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Abstract
Many factors are considered to contribute to hepatitis 
B virus (HBV)-associated hepatocellular carcinoma 
(HCC), including products of HBV, HBV integration 
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and mutation, and host susceptibility. HBV X protein 
(HBx) can interfere with several signaling pathways 
associated with cell proliferation and invasion, and 
HBx C-terminal truncation has been suggested to 
impact the development of HCC. This review focuses 
on the pathological functions of HBx in HBV-induced 
hepatocarcinogenesis. As a transactivator, HBx can 
affect regulatory non-coding RNAs (ncRNAs), including 
microRNAs and long ncRNAs. HBx is also involved in 
epigenetic modification and DNA repair. HBx interacts 
with various signal-transduction pathways, such as the 
p53, Wnt, and nuclear factor-κB pathways. We conclude 
that HBx hastens the development of hepatoma.
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Core tip: The mechanisms underlying hepatitis B 
virus (HBV)-induced malignant transformation remain 
ambiguous, but research has suggested that HBV X 
(HBx) protein has a crucial function in the pathogenesis 
of hepatocellular carcinoma. This review focuses on 
the pathological functions of HBx in HBV-induced 
hepatocarcinogenesis. 
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most 
common cancer worldwide and the third most 



common cause of cancer mortality[1]. Chronic hepatitis 
B virus (HBV) infection has been demonstrated to 
be a risk factor for liver carcinogenesis, accounting 
for 55% of cases worldwide. Notably, 80% or more 
of such cases are found in the eastern Pacific region 
and sub-Saharan Africa, areas with the highest tumor 
incidence[2,3]. The mechanisms underlying HBV-
induced malignant transformation remain ambiguous, 
but previous research has suggested that HBV X (HBx) 
protein has a crucial role in the pathogenesis of HCC[4]. 
Here, we review the molecular mechanisms of HBx in 
the pathogenesis of HCC.

HBx gene and HBx protein
HBV is considered to be the smallest DNA virus 
and contains a 3.2 kb circular double-stranded viral 
DNA genome, including a long minus-strand that is 
complementary to viral mRNA sequences and a short 
plus-strand. The open reading frame (ORF) of HBx is 
465 bp long, from nucleotides 1376 to 1837, and is 
translated into a 154 amino acid (aa) protein. The HBx 
gene is located upstream of gene C and close to the 
sticky end of the viral genome, where it also overlaps 
with other genes, including viral polymerase, Pre C, 
ORF5, and ORF6. Although HBx cannot directly bind to 
the DNA helix, it can activate other protein factors to 
further bind to their or other promoters and enhancers. 
Thus, HBx can trans-regulate gene transcription[5]. 

The plus-strand HBx viral genome contains several 
transcriptional regulation element sequences, including 
gene expression basic core promoter, core upstream 
regulatory sequence, negative regulatory element, 
enhancer Ⅱ, direct repeat 1 (DR1), and DR2. Also, the 
5’ end of the HBx gene overlaps with the ORF of DNA 
polymerase P[6,7]. Thus, the X gene of HBV contains 
the longest overlapping region between structural 
and functional sequences in the viral genome. More 
importantly, because of the overlap between the 
coding region and regulation elements in the X gene 
of HBV, any DNA mutation and/or deletion can affect 
functionally both gene and transcriptional regulation.

HBx and DNA repair
Current studies indicate that DNA repair is one of the 
driving mechanisms of carcinogenesis. Accumulation of 
DNA damage causes genomic instability and eventually 
leads to mutations. Recent studies showed that the 
expression level of HBx positively correlated with that 
of 8-hydroxy-2 deoxyguanosine (8-OHdG), a key 
oxidative stress indicator that causes DNA mis-pairing. 
Meanwhile, a high level of HBx inhibited human DNA 
glycosylase a activity, which caused suppression of 
DNA repair machinery, long-term DNA damage, and 
tumorigenesis[8]. 

Jung et al[9] reported that HBx with C terminal 
truncation does not induce reactive oxygen species 
(ROS) production and has no effect on level of 8-OHdG. 

This indicated an important role for the HBx C terminal 
region in oxidative stress-induced ROS production, 
consequential mitochondrial DNA damage, and HCC 
pathogenesis. Another study also reported that HBx 
can regulate p53 expression and further depress the 
DNA repair capability[10].

HBx AND METHYLATION
Epigenetic studies allow us to understand how 
DNA methyltransferases (DNMTs) involved in DNA 
methylation can control gene expression through 
chromatin structural modification, changes in regional 
DNA accessibility, changes in DNA stability, and shifts 
in DNA-protein interactions. HBx can affect the cell 
cycle, proliferation, invasion, apoptosis, etc. of HCC 
cells by regulating DNMTs involved in DNA methylation 
of specific genes. A recent publication demonstrated 
that HBx can upregulate DNMT1 and DNMT3A 
through transactivation[11]. Wei et al[12] demonstrated 
that downregulation of miR-101 by HBx can lead to 
abnormal DNA methylation by miR-101-targeting of 
DNMT3A and promotion of HCC malignancy. A similar 
study showed that HBx upregulated DNMT1 and 
DNMT3A at both the transcriptional and translational 
levels, leading to induction of p16 (INK4A) promoter 
methylation and subsequent  inhibition of p16 
expression[13].

HBx AND NON-CODING RNAs
Non-coding RNAs (ncRNAs) compose a large group 
of RNAs transcribed from non-coding regions of the 
human genome. ncRNAs account for about 90% of 
the genome and can be categorized in two types: 
18-200 nucleotide small ncRNAs, including microRNAs 
(miRNAs), small interfering (siRNAs), Piwi-interacting 
RNAs, small nuclear RNAs, small nucleolar RNAs, etc.; 
200 nucleotide to 100 kb long ncRNAs (lncRNAs), 
including mRNA-like ncRNAs, long no-poly A tail 
ncRNAs, etc.[14,15]. Most of these RNAs have been rarely 
studied, and although their functions remain entirely 
unclear, they have a variety of important biological 
functions.

MiRNAs play a critical role in the control of 
gene expression and signal transduction in HCC 
carcinogenesis. Several in vitro studies demonstrated 
that HBx can promote early stage HCC progression 
by inducing high levels of miR-21 expression, which 
inhibiteds programmed cell death 4 in cancer cells[16,17]. 
Upregulated miR-21 and miR-222 also can directly 
target tumor suppressor p27 and Kipl, a key regulator 
of the cell cycle, to contribute to cancer progression[18]. 
In a previous study, Bandopadhyay et al[19] found that 
miR-21 and miR-222 were downregulated when HepG2 
cells were transfected with HBx and HBV plasmid DNA 
or HepG2.2.15 cells were infected with HBV. This result 
was confirmed in clinical plasma samples from HCC 
patients. Interestingly, similar downregulated effects 
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also were observed in transfected HepG2 cells and 
patients’ plasma for miR-145, whereas miR-145 was 
upregulated in an infected HepG2.2.15 cell line. These 
results suggested that HBx can control multiple miRNAs 
in different manners to promote HCC progression[19]. 
Additionally, an animal model showed that HBx inhibited 
the tumor suppressor p53 to control the expression 
of miR-148a and to increase the expression of hema
topoietic pre-B cell leukemia transcription factor-
interacting protein. This resulted in activation of Akt, 
extracellular-related kinase, and mammalian target of 
rapamycin signaling pathways to enhance tumor cell 
growth, invasion, and metastasis[20]. A recent study 
also showed that HBx can downregulate miR-192, 
suggesting that HBx may be anti-apoptotic in HCC[21].

lncRNAs play crucial roles in human cancers. 
It has been reported that the lncRNA highly up-
regulated in liver cancer (HULC) was dramatically 
upregulated in HCC[22]. Du et al[23] reported that 
HBx can increase expression of HULC via the cAMP-
response element binding protein activated promoter 
of lncRNA HULC. Furthermore, downregulation of P18, 
a gene downstream of HULC, can promote liver cell 
proliferation. Another lncRNA (termed lncRNA-Dreh) 
can be downregulated by HBx, which enhanced HCC 
cell invasion and migration in vitro[24]. It is known that 
deregulation of lncRNA is one of the key factors in HCC 
tumor initiation and progression.

HBx MUTANTS AND TUMOR IMITATION
HBV infection-induced HCC usually occurs within 
10-30 years after the initial HBV infection. During this 
period, mutations of the HBV genome accumulate. 
Two dominant types of HBx mutations can be detected 
in chronic hepatitis: type Ⅰ are single nucleotide 
mutations at multiple sites, and type Ⅱ are C-terminal 
truncations that cause relatively higher levels of protein 
accumulation in the tumor region. Liver cells with 
these two types of mutations may have proliferative 
advantage in colony formation. 

Previous studies have shown that HBV genome 
integration is random, and there are no specific 
integration sites or rules. HBx and HBV core gene 
(HBc) mutations and deletions commonly occur in 
viral genome integration[25-28]. A polymerase chain 
reaction DNA amplification study of 45 tumor samples 
and sequencing results of 19 samples showed a high 
frequency of HBx mutation in HCC. Those mutations 
were mostly located close to the carboxyl terminus. 
It is believed that a strong correlation exists between 
HBx mutation and liver cell cancer transformation[29]. 
Similarly, we determined that the hot spot of HBx 
mutation is highly regional. Blood tests of HBx 
mutations from patients in Europe and Africa showed a 
higher incidence of mutation at 130 and 131 aa of HBx 
for mild hepatitis patients and accumulation of HBx 
C-terminal truncation in HCC peri-tumor tissues[30-34]. 
In contrast, a study of 153 HCC patients from Vietnam 

showed more 130 and 131 aa mutations in tumor 
tissue, with only four out of 48 samples having HBx 
C-terminal truncation accumulation[35]. A report from 
Hong Kong claimed that more than 54 mutations were 
detected in 95.2% of tissue samples and 95.3% of 
blood samples from 113 patients, where there was at 
least one mutation in most of the samples[36]. There 
were 12 mutation sites in tissue samples and nine 
mutation sites in blood samples, which suggested a 
mutation-driven pathogenesis for HCC. Another study 
demonstrated that mutations were complicated and 
changeable in both HCC and peri-carcinoma liver tissue 
(PCLT). C-terminal truncation is more frequently found 
in HCC than in benign liver tissues. However, there is 
no single site mutation of a nucleic acid or amino acid 
that results in a distribution discrepancy between HCC 
and PCLT[37]. The reports described above indicated a 
regional distribution of HBx mutants, which reflects the 
high degree of complexity of HBV caused HCC.

The results of a comparative study between HBx 
C-terminal truncation and full-length HBx transfection 
indicated that each mutation plays a different role in 
cancer cell biology[38,39]. Specifically, overexpression 
of HBx 20 aa and 40 aa C-terminal deletion mutants 
can enhance cell growth, colony formation, tumor 
volume, and G1 to S phase cell cycle transition. In 
contrast, an HBx 30 aa C-terminal deletion mutant can 
inhibit cell proliferation. These results suggested that 
125-134 aa of HBx is important for cell proliferation. 
More recent studies showed that HBx spontaneous 
deletion mutations were typically located in the same 
region. Liu et al[40] and Wang et al[41] reported that the 
HBx 127 mutant contributed to tumor cell proliferation 
metastasis more than wild-type HBx by promoting 
cell growth through a positive feedback loop involving 
5-lipoxygenase, fatty acid synthase, and miR-215. This 
finding is consistent with a report from Fu et al[42] that 
concluded that the HBx-d382 deletion mutant (128-145 
aa) enhanced cell proliferation. The dual mutations 
K130M/V131I strengthened the capability of HBx, as 
they upregulated the expression and transcriptional 
activity of hypoxia-inducible factor 1-alpha (HIF-1α). 
The C-terminal truncation and deletion mutations, 
however, weakened the ability of HBx to upregulate 
HIF-1α. Furthermore, the C-terminus was found to be 
essential for HBx stability and transactivation. A positive 
correlation was found between the HBx mutants and 
HIF-1α expression in clinical HCC samples[43]. In brief, 
it is believed that C-terminal truncation and deletion 
promoted tumor malignancy. However, the detailed 
mechanism needs to be investigated further.

HBx AND THE P53 SIGNALING 
PATHWAY
Mutations in the tumor suppressor gene p53 are the 
most common in all types of cancers. p53 disorder 
plays an important role in the tumorigenesis of HCC. 
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activated NF-κB binding to the calpain small subunit 1 
(Capn4) promoter and, thus, upregulated expression 
of Capn4 in HCC cell. This HBx-induced Capn4 
upregulation can be significantly blocked by specific 
siRNA knockdown of NF-κB or pyrrolidinedithiocarbamic 
acid (PDTC). Studies from other groups also showed 
that HBx increased the expression of NF-κB target 
genes, including vascular endothelial growth factor 
(VEGF), matrix metalloproteinase 2 (MMP2), MMP9, 
and MMP14. In addition, PDTC inhibited HBx stimulation 
of NF-κB signaling, which led to a decrease in the 
expression of VEGF, MMP9, and MMP14 but not 
MMP2. PDTC also showed an anti-angiogenic effect 
in HepG2 tumor xenograft nude mice. These results 
demonstrated that HBx promoted tumor cell invasion, 
angiogenesis, and metastasis by activating NF-κB 
signaling and upregulating downstream target genes 
VEGF and MMPs[53]. HBx also can associate with 
peroxidase to enhance the level of ROS. This led to 
greater activation of NF-κB and the formation of a 
positive feedback loop in cancer cells. Peroxidase-
associated HBx upregulated MMPs and downregulated 
E-cadherin to enhance tumor cell invasion[54]. 

HBx AND THE Wnt SIGNALING 
PATHWAY
Highly preserved Wnt signaling has important 
functions in embryo development, and abnormal Wnt 
signaling can stimulate tumorigenesis. Wnt signaling 
molecules can be divided in two categories: (1) 
canonical Wnt/β-catenin signaling molecules, including 
Wnt-1, Wnt-3a, Wnt-8a Wnt-8b, etc.[55]; and (2) non-
canonical Wnt signaling molecules, including Wnt-4, 
Wnt5a, Wnt-11[56], as well as Wnt/Ca2+, Wnt/planar 
cell polarity, and others[57,58]. 

Many studies have shown that HBx competitively 
binds to adenomatous polyposis coli to disassociate 
β-catenin from its degradation complex, resulting 
in nuclear β-catenin accumulation and activation of 
Wnt signaling to induce tumor transformation[59]. 
In addition, overexpression of HBx with Wnt-1 can 
activate Wnt/β-catenin signaling in Huh7 cells by 
stabilizing cytoplasmic β-catenin. Furthermore, 
stabilization of β-catenin by HBx can be achieved by 
inhibiting glycogen synthase kinase 3 activity via the 
activation of Src kinase[60].

Liu et al[61], Geng et al[62] and Lin et al[63] found that 
the Wnt5a gene is regulated by HBx mutants through 
gene expression library screening. Further research 
showed that Wnt-5a may suppress tumor progression 
in HBV-induced HCC[61-63]. An immunohistochemical 
study of 114 HCC samples demonstrated that Wnt-5a 
as well as its receptor, receptor tyrosine kinase-
like orphan receptor 2 (ROR2), were downregulated 
in 80.7% (92/114) of samples. The expression of 
Wnt-5a was negatively correlated with β-catenin 
expression and positively correlated with E-cadherin 

Many studies have indicated a complex transactivation 
between HBx and p53, where HBx directly inhibits p53 
activity by binding to its C-terminus[44]. In addition, 
overexpression of the p53 target gene murine double 
minute 2 can induce degradation of HBx in HCC[45]. 
Kew et al[46] investigated the effect of wild-type and 
mutant HBx on p53 and found that HBx mutants, but 
not wild-type HBx, can inhibit p53 expression and its 
downstream signaling. 

Recent studies suggested that overexpression of a 
HBx C-terminal mutant in HHT4 cells, a normal liver 
cell line, significantly increased the colony forming 
efficiency (CFE), whereas its corresponding wild-type 
allele CNT significantly decreased the CFE in HHT4 
cells. Meanwhile, the p53-249Ser mutant interacted 
with HBx mutants to regulate cell proliferation and 
mitochondrial stability[47]. A report from another group 
showed that the HBx gene overlapped with the HBV 
core promoter region. Thus, core promoter mutations 
can also lead to HBx mutants that further upregulate 
S-phase kinase-associated protein 2 (SKP2). SKP2 
can downregulate p53 though ubiquitination and 
consequentially promote tumorigenesis[48].  

HBx AND THE NUCLEAR FACTOR-kB 
SIGNALING PATHWAY 
Nuclear factor (NF)-κB is one of the driving transcrip
tional factors in cancer biology and participates in 
cross talk with multiple pathways to control tumor 
initiation, development, invasion, and metastasis. 
Previous studies showed that HBx interacts with NF-κB 
to increase the expression of metastasis-associated 
protein 1 (MTA1). MTA1 is a major chromatin modu
lator that plays important roles in inflammation and 
tumor initiation. NF-κB cross talk with Notch signaling 
has also been demonstrated, and Notch 1 signaling 
can be blocked by HBx transfection in the normal 
liver cell line L02[49]. Lim et al[50] demonstrated that 
endogenous P22-FLIP, a cleavage product of c-FLIPL, 
can interact with HBx to activate NF-κB signaling. 
Further investigation showed that P22-FLIP, HBx, and 
NEMO, a regulatory subunit of IκB kinase (IKK), also 
known as IKKγ, can form a trimer complex to activate 
NF-κB signaling and promote tumor formation.

Lee et al[51] showed that NF-κB is highly associated 
with HBx131, HBx130, HBx5, HBx94, and HBx38 
mutants as well as the HBx130-HBx131 double muta
tion and the HBx5-HBx130-HBx131 triple mutation. 
These double and triple mutations increased HCC 
incidence to 3.75 and 5.34 times the normal risk level, 
respectively. HBx5 mutants and double mutants showed 
much higher NF-κB activity than wild-type and triple-
mutation HBx. Notably, triple-mutation HBx cannot 
enhance NF-κB activity.  

Many studies have demonstrated that HBx can 
promote HCC cell invasion and metastasis through 
NF-κB signaling. Zhang et al[52] reported that HBx 
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expression. Thus, the expression of Wnt-5a and ROR2 
is associated with patient prognosis. Huh7 HCC cells 
transfected with Wnt-5a have a decreased proliferation 
rate, and Wnt-5a siRNA knockdown can increase 
cell proliferation[64]. These findings suggested that 
HBx mutants can control tumor growth via signaling 
through the Wnt pathway.

CONCLUSION
HBx is the only expressed HBV viral protein in 
malignant HCC and has been shown to be a key 
molecule in HCC carcinogenesis. However, the 
molecular mechanism of HBx-induced HCC progression 
remains unclear. HBx is maintained as an important 
player in HCC tumorigenesis. HBx functions in HCC 
through its nuclear translocation, protein-protein 
interactions, regulation of transcription factors, 
induction of chromosome instability, and nuclear 
localized HBx-involved signal transduction, thereby 
controlling cancer cell proliferation, transformation, 
invasion, and metastasis. After studying HBx mutants 
and their associated molecular pathways, it is clear 
that these mutants have different biological functions 
and activities compared to wild-type HBx and that 
they may play important regulatory roles in the 
pathogenesis of HCC.
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