
Abstract
Data from genome wide association studies and 
geoepidemiological studies established that a com­
bination of genetic predisposition and environmental 
stimulation is required for the loss of tolerance in 
primary biliary cholangitis (PBC). The serologic hallmark 
of PBC are the presence of high titer anti-mitochondrial 
autoantibodies (AMA) that recognize the lipoyl domain 
of the mitochondrial pyruvate dehydrogenase E2 
(PDC-E2) subunit. Extensive efforts have been directed 
to investigate the molecular basis of AMA. Recently, 
experimental data has pointed to the thesis that the 
breaking of tolerance to PDC-E2 is a pivotal event in 
the initial etiology of PBC, including environmental 
xenobiotics including those commonly found in cos­
metics and food additives, suggesting that chemical 
modification of the PDC-E2 epitope may render its 
vulnerable to become a neo-antigen and trigger an 
immune response in genetically susceptible hosts. 
Here, we will discuss the natural history, genetics and 
immunobiology of PBC and structural constraints of 
PDC-E2 in AMA recognition which makes it vulnerable to 
chemical modification. 
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Core tip: Environment influences immune functions. 
In this paper, we examine how environmental 
chemicals can trigger autoimmunity in an organ 
specific autoimmune disease, primary biliary cholangitis 
(PBC). PBC is liver specific autoimmune disease 
characterized by high titer of anti-mitochondrial 
autoantibodies directed against the E2 subunit of 
pyruvate dehydrogenase (PDC-E2) lipoyl domain. Here, 
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we present experimental evidence from quantitative 
structure-activity relationship and animal models that 
xenobiotic modification of the PDC-E2 lipoyl domain 
could lead to loss of self-tolerance and is a pivotal 
event in the initial etiology of PBC in genetically 
susceptible hosts. 
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INTRODUCTION
The loss of tolerance is a central theme in autoimmunity 
and genetics and geoepidemiological studies have 
reflected that environmental factors contribute to this 
breach of tolerance[1-10]. This thesis is exemplified in 
primary biliary cholangitis (PBC), a prototype organ 
specific autoimmune disease[11]. The mechanism of 
how immunological tolerance is broken in PBC is still 
enigmatic[12]. Importantly, the autoantigen recognized 
by AMA was first cloned in 1987 and subsequently 
identified as the E2 subunit of pyruvate dehydrogenase 
(PDC-E2)[13,14]. The epitopes of AMA have been mapped 
to the highly conserved lipoic acid binding domain of the 
2-oxo acid dehydrogenases including PDC-E2, branched 
chain 2-oxo-acid dehydrogenases (BCOADC-E2), 
oxoglutarate dehydrogenase (OGDC-E2) and the E3 
binding protein (E3BP)[13-16]. Extensive efforts in defining 
the target mitochondrial autoantigens, T and B cell 
epitopes, the innate and adaptive immune responses, 
the immunobiology of the biliary epithelium, and the 
pathology of biliary duct epithelial cell destruction have 
greatly advanced our knowledge of the molecular 
mechanisms in tissue damage[13,17-29]. This focus of 
this review is to provide a comprehensive view of 
our current understanding on the natural history, 
genetics and immunobiology of PBC with emphasis on 
experimental data that illustrate the loss of tolerance to 
PDC-E2 is a pivotal event in the etiology of PBC[25,30-32]. 

NATURAL HISTORY AND GENETICS OF 
PRIMARY BILIARY CHOLANGITIS
Primary biliary cholangitis (PBC), previously known as 
primary biliary cirrhosis[33] is a female predominant liver-
specific autoimmune disease with middle-age onset. It 
has an average incidence of 2.7 cases per 100000[34], 
but epidemiological studies suggest that the incidence of 
PBC is increasing[35]. There is variation in the prevalence 
of disease between geographic locations[35,36]; PBC is 
more prevalent in Northern Europe, North America and 
Latin America and less common in Eastern Asia, Africa, 
and Australia[37,38]. Clinically, PBC is characterized by 

the presence of high titer AMA and immune-mediated 
progressive destruction of biliary epithelial cells (BECs) 
within small bile ducts, eventually leading to cholestasis, 
fibrosis, and, potentially, liver cirrhosis[12]. Approximately 
50%-60% of patients are asymptomatic at diagnosis. 
The disease has a long latency period[39,40], followed by 
the development of symptoms that may include fatigue, 
pruritus, cutaneous pigmentation and, later, bleeding 
varices, edema, or ascites[41]. The prognosis of patients 
diagnosed with PBC has improved significantly over the 
past two decades, perhaps because patients are being 
diagnosed earlier. PBC is a “model” autoimmune disease 
with significant literature on genetics, environment and 
animal models[17,25,33,42-51].

The female predominance among individuals 
with PBC suggests that there are significant genetic 
components in this disease, supported by the high 
frequency of X chromosome monosomy in patients 
with PBC[52,53] and Y chromosome loss in male 
patients with PBC[54]. Reports from recent genetic 
studies demonstrate that in addition to the MHC, 
several loci are associated with susceptibility to PBC, 
including interleukin (IL) 12-related pathways, SPIB, 
IRF5-TNPO3, and 17q12-2. The candidate genes 
identified by genome wide association studies include 
STAT4, DENND1B, CD80, IL7R, CXCR5, TNFRSF1A, 
CLEC16A, and NFKB1[55-58]. Data on familial clustering 
of PBC demonstrates that first-degree relatives of 
PBC patients have an increased risk of developing 
disease and most often these clusters involve mother-
daughter pairs, consistent with the female preponderance 
of the disease[59-61]. Furthermore, twin studies have 
demonstrated a high concordance for PBC in monozy
gotic twins[62]. These studies provide evidence for a 
genetic basis underlying PBC. Genome analysis of 
DNA methylation, copy number variation and gene 
expression of monozygotic twins and sisters discordant 
for PBC have also indicated a contribution of epigenetic 
events[63]. However, environmental factors also play a 
role in the development of the disease[64], and multiple 
environmental components including chemicals[30,65-67] 
and bacteria[68-71] have been implicated.

IMMUNOLOGICAL FEATURES OF 
PRIMARY BILIARY CHOLANGITIS
AMA are present in over 95% of patients with PBC and 
are diagnostic of PBC[23]. The autoantigens of AMA have 
been identified as the E2 subunits of the 2-oxo-acid 
dehydrogenase complexes (2OADC-E2), including the 
E2 subunits of the pyruvate dehydrogenase complex 
(PDC-E2), branched chain 2-oxo acid dehydroge
nase complex (BCOADC-E2) and 2-oxo-glutarate 
dehydrogenase complex (OGDC-E2) within the inner 
mitochondrial matrix[13,15,16,72]. The E2 enzymes have a 
common structure consisting of an N-terminal domain 
containing a single or multiple lipoyl groups. Previous 
studies have demonstrated that the dominant epitopes 
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recognized by AMA are all within the lipoyl domains of 
these target antigens[73]. 

In patients with PBC, Both CD4+ and CD8+ T cells 
are present in portal tracts, around damaged bile 
ducts, strongly suggesting the participation of cellular 
immune mechanisms in biliary damage[12]. PDC-E2 
autoreactive CD4 T cells are present in peripheral 
blood and liver; there is a specific 100-150 fold in
crease in the number of PDC-E2-specific CD4 T cells 
in the hilar lymph nodes and liver versus peripheral 
blood in patients with PBC[27]. The PDC-E2 autoepitope 
for both CD4 and HLA class Ⅰ restricted CD8 T cells, 
overlaps with the B cell epitope, which spans the 
lipoyl domain[74]. Similar to CD4 autoreactive T cells, 
there is a 10-fold higher frequency of PDC-E2 specific 
CD8 T cells within the liver versus peripheral blood. 
Moreover, the precursor frequency of PDC-E2-specific 
autoreactive CD8 T cells is significantly higher in early 
rather than late stage of the disease[74]. Recent reports 
also substantiate the significance of innate immunity, 
including monocytes, toll like receptors and natural 
killer cells in the development of PBC[75,76]. The multi-
lineage response to the PDC-E2, the immunodominant 
mitochondrial autoantigen in PBC, points to the thesis 
that loss of tolerance to PDC-E2 is the initiating event 
that leads to the subsequent development of clinical 
biliary pathology[12]. 

MOLECULAR MIMICRY OF LIPOIC ACID 
AND XENOBIOTICS IN PBC
Epidemiological and mechanistic studies on auto
immunity have strongly demonstrated the etiologic 

contribution of environment[77], likely through molecular 
mimicry. Although microorganisms are possible 
candidates for the induction of autoimmune disease 
by molecular mimicry[78-84], there are other potential 
environmental factors, including chemical compounds 
foreign to a living organism. Examples include drugs, 
pesticides or other organic molecules that have the 
potential to modify host proteins and render them more 
immunogenic[77]. 

Halothane hepatitis is a xenobiotic-induced liver 
disease that occurs when susceptible individuals 
develop an immune response against trifluoroacetylated 
(TFA)-adduct protein. Exposure to TFA-conjugated 
self proteins results in antibody responses against 
such TFA-self proteins. Interestingly, anti-TFA also 
recognizes the lipoylated domain of PDC-E2[14,85]. The 
immunological cross-reactivity of anti-TFA antibodies 
with the immunodominant epitope in PBC prompted us 
to examine in depth molecular mimicry. 

Site-directed mutagenesis of the PDC-E2 lipoyl 
domain demonstrated that AMA recognition is con
strained by respective amino acid sequence in epitope 
(Figure 1, Table 1)[86,87]. The uniqueness of epitope 
specificity of AMA within the lipoyl domains of the 
2OADC-E2 enzymes in patients with PBC[87-89] suggests 
that the lipoic acid domain is likely a lynchpin to the 
etiology of PBC. High resolution structural analysis and 
modeling studies of the PDC-E2 lipoyl domains from 
both prokaryotes and eukaryotes demonstrates that 
lipoic acid is covalently attached to the ε group of lysine 
(K) via an amide bond and is prominently displayed 
on the outer surface of PDC-E2. More importantly, 
the ability of lipoic acid to rotate by means of its 
“swinging arms” with respect to the bulk of the entire 
PDC-E2 molecule allows accessibility of its dithiolane 
ring for reduction acylation[90,91]. Although the 
change in conformation and the existence of multiple 
conformations of the lipoyl domain during reductive 
acetylation are important in catalyzing acyl transfer[90], 
it also renders PDC-E2 susceptible to aberrant chemical 
modifications. 

Accumulating evidence implicates that the loss of 
tolerance to PDC-E2 is pivotal in the initiation event of 
PBC and that AMA specificities reflect aspects of the 
induction phase of the disease[11,25,31,39]. Indeed the role 
of environment is well-known in many autoimmune 
diseases[30,92-98].

We hypothesized that xenobiotic modification of 
the native lipoyl moiety of the major mitochondrial 
autoantigen PDC-E2, may lead to loss of self-to
lerance and eventually biliary lesions (Figure 2)[99]. 
This thesis is based on the findings of (1) readily 
detectable levels of immunoreactivity of PBC sera 
against comprehensive panels of protein microarrays, 
which mimic the inner lipoyl domain of PDC-E2; 
and (2) subsequent quantitative structure-activity 
relationships. Data from quantitative structure-activity 
relationship (QSAR) analysis demonstrated that AMA-
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Figure 1  Schematic representation of the pyruvate dehydrogenase E2 
lipoyl domain. Including the 19 residues (LLAEI-ETDKA-TIGFE-VQEE), lipoic 
acid is covalently attached to the ε group of lysine (K) via an amide bond.
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positive PBC sera, but not controls, reacted to a 
number of xenobiotic-modified PDC-E2 structures[66,100] 
with a particularly striking level of reactivity against 
6,8-bis(acetylthio) octanoic acid (SAc)-PDC-E2[101]. 
Recent data further suggest that chemical modification 
of PDC-E2 lipoic acid, via an electrophilic attack on the 
lipoic acid disulfide bond, triggers loss of tolerance to 
PDC-E2[30,101,102]. Such modifications could substantially 
affect the conformation of the PDC-E2 lipoyl domain 
and its immunogenicity in genetically susceptible 
hosts. Importantly, one of these chemical compounds 
is 2-octynoic acid (2-OA), a chemical commonly found 
in cosmetics and food additives[66].

XENOBIOTICS INDUCED MODELS OF 
PBC AND THE CONTRIBUTIONS OF 
EFFECTOR PATHWAYS IN AUTOIMMUNE 
CHOLANGITIS 
Interestingly, immunization of C57BL/6 mice and 
NOD.1101 (NOD.B6 Idd10 Idd18r2) mice with 2-OA 
coupled to BSA, but not BSA alone, induced high titer 
AMAs, portal inflammation, and autoimmune cholangitis 
similar to human PBC[103,104]. These models provide a 
persuasive argument in favor of an environmental origin 
for human PBC[81,103,105,106]. We further investigated 
the role of IL-12-Th1/IL-23-Th17 pathways in the 
development of autoimmune cholangitis in this PBC 
model by using specific cytokine knockout mice (Table 
2)[18]. In particular, we constructed several unique 
gene-deleted mice, including C57BL/6 mice deleted 
in both Th1 and Th17 (IL-12p40), Th1 cytokine (IL-
12p35, IFN-γ) or Th17 cytokine (IL-23p19, IL-17A, IL-

Figure 2  Xenobiotic modification of the native lipoyl moiety of the major 
mitochondrial autoantigen pyruvate dehydrogenase E2, lead to the loss of 
self-tolerance and eventually biliary lesions in primary biliary cholangitis. 
PDC-E2: Pyruvate dehydrogenase E2; AMA: Anti-mitochondrial autoantibody.

Table 1  Serological reactivity of primary biliary cholangitis sera to the recombinant proteins of wild type pyruvate dehydrogenase 
E2 lipoyl domain, single amino acid mutants double, triple and quadruple mutants1

Mutant No. Amino acid sequence PBC sera2 Purified PBC IgG3

IgG IgM

PDC-E2 wild type LLAEIETDKATIGFEVQEE 1 1 1
Mutant 3 LLAEAETDKATIGFEVQEE 0.476 ± 0.029 0.504 ± 0.043 0.408 ± 0.052
Mutant 9 LLAEIETDKATAGFEVQEE 0.706 ± 0.029 0.781 ± 0.054 0.552 ± 0.065
Mutant 12 LLAEIETDKATIGFAVQEE 0.659 ± 0.034 0.768 ± 0.096 0.482 ± 0.074
Double amino acid 
substitution

Mutant 1 ALAEIETDKATAGFEVQEE 0.334 ± 0.029 0.253 ± 0.034 0.075 ± 0.023
Mutant 2 ALAEIETDKATIGFAVQEE 0.461 ± 0.031 0.435 ± 0.045 0.663 ± 0.069
Mutant 3 LLAEAETDKATAGFEVQEE 0.066 ± 0.009 0.093 ± 0.016 0.024 ± 0.007
Mutant 4 LLAEAETDKATIGFAVQEE 0.111 ± 0.017 0.095 ± 0.016 0.043 ± 0.016

Triple amino acid 
substitution

Mutant 1 ALAEAETDKATAGFEVQEE 0.017 ± 0.004 0.044 ± 0.009 0.038 ± 0.017
Mutant 2 LLAEAETDKATAGFAVQEE 0.019 ± 0.003 0.054 ± 0.012 0.050 ± 0.007

Quadruple amino acid substitution ALAEAETDKATAGFAVQEE 0.024 ± 0.005 0.066 ± 0.012 0.075 ± 0.031

116 single alanine substitution mutants along a peptide that constitutes the beta sheet of the PDC-E2 inner lipoyl domain, 4 double aa substitution mutants, 
3 triple and one quadruple mutants were also constructed. Purified proteins from all these constructs were analyzed for Ig reactivity with PBC sera. 3/16 of 
the single amino acid mutants have much reduced antibody binding are shown. Other alanine substitutions have Ig reactivity similar to wild type PDC-E2. 
Control sera samples include (lupus, n = 30, Crohn’s disease, n = 20, PSC, n = 28, scleroderma n = 20) did not react; 2Relative ratio of serological IgG and 
IgM reactivity compared to wild type determined by ELISA at 1:4000 sera dilution (n = 60); 3Relative ratio of purified IgG reactivity to wild type determined 
by ELISA (n = 10). PBC: Primary biliary cholangitis. 
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17F or IL-22). We immunized each of these cytokine-
deficient mice with 2-OA-BSA and followed the natural 
history of their immunopathology. Our data indicate 
that while both IL-12/Th1 and IL-23/Th17 are involved 
in cholangitis, it is the IL-12/Th1 signaling pathway that 
elicits liver pathology in this xenobiotic induction disease 
model of PBC. In fact, deletion of IFN-γ prevents disease 
and suppresses autoantibodies. Importantly, deletion 
of the Th17 cytokines IL-17A and IL-22, but not IL-17F, 
reduces biliary damage; IL-17A-knockout mice have 
also reduced levels of AMAs. We further demonstrated 
that the production of IFN-γ is significantly decreased 
in livers of IL-23p19-/-, IL-17A-/- and IL-22-/- mice 
compared with controls. However, the ability of T cells 
to produce IFN-γ was not affected in Th17 cytokine-
deficient mice. Thus, in the 2-OA-BSA immunized mice 
model: (1) Both IL-12/Th1 and IL-23/Th17 are involved 
in cholangitis; (2) IL-12/Th1 signaling pathway is critical 
in eliciting liver pathology; and (3) IL-23/Th17 pathway 
is involved in perpetuating the IL-12/IFN-γ mediated 
pathology. We also investigated the role of B cells in 
the pathogenesis of PBC by depleting B cells using two 
different monoclonal antibodies, CD20 and CD79. B cell 
depletion led to exacerbated cholangitis, with higher T 
cell infiltrates and inflammatory cytokines, indicating a 
protective role of B cells in PBC[107]. 

2OA-BSA immunized C57BL/6 mice were also 
studied for the potential of CTLA4-based therapy on 
cholangitis by using CTLA4-Ig. CTLA4-Ig is a soluble 
recombinant human fusion protein comprised of 
the extracellular domain of human CTLA4 linked 
to a modified portion of the Fc domain of human 
IgG[108,109]. In mice treated begun one day before 2-OA-
BSA immunization, CTLA4-Ig completely inhibits the 
manifestations of cholangitis, including AMA production, 
intra-hepatic T cell infiltrates and bile duct damage. 
However, treatment with CTLA-4 Ig initiated after the 
development of autoimmune cholangitis in 2OA-BSA 
immunized mice, reduced intra-hepatic T cell infiltrates 

and biliary cell damage, although AMA levels were not 
altered[110].

We also investigated the role of innate immunity 
and natural killer T (NKT) cells on modulating disease 
activity in this xenobiotic-induced mouse model. Briefly, 
we immunized mice with and without the addition 
of α-galactosylceramide (α-GalCer), an invariant 
natural killer T cell activator. 2-OA-BSA-immunized 
mice exposed to α-GalCer developed a profound 
exacerbation of their autoimmune cholangitis, including 
significant increases in CD8+ T cell infiltrates, portal 
inflammation, granuloma formation, and bile duct 
damage. Moreover, these mice produced increased 
levels of AMAs and evidence of fibrosis[111]. CD4 and 
CD8 knock-out mice immunized with either 2-OA-
BSA/PBS or 2-OA-BSA/α-GalCer develop AMAs and 
portal infiltrates. However, 2-OA-BSA/α-GalCer treated 
mice also develop fibrosis. Indeed, our data suggest 
that innate immunity is critical for immunopathology 
and that the pathology is exacerbated in the presence 
of α-GalCer[50]. More recently, we also reported that 
2-OA-BSA-immunized mice administered with a Th2-
biasing agonist (2s,3s,4r)-1-O-(a-D-galactopyranosyl)-
N-tetracosanoyl-2-amino-1,3,4-nonanetriol (OCH), 
developed portal inflammation and hepatic fibrosis 
similar to mice treated with α-GalCer[75]. However, 
inflammatory portal cell infiltrates and AMA responses 
are reduced in iNKT cell deficient CD1d knockout 
mice treated with OCH. These results suggest that 
activation iNKT cells can occur via overlapping and/or 
promiscuous pathways and further highlight the role of 
innate immunity in the natural history of PBC. 

Our data also provides clues to the mechanisms 
by which autoimmune diseases could be perpetuated 
in humans and also helps explain recurrence of 
PBC following liver transplantation in the absence of 
major histocompatibility complex (MHC) compatibility 
matching. Thus, in the absence of MHC restriction, 
disease reoccurrence would depend on a non MHC 
restricted cellular mechanisms, suggesting that biliary 
epithelial cells are simply an innocent victim of an 
immune attack. Thus, they attract immune attack 
by virtue of their unique biochemical mechanisms by 
which they process PDC-E2 during apoptosis[20]. Bile 
duct cells may have a direct effector role in immune-
mediated cholangiopathies and fibrosis through their 
own cellular senescence pathway[112]. This also explains 
the suggested success of ursodiol in PBC, a drug that 
appears to have anti-apoptotic properties and also 
may modulate innate responses. Our data would also 
explain the relative failure of immunosuppressive 
drugs to alter PBC, because such agents are relatively 
ineffective against innate mechanisms. Finally, the 
induction of fibrosis in 2-OA-BSA-immunized mice 
exposed to α-GalCer permits not only dissection of its 
induction, but also has the potential to be useful in 
studies of intervention.

Table 2  Influence of Th1 and Th17 cytokine in liver 
pathology of 2OA-BSA induced primary biliary cholangitis 
mouse model 

Pathway Cytokine k/o Liver pathology

Th1 IL-12p35-/- Reduced liver infiltrates, reduced bile 
duct damage

Th1 IFN-g-/- Marked reduction in liver infiltrates, 
bile duct normal

Th1/Th17 IL-12/IL-23p40-/- Abolish autoimmune cholangitis
Th17 IL-23p19-/- Reduced liver infiltrates, reduced bile 

duct damage
Th17 IL-17A-/- Reduced liver infiltrates, reduced bile 

duct damage
Th17 IL-17F-/- Similar to positive control
Th17 IL-22-/- Reduced liver infiltrates, reduced bile 

duct damage

IFN-g: Interferon-g; IL: Interleukin; Th17: T helper 17.
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LINK BETWEEN XENOBIOTICS AND AMA 
IN ACETAMINOPHEN INDUCED LIVER 
INJURIES 
Although it is not clear how xenobiotics or the modified 
cellular proteins initiate autoimmunity in PBC, analysis 
of serum samples from subjects with acute liver failure 
indicate that a severe liver oxidant injury could lead to 
AMA production[113]. Specifically, 217 serum samples 
from 69 patients with acute liver failure (ALF) collected 
up to 24 mo post-ALF were compared with controls, for 
titer and reactivity with 2OADC-E2. AMA were detected 
in 28/69 (40.6%) ALF patients with reactivity found 
against all of the major mitochondrial autoantigens. 
The strikingly high frequency of AMAs in patients 
with ALF supports the thesis that oxidative stress-
induced liver damage may lead to AMA induction. In 
particular, we note that AMA with the same antigen 
and epitope specificity as in patients with PBC was 
found in almost 35% of the acetaminophen (or APAP, 
chemically named N-acetyl-p-aminophenol) poisoning 
subjects, suggesting that the PDC-E2 lipoyl domain 
is likely a target of APAP induced reactive oxygen 
species. This finding is of significance as toxic doses of 
APAP produces reactive oxygen and nitrogen species 
and reactive metabolites[114-117] that could result in 
mitochondrial damage and liver injury as evidenced by 
the elevation of serum alanine amino transferase and 
P450 dependent centrilobular damage[118,119].

APAP is the most widely used non-prescription 
drug in the United States. Using the recommended 
therapeutic dosage (1000 mg per single dose and 
up to 4000 mg per day for adults), 85% of acetami
nophen is metabolized in liver to non-toxic compounds 
via the conjugation of the aromatic ring to sulfate 
or glucoronic acid. The remaining 15% is converted 
into a highly-electrophilic metabolite, N-acetyl-p-
benzoquinoneimine (NAPQI) through isozymes of 
microsomal cytochrome P450[120]. In the presence of 

the reduced form of glutathione (GSH), NAPQI can 
either be covalently linked to GSH via Michael’s addition 
to the aromatic ring or reduced back to APAP[121]. The 
predominant method of NAPQI detoxification occurs 
through the former mechanism, resulting in depletion 
of the intracellular glutathione pool[122]. However, in the 
presence of excess APAP or when microsomal P450 is 
increased, hepatic GSH is depleted more extensively 
and cannot compete efficiently with the increased 
NAPQI. The resulting decrease in cellular glutathione 
further allows the accumulation of reactive NAPQI, 
which then reacts with nucleophilic sites such as 
cysteine and lysine residues on cellular proteins and 
related cofactors[123]. 

Previous data[124] have suggested that glutathio
lation decreases the antigenicity of PDC-E2. Due to 
cellular depletion of glutathione, very little glutathione 
would be available for such covalent protection of 
PDC-E2. The depletion of glutathione could lead to 
neo-antigens through modification of native PDC-E2 
by high levels of reactive NAPQI or other electrophilic 
agents. We reason that in PBC such electrophilic 
modification on lipoic-acid-conjugated PDC-E2 will 
inhibit the physiological function of PDC-E2 and 
subsequently lead to disruption of ATP synthesis, cell 
death and the release of either unmasked PDC-E2 
or neoantigens formed by xenobiotics-modified 
PDC-E2. Microarray studies on APAP toxicity also 
revealed consistent altered transcriptome expression 
in oxidative phosphorylation, protein post-translational 
modification in liver and blood samples[125,126]. The 
exposure of this chemical modified self-protein to the 
immune system of genetically susceptible individuals 
could lead to the breakdown of self-tolerance to 
native PDC-E2 itself by molecular mimicry and epitope 
spreading mechanism. Thus, in genetically susceptible 
individuals, the prolonged exposure to electrophilic 
agents, such as acetaminophen may initiate and/or 
enhance the breakdown of self-tolerance to PDC-E2 
and eventually lead to PBC (Figure 3). 

Figure 3  APAP metabolism and proposed mechanism of APAP-mediated breaking of immune tolerance. APAP is metabolized in the liver to nontoxic 
compounds via conjugation of the aromatic ring to sulfate or glucuronic acid. APAP is converted into a highly electrophilic metabolite, NAPQI by microsomal 
cytochrome P450 oxidation. Reactive NAPQI accumulates and can form adducts with cellular proteins, leading to disruption of cellular functions, generation of neo-
antigens, and loss of tolerance.
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CONCLUSION
The etiological mechanism of the immunological 
specificity of the 2-OADC-E2 enzymes lipoyl domain 
in PBC remains an enigma. Recent quantitative 
structure-activity relationship (QSAR) studies suggest 
that disruption of the lipoyl ring S-S linkage renders 
the lipoic acid “activated” and receptive for xenobiotic 
modification and subsequent AMA recognition[101]. 
Data from immunological characterization of antigen 
and Ig isotype specificities against one such lipoyl acid 
mimic SAc and rPDC-E2 strongly support a xenobiotic 
etiology in PBC. This observation is of significance in 
light of the high frequency of AMAs in patients with 
ALF. In particular, AMA was found in almost 35% of 
APAP poisoning subjects in a cohort of ALF patients[113]. 
Highly reactive electrophilic metabolites of APAP such 
as NAPQI can deplete the intracellular glutathione 
pool and render PDC-E2 vulnerable to further modifica
tion by electrophiles. Such mechanisms of in vivo 
generation of xenobiotic modified self proteins could 
lead to the breaking of tolerance to native proteins 
through molecular mimicry and antigen spreading 
in genetically susceptible individuals[102]. Finally, the 
recapitulation of AMA and PBC-like biliary lesions in 
2OA-BSA immunized mice further support our working 
hypothesis on xenobiotic etiology of PBC[103]. Future 
work is directed at examining the biochemical and 
immunological mechanisms underlying the breach of 
tolerance in autoimmunity in PBC by environmental 
chemicals. Knowledge gained from this model may 
have significant preventive and therapeutic implications 
in the clinical management of PBC. 
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