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Abstract
Apoptosis contributes to the development of diabetic 
nephropathy, but the mechanism by which high glu-
cose induces apoptosis is not fully understood. Apop-
tosis of tubular epithelial cells is a major feature of dia-
betic kidney disease, and hyperglycemia triggers the 
generation of free radicals and oxidant stress in tubu-
lar cells. Hyperglycemia and high glucose in vitro  also 
lead to apoptosis, a form of programmed cell death. 
High glucose similar to those seen with hyperglycemia 
in people with diabetes mellitus, lead to accelerated 
apoptosis, a form of programmed cell death character-
ized by cell shrinkage, chromatin condensation and 
DNA fragmentation, in variety of cell types, including 
renal proximal tubular epithelial cells.
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Core tip: Apoptosis contributes to the development of 
diabetic nephropathy, but the mechanism by which 
high glucose induces apoptosis is not fully understood. 
High glucose similar to those seen with hyperglycemia 
in people with diabetes mellitus, lead to accelerated 
apoptosis, a form of programmed cell death character-

ized by cell shrinkage, chromatin condensation and 
DNA fragmentation, in variety of cell types, including 
renal proximal tubular epithelial cells.
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DIABETES AND RENAL TUBULAR CELL 
APOPTOSIS
Diabetes is the leading cause of  end-stage renal failure 
in most developed countries. Although vascular and glo-
merular injuries have been considered the main features 
of  diabetic kidney diseases, tubular atrophy is also plays 
a major role in the disease[1]. Diabetes induces early signs 
of  tubular dysfunction[2]. In addition, diabetic kidneys 
are particularly prone to acute tubular necrosis in diverse 
clinical situations, such as post-cardiac surgery[3]. Hyper-
glycemia, by itself, is an independent risk factor for acute 
tubular necrosis under these conditions[3]. Hyperglycemia 
triggers the generation of  free radicals and oxidant stress 
in tubular cells[4,5]. Reactive oxygen species are considered 
to be important mediators for several biologic responses, 
including proliferation, extracellular matrix deposition 
and apoptosis[6]. Apoptosis, a form of  programmed cell 
death characterized by cell shrinkage, chromatin conden-
sation and DNA fragmentation, which, can be induced by 
various stimuli[7]. High glucose concentration promotes 
apoptosis in variety of  cell types including proximal tubu-
lar epithelial cells[5,8]. The mechanism by which hypergly-
cemia leads to apoptosis is not completely understood. 

A high glucose concentration of  30 mmol/L for 
18-48 h has been shown to induce apoptotic changes in 
HK2 cells via an increase in oxidative stress[8]. Prolonged 
exposure (1-13 d) of  proximal tubular epithelial cells to 
hyperglycemic environment has been shown to inhibit 
cell proliferation and induce growth arrest or cellular 
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apoptosis[8-12]. These cellular effects are caused by the 
activation of  a network of  intracellular signaling path-
ways and include the phosphatidylinostiol 3 kinase (PI3 
kinase)/adams kara taylor (AKT) signaling pathway[13]. 
Activation of  PI3 kinase and phosphorylation of  ser-
ine/threonine kinase AKT/protein kinase B (PKB) by 
insulin, insulin like growth factors in human embryonic 
293 (HEK-293) and HeLa cells lead to inactivation of  
tuberin by phosphorylating at Ser939, Ser1086/1088 and 
Thr1422[14,15]. In addition, phosphorylation of  tuberin at 
Ser939 and Thr1422 in response to PDGF and insulin 
stimulation in a PI3K-dependent manner has been re-
ported in NIH-3T3 and HEK-293 transfected with flag-
tuberin[16]. Moreover, high glucose has shown to phos-
phorylate tuberin in renal cells[13]. 

Tuberin, which is the product of  tumor suppressor 
gene, TSC-2[17] normally, exists in an active state physi-
cally bound to hamartin, the product of  TSC-1 gene 
to form a stable complex[18]. These two proteins func-
tion within the same mTOR signaling pathway. mTOR 
is a serine/threonine kinase involved in numerous cell 
processes linked to cell growth control, like cell cycle 
progression, transcription and translation control as well 
as nutrient uptake[19]. Loss of TSC-2 function either by 
TSC-2 or TSC-1 deficiency leads to constitutive activation 
of  mTOR and downstream signaling pathways due to 
increased levels of  GTP-bound Rheb[20-23]. Therefore tu-
berin, through its Rheb-GAP activity, is a critical negative 
regulator of  mTOR under physiological conditions[24,25]. 

mTOR phosphorylates p70S6K (p70 ribosomal protein 
S6 kinase) on Thr389, which correlates with the activa-
tion of  p70S6kinase[24-26], while over-expression of  TSC-2 
suppresses phosphorylation and activation of  p70S6K 
on residue Thr389[14-16]. In addition, several studies have 
shown that Akt/mTOR pathway is activated in diabetes 
and this activation is redox dependent in different cell 
types[27-29] including renal cells[13].

Previous reports have shown that the serine/threo-
nine kinase, mTOR to be involved in the phosphoryla-
tion/inactivation of  Bcl-2 in microtubules treated with 
apoptotic agents[30]. Bcl-2 plays a central role in monitor-
ing the genetic programs of  the organism[31,32]. Bcl2 re-
lated proteins comprise a family of  positive and negative 
regulators of  apoptosis. Bcl-2 and its close homolog Bcl-
XL are anti-apoptotic, whereas other members of  the 
Bcl-2 family, such as BAD or BAX are proapoptotic[33]. 
Bcl-2 has been shown to prevent the release of  cytochr-
moe C from mitochondria and hence activation of  cas-
pase 9, the initiator caspase[32]. Several kinases like JNK, 
p38[33] and cdc2/cyclin B kinase[34] have been noticed to 
phosphorylate/inactivate Bcl-2 as a physiological pro-
cess during normal cell cycle progression or as a defense 
mechanism following the activation by various stimuli 
and stress. Phosphorylation/inactivation of  Bcl-2 inacti-
vates the antiapoptotic effect, which triggers the release 
of  cytochrome C from the mitochondria leading to the 
activation of  downstream caspases[35-37]. 

Another important protein involved in apoptosis is 

poly (ADP-Ribose) polymerase (PARP), a DNA repair 
enzyme that is cleaved by the downstream caspases. The 
essential role of  PARP activation in diabetes induced by 
streptozotocin in adult male BALB/c mice[38]. PARP cata-
lyzes the poly(ADP-ribosyl)ation of  a variety of  nuclear 
proteins with NAD substrate. Because it is activated by 
binding to DNA ends or strand breaks, an important 
feature of  the cell in apoptosis, PARP was suggested to 
contribute to apoptosis by depleting the cell of  NAD and 
ATP[39]. When PARP is cleaved into 89- and 24-kDa frag-
ments that contain the active site and the DNA binding 
domain of  the enzyme, respectively during drug induced 
apoptosis in a variety of  cells[39]. Such cleavage essentially 
inactivates the enzyme by destroying its ability to respond 
to DNA strand breaks/fragmentation. 

Proteases play a critical role in the initiation and ex-
ecution of  apoptosis. The caspases, a family of  cysteine-
dependent, aspartate-directed proteases, are prominent 
among apoptosis-associated molecules[40]. Activation of  
caspases cleaves a variety of  intracellular polypeptides, 
including major structural elements of  the cytoplasm and 
nucleus, components of  DNA repair machinery and a 
number of  protein kinases. Caspase 3, a member of  the 
caspase family plays a central role in the execution of  the 
apoptotic program[41-43]. Oxidative stress mediated activa-
tion of  caspase 3 has been shown to be a principle me-
diator of  hyperglycemia induced proximal tubular apop-
tosis[5]. Caspase 3 is primarily responsible for the cleavage 
of  PARP during cell death[41-45]. Recent published data 
show that high glucose and hyperglycemia induced cell 
apoptosis mainly in proximal tubular cells through regula-
tion Bcl2/caspase/PARP pathway[46-49]. The sequence at 
which caspase 3 cleave PARP is very well conserved in 
the PARP protein from very distant species, indicating 
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Figure 1  Proposed model of induction of cell apoptosis and subsequent 
of cell atrophy by high glucose in kidney.



the potential importance of  PARP cleavage in apoptosis. 
Recent study from our lab showed the important role of  
tuberin/mTOR pathway in regulation of  apoptosis[50]. We 
showed that induction of  diabetes increased phosphory-
lation of  tuberin in association with mTOR activation 
(measured by p70S6K phosphorylation), inactivation of  
Bcl-2, increased cytosolic cytochrome c expression, acti-
vation of  caspase 3, and cleavage of  PARP; insulin treat-
ment prevented these changes. In addition, exposure of  
proximal tubular epithelial cells to high glucose increased 
phosphorylation of  tuberin and p70S6K, phosphoryla-
tion of  Bcl-2, expression of  cytosolic cytochrome c, 
and caspase 3 activity. Moreover, high glucose induced 
translocation of  the caspase substrate YY1 from the cy-
toplasm to the nucleus and enhanced cleavage of  PARP. 
Cells treated with the mTOR inhibitor rapamycin resulted 
in reduce the number of  apoptotic cells induced by high 
glucose[50]. This signaling cascade may play an important 
role in apoptosis induced by hyperglycemia during diabet-
ic nephropathy. In summary, tubular apoptosis is one of  
the characteristic morphologic changes in human diabetic 
kidneys and tubular atrophy appears to be a better indica-
tor of  disease progression than glomerular pathology. A 
proposed model of  induction of  cell apoptosis and sub-
sequent of  cell atrophy by high glucose in kidney show 
in Figure 1. The mechanism by which hyperglycemia 
regulates apoptosis in renal tubular cells requires further 
study to provide the optimal management for diabetic 
complications. 
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