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Abstract
Deregulated c-Myc expression is a hallmark of many 
human cancers. We have recently identified a role 
of mammalian homolog of yeast SPT-ADA-GCN5-
acetyltransferas (SAGA) complex component, SAGA-
associated factor 29 (SGF29), in regulating the c-Myc 
overexpression. Here, we discuss the molecular nature 
of SFG29 in SPT3-TAF9-GCN5-acetyltransferase 
complex, a counterpart of yeast SAGA complex, and 
the mechanism through which the elevated SGF29 
expression contribute to oncogenic potential of c-Myc 
in hepatocellularcarcinoma (HCC). We propose that 
the upstream regulation of SGF29 elicited by sex-
determining region Y (Sry) is also augmented in HCC. 
We hypothesize that c-Myc elevation driven by the 
deregulated Sry and SGF29 pathway is implicated in the 
male specific acquisition of human HCCs.
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C-MYC AND HEPATOCARCINOGENESIS
c-myc is a protooncogene of the viral homolog of 
v-myc which causes myelocytomatosis[1-4]. The 
expression of c-Myc is tightly regulated by the many 
ligand-stimulated receptor signaling under normal 
condition[5]. The deregulated expression level of c-Myc 
contributes many aspects of cancer development 
including proliferation, growth, DNA replication, protein 
synthesis, metabolism, cell adhesion, angiogenesis, 
metastasis and immune responses by regulating the 
transcription of its target genes[6-11]. Only two-fold 
increase in the expression level of c-Myc can affect cell 
cycle progression[12]. In over 50% of human cancers, 
c-Myc is deregulated and/or activated[13-18]. In Burkitt 
lymphoma, the translocation of c-myc gene to the 
immunoglobulin gene causes the overexpression of 
c-Myc[19,20]. c-Myc is also highly expressed by the gene 
amplification in many human and rodent cancers 
including hepatocellularcacinoma (HCC)[21-23]. The 
8q22-24 region including c-myc locus is involved in 
the early onset of HCC and represent the frequent 
amplification in early HCC[24,25]. In mice models, the 
expression level of c-Myc is also associated with the 
development of HCC[26-28]. In colon cancer and T cell 
leukemia, WNT and Notch signaling pathways are 
involved in the upregulation of c-Myc, respectively[29-32]. 
Conversely, suppression of c-Myc expression can 
cause tumor regression by inducing cell cycle arrest, 
differentiation, or senescence depending on the cell 
contexts in mice models. The effect of c-Myc do
wnregulation on tumor regression is permanent in 
some tumors such as lymphoma and osteosarcoma, 
whereas in hepatocellular or breast cancers this effect 
is reversible[33-37]. Thus, inhibiting the c-Myc expression 
could be a promising therapeutic strategy[38-44].

TRANSCRIPTIONAL REGULATION 
OF C-MYC VIA SPT3-TAF9-GCN5-
ACETYLTRANSFERASE
c-Myc has N-terminal transcriptional regulatory do
main consisting of Myc boxes (Mb) Ⅰ, Ⅱ, Ⅲ, Ⅳ and 
nuclear localization signal. The basic Helix-Loop-
Helix leucine-Zipper (bHLHZ) domains encompasses 
C-terminal region of c-Myc[45-50]. In the nucleus, c-Myc 
heterodimerizes with Max through their bHLHZ domains 
to bind to the E-box sequence (5’-CACGTG-3’) in the 
gene regulatory region[51-54]. The E-box sequences 
mainly exist in the promoter or intron 1 of the target 
genes. Although E-boxes are occupied with other E-box-
binding transcription factors including ChREBP, SREBP, 
HIF-1, NRF1, USF, TFE3, Clock, and Bmal to regulate 
cellular homeostasis in quiescent state, c-Myc is re

placed with these factors upon its induction by ligand 
stimulation[11]. Genome-wide screening for c-Myc-bound 
target genes using chromatin immunoprecipitation 
(ChIP)-sequencing reveal that around 6000 genes 
can be bound with c-Myc in human genome[55]. Of 
these genes, a set of 300 genes are actually inducible 
by c-Myc and are involved in nucleotide metabolism, 
ribosome biogenesis, RNA processing, and DNA 
replication[56]. These genes are also suggested to 
be induced in c-Myc-overexpressing transformed 
cells. c-Myc can recruit some cofactor complexes 
including histone acetyltransferases, ubiquitin ligases, 
and kinases, and the N-terminal region of MbI and 
MbⅡ domains are required for the transcriptional 
activation and malignant transformation activities[57-59]. 
These domains can recruit three classes of histone 
acetyltransferase (HAT) complexes including SPT3-
TAF9-GCN5-acetyltransferase (STAGA) complex[60], 
p300/CBP-associated factor (PCAF) complex[61,62] 
and the TIP60-containing complex[63] to activate the 
adjacent gene transcription. Of these three classes 
of HAT complexes, STAGA complex is thought to be 
responsible for the transactivation of c-Myc, because 
the only direct interaction between STAGA and c-Myc is 
demonstrated[64]. The Saccharomyces cerevisiae SPT-
ADA-GCN5-acetyltransferase (SAGA) complex is the 1.8 
MDa transcriptional coactivator that is highly conserved 
counterpart of STAGA complex consisting of 18 to 20 
proteins[65-71]. The detailed information about these 
complexes is derived from the studies of yeast SAGA 
complex. SAGA is essential for about 10% of whole 
gene transcription[65,66,70,72]. The SAGA complex subunits 
are classified into four functional groups. The first 
group includes GCN5 acetyltransferase, ADA2B, ADA3 
and SAGA-associated factor 29 (SGF29) regulating 
the acetylation of multiple lysine residues of histone 
H3 including H3K9, H3K14, H3K18 and H3K23[73-76]. 
The acetylation of histones is significantly implicated 
in the activation state of transcription[77-79]. Moreover, 
GCN5 can bind to the acetylation mark of histone H3 
by its bromo domain[80]. The second group constitutes 
the ubiquitin-specific protease Ubp8, SGF11, SGF73 
and SUS1 to perform the deubiquitinaion of H2B[81,82]. 
Deubiquitination of Lys123 of histone H2B eventually 
induce the phosphorylation of the C-terminal domain 
of RNA polymerase Ⅱ (Pol Ⅱ) to facilitate release 
of Pol Ⅱ into transcription elongation[83,84]. The third 
group contains TATA-binding protein (TBP)-associated 
factor (TAF) proteins that are also incorporated in the 
general transcription factor TFIID[67,68]. Since a complex 
consisting of the histone-fold domains of TAF6, TAF9, 
TAF12 and ADA1 have structural resemblance to the 
histone octamer, TAF proteins make the structural 
backbone of the SAGA complex[85]. The last group 
consists of Tra1 and SPT proteins to tether the SAGA 
complex to the specific transcriptional activators[67,86-91]. 
SPT proteins are also reported to be required for the 
recruitment of TBP to the target gene promoters[69,92-94]. 
These subunits cooperatively recruit the Pol Ⅱ and 
assemble the preinitiation complex to induce the target 
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gene transcription. Of these components, Tra1 and TAF 
proteins are essential for cellular viability in yeast[95,96]. 
Most of these components are highly conserved bet
ween yeast and human. The human orthologue of 
Tra1, Transactivation/transformation-associated protein 
(TRRAP), can interact with the MbⅠ and MbⅡ domains 
of c-Myc, which is essential for malignant transformation 
and for the hyperacetylation of histone H3 and H4[64,97-102]. 
In addition, TRRAP is implicated in the transactivation 
and transformation activity of E2F1, E2F4, p53, and 
E1A[98,103-105]. The acetyltransferase activity of human 
GCN5 is also reported to be involved in the malignant 
transformation potential of c-Myc[99]. Thus, STAGA 
complex has significant role in the c-Myc-mediated onset 
of many human malignancies.

INVOLVEMENT OF SGF29 IN 
HEPATOCARCINOGENESIS
The critical factor in transformation activity of c-Myc 
other than TRRAP and GCN5 is SGF29 which is also 
conserved between yeast and mammals. SGF29 is 
originally identified using the mass spectrometric 
analysis of yeast SAGA[81]. By directly interacting 
with ADA3, SGF29 is incorporated into the STAGA 
complex[106]. The structural domains of SGF29 are 
N-terminal coiled-coil domain and C-terminal double 
Tudor domains[107,108]. Tudor domain is originally 
cloned in Drosophila, and to date, about 30 Tudor-
containing proteins have been identified in mammals 
such as SGF29, 53BP1, Spindlin1 and UHRF1 most 
of which can bind to a methylated lysine[75,109-115]. The 
Tudor domain-containing proteins belong to so-called 
histone reader proteins that can recognize the various 
sites for post-translational histone modifications 
including methylation, acetylation, ubiquitination, 
and phosphorylation[116]. The histone readers recruit 
specific protein complexes at the site of histone 
modifications. These modifications are referred to 
as histone code to regulate chromatin organization 
and gene transcription. Many human disorders are 
associated with the misreading of histone codes[117-119]. 
The Tudor domains of SGF29 specifically recognize the 
histone H3K4me3/2 sites in a manner of preference to 
tri-methylation in yeast and human cells[75,110]. Because 
tri-methylation of histone H3K4 is prerequisite for 
subsequent acetylation of histone H3[120] and no other 
subunits of SAGA complex harbor the Tudor domain, 
only SGF29 mediates a direct connection between 
histone H3K4me3/2 and acetylation of histone H3. 
Knocking down the yeast SGF29 or its mutated form of 
it decrease the acetylation levels of histone H3 without 
disturbing the integrity of SAGA complex because of 
the loss of its ability to bind histone H3K4me3/2 and to 
load SAGA complex at target gene promoters[67,75,121]. 
The histone H3K4me3/2 is frequently observed in the 
active promoter region of genes, and the histone H3 
in the E-box sequences are also reported to be highly 
methylated[122-126]. These methylation of histone H3K4 

in E-box occur prior to the induction of acetylation 
of H3 by c-Myc expression[127]. Because c-Myc is not 
thought to directly recognize these histone markers, 
SGF29 in the STAGA complex may help to recruit 
c-Myc to the E-box in cooperation with TRRAP[106]. The 
loaded c-Myc induces the local histone acetylation 
at the site of E-box leading to histone unwinding 
and significant induction of downstream target gene 
transcription[128]. In normal organs, SGF29 is robustly 
expressed in testis and modestly in thymus, spleen 
and lung. In rat hepatomas, three out of five cell lines 
overexpress SGF29 together with c-Myc[106]. In the 
presence of c-Myc, SGF29 enhance the transcriptional 
activating activity of the promoter of a c-Myc target 
gene, ornithine decarboxylase (ODC)[129,130], in vitro. 
Conversely, the deletion of SGF29 expression causes 
the decrease in this promoter activity in rat hepatoma 
K2 cells. The downregulation of SGF29 also abrogates 
the colony forming ability of K2 cells in soft agar and 
tumorigenicity in nude mice concomitant with the 
decreased expression of c-Myc target genes such as 
ODC, lactate dehydrogenase-A (LDH-A)[131,132] and 
metastasis-associated protein 1 (MTA1)[133], whereas 
growth rate in monolayer culture is not affected. 
Moreover, the lowered expression level of SGF29 sup
presses the metastatic ability of K2 cells to lung[106]. 
Taken together, the increased SGF29 expression is 
closely associated with the oncogenic potential of c-Myc 
by controlling its target gene expression.

MALE SPECIFIC 
HEPATOCARCINOGENESIS AND SRY
How could the factor(s) cause the deregulated ex
pression of SGF29? The in silico search for the transcri
ption factor binding site in the promoter region of rat 
SGF29 gene predicts that ten transcriptional factors 
could bind this region[134]. These factors contain c-Myc, 
sex-determining region Y (Sry), AML-1a and GATA-1. 
Given that there are seven high-mobility group (HMG)-
boxes (5’-AACAAAG-3’), Sry-binding DNA element, and 
high-expression level of SGF29 in testis, Sry may be the 
most potent regulator of SGF29 overexpression. Indeed, 
SGF29 is shown to be a novel Sry target gene because 
Sry can directly bind the proximal promoter region 
of rat SGF29 gene and increase SGF29 transcript[134]. 
Sry is originally identified as the male sex-determining 
gene and is located in the male-specific region of the Y 
chromosome[135-137]. Induction of Sry expression in the 
genital ridges drives the testis differentiation and causes 
the activation of Sox9 to induce the downstream target 
genes required for male development[138-140]. Sry is not 
so highly conserved in its N-terminal region among 
mammals, but these proteins harbor the same ability 
to control the sex determination in developmental 
process in a spatiotemporally regulated manner[141-143]. 
The highly conserved HMG DNA-binding domain 
of Sry elicits the crucial function in developmental 
process[139,144,145]. In general, transcription factor have 
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of SGF29, which is integrated into STAGA complex to 
augment the c-Myc target genes’ expression. Because 
Sry is expressed only in male, this scheme may be the 
explanation of male-specific acquisition of malignancy 
and hepatocarcinogenesis.

CONCLUSION
STAGA is one of the histone acetyltransferase complex 
and crucial for malignant transformation activity of 
c-Myc. STAGA complex can bind to c-Myc, and the 
deletion of key components of STAGA suppress the 
c-Myc target genes’ transcription. Thus, uncovering 
the regulatory mechanism of STAGA complex can 
sheds light on the oncogenesis driven by c-Myc. As a 
component of STAGA, SGF29 physically interact with 
transcriptionally active histone marker H3K4me2/3. 
Whether SGF29 simultaneously associates with both 
STAGA complex and histone H3K4me2/3 is unclear, 
SGF29 might facilitate the efficient recruitment of Pol 
Ⅱ to the promoter region of c-Myc target genes. We 
have shown that SGF29 expression is deregulated in 
some rodent HCCs and is important for tumorigenic 
activity of c-Myc. Furthermore, because Sry is shown 
to be directly upregulate the SGF29 transcription and 
the amplification of Sry gene is observed in human 

the DNA-binding and transactivation domains, but 
most of Sry proteins from different species except for 
mouse and rat do not have an obvious transactivation 
domain[145]. Although many Sry-binding partner 
proteins are reported to bind to the non-conserved 
region of Sry[146-149], physiological relevance between 
these interactions and testis differentiation remains 
obscure[150,151]. Although Sry expression is limited in 
brain, thymus and testis in adulthood, some HCC 
cell lines such as K2 cells overexpress this gene[134]. 
Moreover, the copy number gain or amplification of 
this gene locus occur in 11.8% (8/68) of human male 
HCC cases, which may reflect the fact that Sry is 
deregulated in some human HCC[152]. The deletion of 
Sry expression causes the lowered SGF29 expression in 
K2 cells together with the decreased level of LDHA and 
MTA1[134]. Like SGF29, the reduced Sry expression leads 
to the diminished colony forming ability in soft agar 
and tumorigenicity in vivo. The Sry expression solely 
does not bypath the malignant phenotype when SGF29 
is deleted, which reveal that the induction of SGF29 
brought by Sry is necessary for the acquisition of c-Myc-
dependent transformation activity. Taken together, these 
findings suggest a hypothetical model of Sry and SGF29 
pathway in male specific malignancy of HCC (Figure 
1). The aberrant expression of Sry causes the elevation 

Figure 1  SAGA-associated factor 29 and Sry pathway in hepatocarcinogenesis. Deregulated c-Myc expression is a hallmark of many human cancers. The 
transcriptionally active marker of histone H3, H3K4me3/2 (red small circles depicted in left bottom of the figure), is frequently observed in the active promoter region of 
the E-box sequences in the c-Myc target genes. SGF29, a component of STAGA complex, which can interact with H3K4me2/3 induce the acetylation of histone at the 
sites of c-Myc loaded E-box leading to histone unwinding and significant induction of downstream target gene transcription. The upstream regulation of SGF29 elicited 
by male specific transcription factor, Sry, is also deregulated in HCC. Eventually, c-Myc target genes such as LDHA, ODC and MTA1 expression are induced, which 
could account for a molecular insight into the male specific acquisition of human HCC driven by the deregulated Sry and SGF29 pathway. SGF29: SAGA-associated 
factor 29; STAGA: SPT3-TAF9-GCN5-acetyltransferase; Sry: Sex-determining region Y; HCC: Hepatocellular carcinoma; LDH-A: Lactate dehydrogenase-A; ODC: 
Ornithine decarboxylase; MTA1: Metastasis-associated protein 1.
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male HCCs, Sry may be an attractive target for c-Myc-
involved HCCs as well as SGF29. Given that c-Myc is 
deregulated in many human cancer types, the Sry-
SGF29-c-Myc axis might be implicated in the onset of 
these cancers. However, not having any information 
about the expression level of SGF29 in cancers other 
than HCC, more detailed survey for this point will be 
required. On the other hand, in addition to Sry, c-Myc, 
AML-1a and GATA-1 may also bind the promoter region 
of SGF29 gene in in silico data analysis. Whether 
these factors will be the real upstream regulator(s) of 
SGF29 gene or not should be revealed. Although there 
are several protein complexes which are recruited to 
c-Myc, implications of these complexes in malignant 
transformations are unclear. Moreover, because the 
relationships between c-Myc and STAGA components 
other than SGF29, GCN5, and TRRAP are unknown, 
deubiquitination or TBP recruiting activities of STAGA 
toward c-Myc should be also clarified.
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