compared with 
MSCs, which leads to a significant improvement in liver function, an accelerated 
mitogenic response and the alleviation of histopathological damage in the rat 
model. 

Applications 
This study indicates that HSP effectively enhances MSCs homing and survival 
rate, and thus improves the therapeutic outcome of MSCs in the treatment of 
HIRI in rats. The activation of autophagy via the p38MAPK/mTOR pathway 
may be a novel mechanism of HSP to enhance the survival of MSCs exposed 
to H2O2. The regulation of autophagy by HSP may be an attractive strategy 
in preventing apoptosis of MSCs, thus promoting their application in cellular 
therapies in regenerative medicine.

Terminology
HIRI is an inevitable event and occurs in a number of clinical settings, including 
liver surgery, hemorrhagic shock with subsequent fluid resuscitation, sepsis, 
hepatic artery ligation, trauma, and some vascular lesions, and especially in 

Figure 7  Heat shock pretreatment improves the therapeutic potential of mesenchymal stem cells in the treatment of hepatic ischemia-reperfusion injury 
in vivo. A: Serum aminotransferase levels were measured using an automatic analyzer following treatment; B: Histopathological analyses of livers from the normal 
control, I/R-control, mesenchymal stem cells (MSCs) and HSP-MSC groups. Liver tissue sections were stained with HE and scored according to the Suzuki Scoring 
System. Original magnification, × 100 and × 400, respectively, for each slide; C: Expression of PCNA by immunohistochemistry in liver tissues (magnification × 100 
and × 400). The arrows indicate positive stained cells by PCNA. The data represent the results of three separate experiments. bP < 0.01 compared with the normal 
control group; dP < 0.01 compared with the I/R control group; cP < 0.05 compared with the MSC group.
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liver transplantation. Autophagy is an evolutionarily conserved process that 
occurs in all eukaryotic cells and is considered a double-edged sword in relation 
to cell survival. Heat shock pretreatment involves short-term exposure to mild 
hyperthermia that can significantly enhance cell tolerance and viability.

Peer-review
The work presented here is an interesting contribution that demonstrates the 
interaction of autophagy with apoptosis on MSCs under H2O2 conditions, and 
the activation of autophagy as a protective mechanism of HSP on MSCs.
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