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Abstract
Diabetes mellitus (DM), a metabolic disorder is a major 
orchestra influencing brain and behavioral responses via  
direct or indirect mechanisms. Many lines of evidence 
suggest that diabetic patients apparently face severe 
brain complications, but the story is far from being 
fully understood. Type 2 diabetes, an ever increasing 
epidemic and its chronic brain complications are 
implicated in the development of Alzheimer’s disease 
(AD). Evidences from clinical and experimental studies 

suggest that insulin draws a clear trajectory from 
the peripheral system to the central nervous system. 
This review is a spot light on striking pathological, bio­
chemical, molecular and behavioral commonalities of 
AD and DM. Incidence of cognitive decline in diabetic 
patients and diabetic symptoms in AD patients has 
brought the concept of brain diabetes to attention. 
Brain diabetes reflects insulin resistant brain state 
with oxidative stress, cognitive impairment, activation 
of various inflammatory cascade and mitochondrial 
vulnerability as a shared footprint of AD and DM. It has 
become extremely important for the investigators to 
understand the patho-physiology of brain complications 
in diabetes and put intensive pursuits for therapeutic 
interventions. Although, decades of research have 
yielded a range of molecules with potential beneficial 
effects, but they are yet to meet the expectations. 
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Core tip: This review provides a synopsis in which a 
metabolic disturbance becomes indispensible for life 
and emerges as a molecular signal defect leading to 
a syndrome with multiple complications. Insulin is a 
spotlight player which draws a trajectory from diabetes 
to Alzheimer’s disease with multiple divergence and 
convergence. We have discussed their interplay to 
speculate their shared molecular footprints. These 
biochemical and molecular commonalities provide a clue to 
the investigators to look inside a therapy with a common 
experimental and clinical platform and also provide an 
insight for  new interventions as future perspective to find 
a potential stone to kill two birds together. 
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INTRODUCTION
Every human cell relies on a complex set of programs 
installed during ontogeny. These programs and 
commands over them are the two interfaces which 
need faultless execution for normal body physiology. 
Physiology, behavior and defense are three eventful 
networks, which are supposed to function in synchro­
nicity. A defect in any of these three events alters rest of 
two without any delay. Diabetes is a complex disorder 
where a molecular compromise alters the physiology 
with significant changes in behavioral responses. 

Diabetes is associated with the production of 
auto-antibodies against pancreatic β-cells, i.e., type 
1 diabetes (T1D) or with insulin resistance (IR), i.e., 
T2D[1,2]. T1D is a chronic hyperglycemic condition 
which affects multiple systems like brain, heart, eyes 
and kidneys[3]. Diabetes is found to be one of the 
causes of brain atrophy, mild cognitive impairment 
and white matter abnormalities[4-6]. In T2D insulin fails 
to stimulate utilization of glucose which gives rise to 
a phenomenon called IR. Chronic IR leads to several 
other complications such as lack of cellular energy, 
increased plasma lipids, cardiovascular problems 
and hypertension[7-11]. Increased risk of developing 
dementia and Alzheimer’s disease (AD) was suggested 
in T2D, which was further supported by clinical and 
epidemiological studies[12,13]. Diabetes patients have 
two fold higher risk of AD as compare to non-diabetic 
patients[12]. In central nervous system (CNS), presence 
and distribution of insulin, insulin receptors (IRs) 
and its substrate are region specific[14,15]. Insulin is 
found to play important role in learning and memory 
by regulating the release of neurotransmitters and 
synaptic plasticity[16]. It is inferred from the literature 
that defective insulin signaling in diabetic patients plays 
a crucial role in synaptic physiology[17-19]. Many other 
molecules participating in insulin signaling pathway have 
been reported to be crucial for normal physiology[20]. 
Remarkable presence of IRs in different brain areas has 
provided a clue of possible link between insulin signaling 
and synaptic plasticity. This fact is strongly supported by 
up-regulation of IRs in hippocampus after training for 
spatial memory task via Morris-Water Maze[21].

In 1998, a possible link between insulin dysfunction 
and AD was established[22,23]. The postmortem AD 
brains showed reduced insulin like growth factor 
(IGF) mRNA levels and its receptor as compared to 
controls[24]. Impaired peripheral glucose sensitivity[25] 
and elevated plasma and cerebro-spinal fluid (CSF) 
levels of insulin[26-28] were also reported in AD patients. 
Thus, there are consistent reports showing involvement 
of impaired insulin signaling in cognitive decline in 
AD patients. The role of insulin in enhancing memory 
performance in AD patients was confirmed by rescuing 

effect of intravenous and intranasal insulin admini­
stration[29,30].

Attempts are being made to unscramble the cellular 
and molecular mechanisms connects diabetes and 
AD. Present review critically examines impaired insulin 
signaling in diabetes as well as in AD patients with 
emphasis on critical molecular players such as fork head 
box O-1 (FOXO1), mammalian target of rapamaycin 
(mTOR) and glycogen synthase kinase 3 beta (GSK3β) 
which can be potential therapeutic targets.

DIABETES MELLITUS
Diabetes mellitus (DM), a complex metabolic disorder 
is characterized by hyperglycemia with several macro­
vascular (coronary artery disease, peripheral arterial 
disease, and stroke) and microvascular complications 
(diabetic nephropathy, neuropathy, and retinopathy)[31]. 
Risk of developing any of microvascular complications 
of diabetes depends upon both the duration and 
the severity of hyperglycemia. Aldose reductase, 
initial enzyme in the intracellular polyol pathway is 
a key player involved in the development of diabetic 
complications. Polyol pathway converts glucose into 
sorbitol (glucose alcohol). Hyperglycemic condition 
increases the flux of glucose into this pathway and 
results in sorbitol accumulation which further leads to 
osmotic stress. Osmotic stress is reported to be most 
common underlying mechanism in the development of 
microvascular complications of diabetes[31]. American 
Diabetes Association has categorized diabetes as 
T1D and T2D. T1D is characterized by autoimmune 
destruction of pancreatic beta cells resulting in absolute 
absence of insulin whereas T2D is identified by peripheral 
IR. According to WHO reports 2012, 90% cases of 
diabetes are from T2D. Clinical and experimental 
studies suggested strong association between diabetes 
and cognitive impairment[32-35]. T2D is at the edge of 
several risk factors such as life style, obesity, physical 
inactivity, gestational diabetes history as well as genetic 
predispositions[36,37]. The hallmark symptoms of the 
disease are polyurea, polydipsia, polyphagia and weight 
loss[38]. Mechanisms of T2D involves lipid breakdown 
within fat cells, elevated plasma glucagon levels as well 
as an increase in electrolyte retention[39]. 

AD 
AD is an age dependent neurodegenerative disorder 
associated with deposits of plaques and tangles in 
brain[40]. Only 1%-5% of the AD cases are found to 
have genetic differences and out of these cases, only 
0.1% cases follow familial autosomal non-sex linked 
inheritance pattern[41]. AD was for the first time reported 
in 1906 by Alois Alzheimer, a German psychiatrist and 
pathologist as a progressive neurodegenerative disorder 
of memory loss and confusion[42]. Postmortem AD brains 
revealed intracellular accumulation of neurofibrillary 
tangles (NFTs) and extracellular deposition of amyloid 
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beta (Aβ) plaques as two major hallmarks of AD. 
NFTs are hyperphosphorylated form of tau protein, 
which are involved in microtubule dynamics while Aβ 
plaques are the cleavage product of amyloid precursor 
protein (APP) which is a transmembrane glycoprotein 
of unknown function. Mutation in three genes encoding 
APP, presenilin 1 (PSEN1) and presenilin 2 (PSEN2) 
contributes to genetic cases of AD[43]. These loci are 
responsible for the familial type of disease while environ­
mental factors influence sporadic form of AD with 
unclear etiology. Mutated form of these genes increase 
production of Aβ-42 protein product, a major component 
of senile plaques. ε4 allele of the apolipoprotein E 
(APOEε4) is another risk factor for AD[44,45] which is 
thought to contribute in neuronal lipid homeostasis, 
repairs injured neurons, maintains synapto-dendritic 
connections and scavenges neurotoxins. Loss of 
cholinergic system is a major cause of cognitive deficit 
in AD patients and the current therapies are targeted at 
improving cholinergic functions[46].

TWIN MYSTERY OF AD AND DM: THE 
STORY SO FAR
In 1980, first line of evidence appeared when Adolfsson 
et al[47] performed glucose tolerance test on AD type 
dementia patients and hypothesized that hypoglycemic 
condition can ameliorate brain status. In 1994, Razay 
et al[48] spotted light on disturbed glucose metabolism 
and hyper-insulinemia in female AD patients and 
tried to establish a link between insulin dysfunction 
and dementia. In 1996, Messier et al[23] strengthened 
the evidences by uncovering the potential effects of 
glucose on memory and cognition of AD patients. In 
2003, Messier[49] further established a clear association 
between non-insulin dependent diabetes mellitus with 
neuropathy which is an incidence of vascular disease 
and retinopathy, he further suggested that DM is a 
probable risk factor for AD. Many more groups stepped 
ahead to address the fundamental question of whether 
the basic premise about the disease is true or not.

In 2005, Susanne de la Monte’s group at Brown 
University introduced the concept of brain diabetes 
or type 3 diabetes (T3D) and observed that after 
blocking brain insulin supply, neurons get disoriented 
and develops AD pathology in rats. This provided a 
promising platform to investigators to touch insight into 
T3D or brain diabetes[50]. In 2007, Li et al[50] published a 
review dedicated to common pathological process in AD 
and T2D which shared molecular degenerative cascades 
like dysfunction in insulin signaling pathway. In 2008, 
de la Monte et al[51] reappeared with some more set 
of explanations which were unclear in 2005. Diabetic 
brain was found to be compromised for acetylcholine 
homeostasis and cognitive impairment, whereas insulin 
sensitizers rescued these effects[52]. In 2009, Gotz et 
al[52] described the molecular commonalities between 
T2D and AD with hallmark feature of amylin deposition 

in pancreatic islets of T2D patients, whereas Aβ and 
NFTs deposition in AD brain which are characteristic 
fibrillar proteins leading to cell loss. In 2010, Saini et 
al[53] contributed a relevant publication to World Journal 
of Diabetes, establishing a molecular mechanism of IR in 
T2D. Crucial molecular players in these pathways came 
into the picture and provided new therapeutic targets. 
In 2011, Park[54] suggested that pathogenic alterations 
in insulin signaling, Aβ aggregation, oxidative stress, 
inflammation and glucose metabloism contributes to AD 
as well as DM. Streptozotocin induced diabetic rat model 
showed co-appearance of tau hyperphosphorylation 
and cognitive decline as an interesting evidence[55]. On 
the basis of clinical and biochemical evidences, it was 
further suggested that both of these diseases promote 
each other’s progression[56]. It has recently been found 
that proinflammatory signals in the brain impair insulin 
signaling, mitochondrial dysfunction, synaptic crosstalk 
as well as cognitive impairment[57].

Since 1980, many reports appeared in literature 
to describe the correlation between these two distinct 
problems with common molecular and cellular interface. 
Glucose metabolism and insulin signaling are major 
elements bridging AD and diabetes. Some relevant 
reports, unraveling the twin mystery of AD and DM are 
listed in Table 1.

THE CHICKEN OR EGG QUESTION
In spite of so many striking evidences, due to common 
interface of homeostatic mechanisms of AD and DM, the 
chicken or the egg question has remained unresolved. 
Citing all relevant findings, in 2005, first time 
Suzanne de la Monte has introduced insulin signaling 
dysfunction as a core of AD. To untangle this mystery, 
evidence of crosstalk between AD and DM, were put 
forward as crucial milestones. Patients with T2D were 
found to be at high risk of developing mild cognitive 
impairment (MCI), dementia and AD[60,61]. Similar type 
of evidence for MCI, dementia and AD were found 
in experimental models of diabetes[56,62-65]. AD brains 
have similar pathogenesis as observed during insulin 
deficiency[24,66-68]. Studies with AD patients and animal 
model of AD showed that intranasal insulin therapy 
significantly improved cognitive performance[69-71]. 
These clinical and experimental studies suggested that 
both of these disorders share common biochemical and 
molecular cascades[60,72,73]. Some of these common 
bridging elements have been schematically represented 
in Figure 1. Interestingly, insulin has been found to 
regulate Aβ and tau metabolism, which are major 
hallmarks of AD[74,75]. It is also evident that in T2D 
patients insulin signaling dysfunction accelerates AβPP 
(amyloid beta precursor proten)/Aβ trafficking from 
trans-Golgi network, a major site for Aβ generation and 
alters dynamicity of a Aβ synthesis[75]. Some studies 
report the presence of some downstream regulators of 
insulin signaling pathway which are involved in cleavage 
of AβPP at γ-secretase site, a determining site for Aβ 
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genesis. Extracellular deposition of Aβ plaques is a 
feature of AD while amyloidogenic peptide deposition 
in pancreatic islets of Langerhans is a characteristic 
feature of T2D[79,80]. Amyloid deposits in islets consist 
of 37 amino acid peptide referred to as islet amyloid 
polypeptide (IAPP) amylin[81,82]. Aβ and IAPP have same 
folding patterns and configuration[83]. IAPP is reported to 
generate islet β-cells toxicity in the same way as Aβ do 
in neurons. Although we are far to understand the exact 
mechanism of amyloid formation, it can be speculated 
from the emerging data that amyloid formation is a 
basic cause of AD, DM and other disorders related to 
protein deposition[84-86].

IR AS COMMON METABOLIC 
COMPROMISE IN AD AND DM
Glucose is the only required source of energy for neu­
rons and any disruption in glucose metabolism leads 
to compromised neuronal functions[39]. Presence of 
insulin is crucial for brain in terms of its peculiar CNS 
functions[87] but any disturbance in its physiological level 
leads to CNS dysfunction. IRs are reported with low 
binding affinity with insulin in postmortem AD brain[87,88]. 
Moreover many other insulin signaling markers were 
altered in AD brain[24]. Elevated insulin plasma level in 
AD patients indicates a closed association of AD and 
IR[26,28]. Animal model studies revealed that factors 
contributing to T2D also regulate Aβ dynamics[89]. 

amyloidogenicity[76]. Although, investigators found 
many evidences of common features in both of these 
disorders, the chicken or the egg question is still valid 
and needs parsimonious explanations. Key reports 
supporting AD like symptoms in DM patients and DM 
like symptoms in AD patients are listed in Table 2.

AMYLOIDOGENESIS: A COMMON 
PATHOLOGY IN AD AND DM
Protein structure and function is crucial for maintenance 
of life, moreover its mishandling leads to diverse 
pathological conditions. Neurodegenerative disorders lie 
in a class of disorders associated with different types of 
abnormal fibrous, extracellular poteinaceous deposits 
which are referred as amyloid[77]. β-sheet structured 
insoluble moieties play an important role in the pathology 
of many protein misfolding diseases[77]. Globular proteins 
due to their tertiary structure constrain, undergo desta­
bilization of their native structure and adopt partial 
folded and unfolded form while natively folded proteins 
are devoid of any ordered form so they passes through 
the stabilization process of fibrillogenesis and acquire a 
partially folded conformation[78]. In a crowded cellular 
milieu when functional protein erroneously interacts 
with other components and transforms itself into 
ordered stable form, the phenomenon is known as 
amyloidogenesis. 

Interestingly AD and DM both involve amyloido­

  Ref. Key findings

  Adolfsson et al[47] Hypoglycemic condition can ameliorate brain status in AD
  Razay et al[48] Disturbances in glucose metabolism and hyper-insulinemia in female AD patients are responsible for cognitive decline
  Ruigómez et al[58] Documented a relationship between non-insulin dependent diabetes and neuropathy
  Li et al[50] Defective insulin signaling is a shared degenerative cascade in disease pathology of both AD and DM
  Ke et al[59] Amylin deposition in pancreatic islets of T2D patients whereas, Aβ and NFTs deposition in AD brain are common hallmarks 

feature of diabetes and Alzheimer’s in terms of protein deposition
  Saini[53] Elucidated cellular and molecular mechanisms of insulin resistance and provided understanding for the molecular therapeutic targets
  Park[54] T2D and AD have some common pathogenic alterations like defects in insulin signaling, Aβ clearance, glucose metabolism, 

O-GlcNAcylation, Aβ aggregation by AGEs, inflammation, oxidative stress and circulating cortisol levels
  Correia et al[55] Amyloidogenesis and mitochondrial dysfunction are common denominators potentiating brain dysfunctions
  Talbot et al[57] Brain insulin signaling pathway including IGF-1R → IRs-2 → PI3K signaling is directly involved in AD and thus one of a causal 

factor in disease pathogenesis

Table 1  Relevant reports bridging Alzheimer’s disease and diabetes mellitus

AD: Alzheimer’s disease; DM: Diabetes mellitus; T2D: Type 2 diabetes; NFTs: Neurofibrillary tangles; Aβ: Amyloid beta; AGEs: Advanced glycation end 
products; IGF-1: Insulin like growth factor-1; IRs: Insulin receptors; PI3K: Phosphatidylinositide 3-kinases.

  Ref. Key findings

  Gasparini et al[75] In T2D patients insulin metabolism dysfunction accelerates AβPP/Aβ trafficking from trans-Golgi network, a major 
site for a Aβ generation 

  Phiel et al[76] Some studies claim for the presence of downstream regulators of insulin signaling pathway which are involved in 
cleavage of AβPP at gamma-secretase site, a determining site for Aβ amyloidogenicity

  Steen et al[24] Extensive dysfunction of IGF-I and IGF II signaling mechanisms reported in AD brain
  Rivera et al[66] Insulin and IGF gene expression altered with abnormal receptor binding in AD brain

Table 2  Symptoms of Alzheimer’s disease symptoms in diabetes mellitus patients and symptoms of diabetes mellitus in Alzheimer’s 
disease patients

AD: Alzheimer’s disease; T2D: Type 2 diabetes; Aβ: Amyloid beta; IGF: Insulin like growth factor.
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With this set of data it is clearly understood that IR or 
impaired IRs not only typify T2D but also orchestrate 
AD. Figure 2 depicts that how IR bridges peripheral and 
neuronal IR and leads to AD.

How insulin modulates brain functions?
Insulin expression in brain remained a debated topic for 
investigators and raised a question on its significance 
at ectopic site. Brain synthesizes insulin locally as well 

Diabetes

Abnormal cerebral/systemic 
glucose metabolism

Hyperglycemia

Hyperinsulinemia

IDE

Aβ oligomers

Common links

High AGEs

Less insulin transport 
to the brain

Mitochondrial 
dysfunction

ROS

Neurodegeneration

Cognitive decline

Alzheimer’s disease

Abnormal cerebral 
glucose metabolism

Low cerebral 
glucose level

Insulin Resistant 
Brain State

Aβ accumulation and
Tau hyperphosphorylation

Synaptic loss

Figure 1  Schematic representation of commonalities between diabetes and Alzheimer’s disease. Hyperglycemia and hyperinsulinemia are hallmark features 
of diabetes which leads to advanced glycation end product, reduced insulin supply to brain as well as mitochondrial dysfunction, which further leads to vicious cycle 
of oxidative stress. On the other side, any defect in glucose metabolism and insulin signaling in brain is one metabolic status of Alzheimer’s disease brain which 
translates into insulin resistant brain status and converges to all common interfaces of mitochondrial dysfunction, oxidative stress and neurodegenrtaion. IDE: Insulin 
degrading enzyme; Aβ: Amyloid beta; AGEs: Advanced glycation end products; ROS: Reactive oxygen species.

Figure 2  Diagrammatic representation of peripheral and neuronal complications of insulin resistance in case of type 2 diabetes. Insulin signaling dysfunction 
in peripheral system affect muscle, adipose tissue and liver (by decreasing glucose uptake, increasing free fatty acids) and by increasing glucose production 
respectively. When this dysfunction appears in CNS as a diabetes complication (by limited insulin supply to brain), it leads to deposition of Aβ plaques and NFTs 
in extracellular and intracellular milieu of neurons respectively and represents AD type brain status. AD: Alzheimer’s disease; T2D: Type 2 diabetes; IDE: Insulin 
degrading enzyme; PI3K: Phosphoinositide 3-kinase; Aβ: Amyloid beta; NFTs: Neurofibrillary tangles; GSK3β: Glycogen synthase kinase 3 beta; FFA: Free fatty acids; 
BBB: Blood brain barrier.

Peripheral Insulin Resistance

Muscle
Adipose 
tissue

Liver

Glucose 
uptake

Lipolysis 

FFA 

Glucose/
FFA

Glucose
production

Genetic 
factors

Life 
style

T2D

Insulin 
resistance

Hyperinsulinemia

Neuronal Insulin Resistance

Extracellular Intracellular

Insulin 
Glucose 

PI3K
pathway

IDE
GSK3β

Aβ 
degradation Tau 

phosphorylation

Aβ plaq
ues

NFTs

Alzheimer’s disease

Pancreatic 
beta cell

BB
B

Sandhir R et al . Twin mystery of Alzheimer’s disease and diabetes



1228 September 25, 2015|Volume 6|Issue 12|WJD|www.wjgnet.com

as receives through the blood brain barrier (BBB) 
mediated transfer[90]. With curious attempts, scientists 
documented its role in feeding behavior and energy 
homeostasis which integrate whole body physiology[91]. 
The first article unpinning the relation between brain 
and insulin was reported in 1960, in which intracisternal 
injection of insulin in dogs reduced glucose levels, 
both in CSF and blood with its direct effects on the 
parasympathetic area of the brainstem[92]. Later, brain-
centered glucoregulatory system (BCGS) that is involved 
in maintenance of blood glucose levels was found 
to act via insulin dependent as well as independent 
mechanisms[93]. The hypothesis of BCGS and its 
crosstalk with pancreatic islets gained experimental 
momentum by multiple supporting evidences that 
provided a clear understanding of BCGS[93]. BCGS is 
recognized as mechanistic node present in CNS which is 
channeled through peripheral hormone status[93]. Both of 
these regulatory nodes co-operate with each other and 
compensate the load of other’s failure but when both are 
compromised, DM is an unavoidable issue.

Insulin as a synapto-dendritic player
Insulin has drawn a wide trajectory in brain molecular 
milieu from cognitive function to orchestrate functions 
like development of neurite outgrowth, modulation 
of catecholamine release and uptake, regulation and 
trafficking of ligand-gated ion channels, expression 
and localization gamma-aminobutyric acid (GABA), 
N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors, 
synaptic plasticity regulation via NMDA, Phosphoinosi­
tide 3-kinase-Akt (PI3K-Akt)[94] and maintenance of 
excitatory synapses[95].

Presence of IRs at synapses rich in plasticity (hip­
pocampus and cortex) reveals its involvement in 
cognition[90]. This fact was further strengthened in 1999 
when Zhao et al[21] reported that rat hippocampus IRs 
expression is up-regulated when they are subjected 
to spatial memory task in Morris water maze. IRs are 
enriched in synaptosomes[96], co-localizes with axon 
terminal markers synaptophysin, synapsin, etc.[97], and 
dominates in post-synaptic density (PSD) fractions to 
interact with scaffolding protein shank and PSD-95. 
Insulin is also involved in various neuromodulatory 
functions such as electrophysiological properties of 
neurons[98,99], neurotransmitter receptors[100,101], traffi­
cking of ion channels[102], neurotrophic effects[103,104] and 
the neuroprotective role against a wide range of insults 
such as apoptosis[105], oxidative stress[106], β-amyloid 
toxicity[107] and ischemia[108] in animal models as well as 
human studies.

Hyperinsulinemia is reported to reduce cholinergic 
activity in mice brain and resulted in impaired reten­
tion of an inhibitory avoidance[109]. It also alters mem­
brane potential to affect the ion transport[110,111]. In 
streptozotocin induced rat model of DM, long term 
memory potentiation was found to be impaired and 
insulin treatment rescued the effects[112-114]. With these 

set of potential findings, it is evident that insulin is 
crucial synapto-dendritic player altering dendritic arbor 
morphology as well physiology.

INSULIN RECEPTORS PLAYING 
DOWNSTREAM MOLECULAR 
ORCHESTRA: INSIGHT INTO THE 
MECHANISMS
Investigators unraveled the IRs downstream molecular 
orchestra and speculated that IRs activation further 
activates PI3K/protein kinase B (PI3K/PKB) pathway[115]. 
GSK3β is a major player of this pathway and involved in 
long term potentiation/long term depression (LTP/LTD) 
which is a sole mechanism of memory formation and 
synaptic plasticity[116]. Other than insulin, PI3K can be 
activated by multiple growth factor ligands including 
nerve growth factor, brain-derived neurotrophic factor 
(BDNF), glial cell-derived neurotrophic factor (GDNF), 
insulin like growth factor-1 (IGF-1)[117]. 

After investigating for over two decades, it is safe to 
accept that PI3K/Akt signaling pathway is a potential 
window through which various ON/OFF switches 
of cognitive decline get operated. Protein kinase B 
(PKB), also known as Akt is a main downstream hub 
of various other pathways and exists with its widely 
expressed isoforms such as PKB-α, PKB-β and PKB-γ 
(predominates in CNS)[118]. Akt pathway has its regulating 
arms over neuronal survival, glucose uptake, angiogenesis, 
metabolism and proliferation[119]. Moreover Akt has a 
negative feedback regulation over these via phospha­
tase and tensin homolog, protein phosphatase 2A, 
c-jun N-terminal kinases (JNK) and forkhead box O 
(FOXO)[119]. 

Loss of PI3K control is a central mechanism of neuro­
degeneration in DM patients[120]. Moreover, AD patients 
are reported with sustained PI3K/AKT signaling which 
is a primary response linking insulin, IGF resistance, 
tau pathogenesis and synaptic decline[121]. GSK3, 
mammalian target of rapamycin (mTOR) and FOXO 
are three main downstream targets playing this whole 
orchestra (represented in Figure 3).

Glycogen synthase kinase3β, a pivotal kinase in AD and 
diabetes
Extensive reports supporting pivotal role of GSK3β 
proposed “GSK3β hypothesis of AD”[107], according 
to which GSK3β over-expression leads to impaired 
memory, amyloid β accumulation, tau hyperphos­
phorylation, neuronal defects and microglial mediated 
inflammation cascades. Genetic studies established 
that insulin signaling genes are also loci of AD[106]. 
Cholinergic system is one of the major regulating knob 
under GSK3β control with choline acetyltransferase and 
acetylcholinesterase as regulating keys[107,108]. GSK3β 
leads to reduction of acetylcholine synthesis, which is in 
accordance with the cholinergic deficit observed in AD 
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brain[122]. GSK3β negatively affects axonal transport, 
microtubule dynamics and destabilizes microtubule by 
lowering its affinity with GSK3β phosphorylated tau[95-97] 
and contributes to AD pathology. Being a key mediator 
of apoptosis it may directly contribute to neuronal loss 
in AD[105,123]. GSK3β interestingly controls cell cycle 
in two way system by activating intrinsic pathway to 
trigger cell death and by inhibiting death receptors 
by extrinsic pathway[124]. In 2002, Sun et al[125] and in 
2003, Phiel et al[76] reported that GSK3β increases Aβ 
production by regulating APP cleavage. On exposure 
of Aβ, neurons inhibit PI3K pathway and increase 
GSK3β activity[126]. GSK3α as well as GSK3β both are 
found to be an inducer of tau phosphorylation[127-132]. 
Drastic alteration in dendritic arbor and post synaptic 
density, a common morphological feature of AD brain 
has been observed in GSK3β deficient mice[132]. GSK3β 
is the only kinase involved in NMDAR-LTD[124]. It also 
maintains a threshold of LTP and LTD, i.e., maintenance 
of metaplasticity[116,133,134]. Modulation in regulated/
constituted expression of GSK3β orchestrates neuronal 
plasticity[84,116,134-140]. GSK3β dramatically induces the 
internalization of AMPA and NMDA receptors[141,142] and 
decreases the level of PSD proteins, a molecular marker 
of memory acquisition[77]. GSK3β phosphorylates 
CREB protein to inhibit its function which is a universal 
modulator of memory. It aids in cyto-architecture 
of cell by promoting actin and tubulin assembly for 
synaptic reorganization[143]. GSK3β is also a pivotal 

kinase involved in adult hippocampal neurogenesis 
which negatively regulates it by reducing the number of 
proliferating neurons in the dentate gyrus region[144,145]. 
GSK3β is directly involved in the production of pro-
inflammatory cytokines such as interleukin (IL) 6, IL-
1β, TNF-a which indicates its positive regulation towards 
inflammatory mechanisms[146,147]. 

FOXO1 signaling: A mechanistic node for a vicious 
cycle of IR and Aβ up-regulation
FOXO1 signaling is a mechanistic node and regulates 
the fine balance of oxidative stress pathways (depicted 
in Figure 4). Before moving into the mechanism 
part, it has been briefly discussed about the dramatic 
story of its evolution in molecular series under 
discovery[148]. Many lines of evidence suggest its role 
in AD as well as IR with major involvement in cell 
proliferation, differentiation, cell survival, apoptosis and 
development of proliferative late onset diseases[148]. 
Short term activation of this player leads to protective 
mechanism of scavenging reactive oxygen species 
(ROS) which is a part of normal cell physiology 
but its persistent activation awakes the apoptosis 
pathway[148]. Cellular milieu tends to maintain a balance 
oxidant and antioxidants concentration to cope up 
any environmental stress, but whenever this balance 
acquires any plane of inclination, it comes to the cell 
survival[148].

Wnt and β catenin up-regulate FOXO signaling via 
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oxidative stress pathways[148]. Wnt signaling inhibits 
GSK3β expression and mediates β catenin transport into 
the nucleus and modulates transcription of T cell factor 
family gene, which has function opposite to FOXO1, 
this is known as the canonical pathway of Wnt signaling 
and involved in lipid and glucose metabolism[149]. ROS 
production inhibits canonical pathway of Wnt signaling 
and guides β catenin towards FOXO which acts as a 
cofactor of FOXO and enhance its transcription. Foxo 
signaling promotes gluconeogenesis and leads to 
hyperglycemia and hyperinsulinemia which further 
increases NFTs and Aβ accumulation to gear up ROS 
production and drives the vicious cycle of Oxidative 
stress[150].

When insulin is absent, FOXO1 is located in the 
nucleus and promotes transcription of respective 
enzymes for hepatic glucose production while in the 
presence of insulin; PKB is activated and leads to nuclear 
exclusion of FOXO 1 by phosphorylating it. State of IR 
in case of DM leads to impairment of PKB pathway and 
inhibition of FOXO activity resulting in hepatic glucose 
production triggering a vicious cycle of hyperglycemia 
and oxidative stress. FOXO, the downstream activator 
of PI3K/AKT controls energy homeostasis, locomotor 
behavior and leptin sensitivity[151,152].

mTOR pathway: A crucial intersection of AD and DM
mTOR pathway has been evolved as environment 

sensor and growth promoter in unicellular organisms 
but as multi-cellularity emerged it acquired its role 
in central growth and homeostasis mechanisms. 
Metabolism and cell growth are two basic requirements 
and their proper functioning depends upon each other. 
Since mTOR pathway is centered for growth processes, 
it is activated by nutrition as well as insulin[136]. In 
evolutionary history from yeast to rodents, mTOR has 
evolved as key modulator of aging. Many investigators 
attempted to understand its basic role and decades 
of extensive pursuit revealed extensive network of 
mTOR. mTOR is found to accelerate growth but it has 
compromised some of metabolic signals by conflicting 
pathways and introduced a paradox or better to say 
insulin paradox[137].

This paradox appeared from the evidences of 
compromised insulin signaling with good health and 
IR leading to compromised health while both of the 
cases are of poor insulin signaling[138]. Parsimonious 
explanations are, compromised insulin signaling is 
unable to activate mTOR (good for health) while IR 
may be due to hyperactive mTOR which is bad. So in 
previous case compromised insulin signaling inhibits 
mTOR insurgence while active mTOR is promoting IR 
in the later case[138]. Mechanistic node of this story, S6 
kinase (S6K) is activated by mTOR to phosphorylate 
and degrade insulin receptor substrate-1 (IRS-1) which 
ultimately leads to insulin desensitization[139,140].

Vicious cycle of insulin resistance and Aβ upregulation via  FOXO signaling:
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mTOR signaling has a dramatic interplay with Aβ 
and tau proteins which are two hallmarks of AD in their 
aggregated forms. It was reported in 2012 that Aβ is an 
activator of PI3K/Akt pathway which further switches 
on mTOR cascade[153]. In vitro studies suggest that Aβ 
application elevates the level of p70S6K, a downstream 
target of mTOR which contributes in development of 
NFTs[154,155]. Consistent in vitro reports validated the fact 
that mTOR activity and activated p70S6K are either 
cause or consequence of the molecular cascade and 
hence are found with elevated levels in hippocampus and 
cortex of animal model of AD[156,157]. mTOR suppression 
leads to induction of autophagy which is a cell cleaning 
process. In AD brain it is evident that neuronal auto­
phagy is induced to end up with impaired steps and 
leads to massive accumulation of Aβ plaques[158].

mTOR has characteristic property of maintenance of 
protein homeostasis, translational control and cellular 
maintenance, which plays an important role in the 
maintenance of synaptic plasticity. Figure 5 provides 
detailed information of mTOR domain. To execute 
these entire tasks mTOR pathway is operated under 
fine control of several surface receptors such as NMDA, 
dopaminergic and metabotropic glutamate receptors 
(mGluRs) and BDNF[159-163]. mTORC1 is one of the 
downstream targets of PI3K/AKT pathway which is very 
important for synaptic plasticity, neuronal repair, protein 

folding mechanism and autophagy[164,165].

INFLAMMATION: A COMMON ALARM 
FOR AD AND DM
Inflammation is an exceedingly complex but equally 
fascinating and costly host defense system evolved with 
proximate set of mechanisms and exhibit phenotypic 
plasticity. It is crucial for life but once dysregulated, 
it can be detrimental. Emerging field of metabolic 
and aging syndromes spurred a renewed interest of 
scientists into inflammatory mechanisms. This is a 
compensatory mechanism for body to cope up with the 
hostile environment which involves many subtle factors 
and specialized cells to fight against any threat[166]. It has 
very critical progressive role with analogous mechanism 
in diabetic patients showing IR and defective neuronal 
signaling in AD patients[167]. Thus, DM and AD share 
inflammation as a common pathological feature. 

Studies have reported elevated levels of proinflam­
matory cytokines such as TNF-α, IL-6, IL-1β, etc., in 
AD patients[168]. In diabetes patients, elevated TNF-α 
triggers various stress kinases to phosphorylate IRS-1 
(at inhibitory serine residues) and disrupts insulin 
signaling[169-171] (explained in Figure 6), while blocking 
TNF-α rescues its effects in obese mouse model[172,173]. 
JNK and double-stranded RNA-dependent protein kinase 
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are major stress kinases which are common regulatory 
nodes between inflammation and metabolism[174,175]. 
Since insulin signaling contributes to normal functioning 
of neurons, any inflammation mediated alteration in 
these, results into defective neuronal function[95,176,177]. 
These evidences suggest that there is a common me­
chanistic pathway adopted by peripheral IR in T2D as 
well as impaired brain insulin signaling in AD.

OXIDATIVE STRESS: A COMMON 
BURDEN IN AD AND DM
Normal body physiology tends to maintain a balance 
between production of ROS and body’s antioxidant 
defense system and any sort of imbalance altering this 
dynamic system leads to onset of metabolic disorder 
with cognitive dysfunction[178]. Hydrogen peroxide, 
hydroxyl radical, superoxide ion and singlet oxygen 
are such reactive species which are abundantly 
produced in cellular respiration cycles and have very 
short half life[179]. It is known that diabetic patients 
have more oxidative cellular environment as compared 
to healthy ones[180-182]. Hyperglycemic condition has 
proportionality with sorbitol production which reduces 
NADPH, a cofactor for GSH production and hence 
decreases antioxidant levels in the body[183-185]. One more 
prevalent mechanism of diabetes contributing towards 
ROS is insurgence of advanced glycation end products 
(AGEs) production[183,184,186], which binds to cell surface 
receptors, i.e., receptor for advanced glycation end 
roducts (RAGEs). RAGEs-AGEs interaction leads to ROS 

production via NADPH oxidase system which in turn 
activates Ras-MAPK pathway and ultimately nuclear 
factor kappa-light-chain-enhancer of activated B cells 
(NFκB) activation[184,187]. Hyperglycemia also leads to flux 
of glucose or FFA into blood which turns hexosamine 
pathway on[188] for further ROS production[189]. Elevated 
levels of FFA have an adverse effect on mitochondrial 
functioning and uncouple oxidative phosphorylation to 
contribute in ROS production[190,191]. ROS production 
worsens the status of insulin signaling and stress 
pathways which lead to further ROS production to turn 
a vicious cycle on.

High polyunsaturated fatty acid proportion with GSH 
content leave neurons vulnerable and make them prone 
to free radical attack[192]. A noticeable increase in lipid 
peroxidation was observed in brain of AD patients[193-195]. 
Oxidative stress and Aβ aggregation has both way 
relationships controlling each other’s turnover. Oxidative 
stress channels regulate Aβ dynamicity from non-
aggregated form to aggregated form[196]. Aggregated 
Aβ acts like a source of free radical production and 
lipid peroxidation[197] to drive brain towards neurode­
generation. 

MITOCHONDRIAL VULNERABILITY IN 
CASE OF AD AND DM
Mitochondria, a result of 1.5 billion years of obligate 
endosymbiotic co-evolution is a sub-cellular niche to 
take care of cell survival as well as programmed cell 
death[198]. Several decades of research has establis­
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hed that fission-fusion dynamicity of mitochondria is 
critical in neurodegeneration[198]. As the brain is offered 
with limited capacity of glycolysis, neuronal cells are 
highly dependent on aerobic oxidative phosphorylation 
for energy production which is an electron transfer 
event from lower redox potential to higher redox 
potential[199-202]. Although, this electron chain transfer 
process is very efficient, still some ROS are produced 
which leads to oxidation of mitochondrial DNA, lipids and 
proteins further contributing to mitochondrial dysfunction 
which is a prominent feature of AD[181,203].

Substantial data from diabetic patients and animal 
model systems revealed that brain faces several struc­
tural and functional deficits. Functional impairment of 
mitochondria leads to neurodegeneration and loss of 
control over neuronal metabolism. A study reflected 
that there is a significant decrease in coenzyme Q 
levels in diabetic animals which represents a marked 
deficit in antioxidant defense system[204]. There are 
reports which are directly linking impairment in glucose 
utilization with mitochondrial dysfunction and metabolic 
disturbances[205-208]. In 2003, clear evidence of oxidative 
phosphorylation uncoupling was found in rat model of 
T2D[209]. Mitochondrial capacity of Ca2+ accumulation 
was also found to decrease in case of diabetes which is 
a favorable environment for mitochondrial permeability 
transition (MPT) opening and ultimately leads to cell 
death[210,211].

AD animal models as well as human studies sug­
gested that AD pathology leads to mitochondrial 
dysfunction and ROS production. Some crucial molecules 
such as Aβ binding alcohol dehydrogenase are reported 
to aid to AD pathology by mediating Aβ induced cell 
death via mitochondrial channel[209,212]. In some reports it 
is mentioned that one of the insulin degrading enzymes  
isoform, a well established regulator of Aβ dynamicity 
targets mitochondria and interfere with its normal 
functioning[213]. Aβ is also found to be a good inhibitor 
of respiratory chain complex and thus leads to marked 
decrease in cellular ATP levels[214,215]. Importantly, Aβ 
40 and Aβ 25-35 contribute in uncoupling of oxidative 
phosphorylation and impair respiratory chain as well 
as MPT opening[204,210,211]. Moreover Aβ induces H2O2 
production which is rescued by CoQ10, a key enzyme of 
electron transport chain[216]. Various tri-carboxylic acid 
(TCA) cycle enzymes such as pyruvate dehydrogenase, 
α-ketoglutarate dehydrogenase and ATP citrate lyase 
were also found to be dysregulated in case of AD[217].

Mitochondrial morphology was found to be altered 
with some functional loss in neurodegenerative 
disorders such as AD[218-221]. In brief it can be mentioned 
that a small metabolic compromise is sufficient to 
trigger a cascade and disrupt normal mitochondrial 
function which plays a vital role in neuronal survival, 
growth and plasticity.

THERAPEUTIC OPPORTUNITIES
Sedentary life style, dietary changes and genetic 

predisposition are conspired forces responsible for 
worldwide epidemic of metabolic and aging syndrome. 
Discovered molecular trajectories from T2D to T3D 
gained experimental momentum for new therapeutic 
interventions. Elucidating role of anti-diabetic drug for 
the treatment of AD translated the disease informa­
tion and added new armaments to the arsenal of 
putative therapies. It is unquestionable issue that 
both of these disorders share common pathologies 
including glucose metabolism defects, mitochondrial 
dysfunction, oxidative stress and abnormal deposition 
of amyloidogenic proteins[55]. The reason why insulin got 
this recognition under frontier’s of Alzheimer research 
is that its high level in CNS revealed its own crucial 
role in learning, memory, cognition and synaptic plasti­
city[222]. Although, brain has potential pyramidal neurons 
involved in synthesis and secretion of insulin, majority 
of brain insulin is replenished by peripheral source from 
pancreatic β cells transported through blood across 
BBB[223]. 

There are some well known potential oral drugs [such 
as biguanides, sulfonylureas (SUs), thiazolidinediones 
(TZDs), and dipeptidyl peptidase-IV (DPP-IV) inhibitors], 
injections (e.g., insulin and GLP-1 analogs), and some 
other molecules like glucokinase activators, amylin 
analogs, D2-dopamine agonists, bile acid chelators, 
and sodium/glucose-linked transporter-2 inhibitors etc., 
established for T2D. Most of the anti-diabetic drugs 
act through the mechanism of maintenance of plasma 
glucose level, regulation of inflammatory cascades and 
establishing the balance between ROS and antioxidants. 
We will briefly provide an overview of experimental and 
clinical trials of some anti-diabetic drugs which are being 
tested in patients with AD and with low to moderate 
mild cognitive impairment.

Metformin
Metformin, a well known biguanide anti-diabetic drug 
is used to reduce IR. It sensitizes liver and skeletal 
muscle cell via AMP kinase cascade[224,225]. Brain 
is most vulnerable vital organ for oxidative stress, 
because of high oxidative metabolism rate and limited 
antioxidant level. Under oxidative stress mitochondrial 
permeability pores open up to release cytochrome c 
and trigger apoptotic cascade. Metformin is reported 
to inhibit opening of these permeability pores in 
ectoposide-induced cell death model to inhibit apoptotic 
cascade[226]. Metformin is also involved in neurogenesis 
by activation of protein kinase C-CREB binding pathway 
(PKC-CBP) pathway in neuronal cell culture study, in 
human and rodent model system[227]. In neuronal cell 
lines (neuro2A), metformin promotes insulin action 
and attenuates molecular and pathological features 
observed in AD. Metformin treatment was found to 
reduce the risk of dementia in human aged subjects[228]. 
AD patients taking calcium in diet supplemented 
with metformin were found to have better cognitive 
performance[229]. Thus these evidences support the fact 
that metformin is not only a known anti-diabetic agent 
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but also an effective neuroprotective molecule.

Sulphonylurea
SUs is a class of anti-diabetic drugs which are used as 
mono or combined therapy to increase insulin secretion 
by enhancing pro-insulin level via voltage gated calcium 
channel but the actual mechanistic target is still under 
investigation[230]. SUs limits liver glucose production 
and decreases insulin clearance by liver. Glipizide and 
Glyburide (glibenclamide) are the main SUs compounds 
which are investigated for memory and cognition in 
diabetic patients.

Experimental and clinical studies
In case of diabetes and AD, PI3K/mTOR is found to 
be aberrantly activated. Glyburide and glipizide are 
reported to have properties of mTOR antagonist[231] 
but their efficacy to recover AD patients is yet to 
be determined. Inflammosomes are involved in the 
secretion of proinflammatory cytokines that results 
in inflammation and associates it to AD. Along with 
inhibiting mTOR pathway, gliburide is found to inhibit 
inflammosome and thus brain inflammation[232]. Exalto 
et al[230] reported that SUs treated T2D patients shows 
improved AD type dementia symptoms but the precise 
mechanism is still unknown.

DM patients treated with glipizide are reported to 
have better learning efficiency[233]. Some recent studies 
show that there is no alteration in the development of 
AD in population using SUs in long term[234]. Metformin 
and SUs in combination are reported to reduce the risk 
of dementia upto 35% in a prospective cohort study[228].

Intranasal insulin
Intranasal administration of insulin is reported to attenu­
ate reduced insulin signaling in AD[235]. Importantly, 
intranasal insulin does not adversely affect blood insulin 
or glucose levels.

Experimental and clinical studies 
It is evident that AD patients have low insulin level and 
brain insulin resistant state which leads to impaired 
energy metabolism of neurons and make them vul­
nerable for survival. Insulin has been reported with 
its anti-amyloidogenic effect in human neuronal cell 
lines[236]. Some reports have shown that Aβ induced 
neuronal IR is attenuated by insulin treatment[237]. 

In a study it is found that 20 IU insulin twice a day 
over a period of 21 d in early AD or MCI subject’s helps 
to retain verbal information more effectively[30]. In 2006 
Reger et al[30] showed that 10 IU intranasal insulin 
improves cognition in APOE4 AD/MCI subjects.

TZDs
TZDs (also represented as glitazones) are a potential 
class of drug used for T2D which includes rosiglitazone 
(avandia), pioglitazone (actos) and troglitazone (rezulin). 
Mechanism of this group lies in activation of peroxisome 
proliferator-activated receptors by mimicking as a po­

tential agonist of it and involved in transcription of lipid 
and glucose metabolism genes[238,239]. Since TZDs are 
anti-amyloidogenic and anti-inflammatory compounds 
with insulin sensitizing role, these delay neurode­
generation[240]. It also improves glycemic control in 
diabetic patients by inhibiting hepatic gluconeogenesis. 
Moreover, TZDs (mainly Troglitazone) are supposed to 
have their involvement in rescuing memory loss and 
decreasing plasma Aβ 40 and Aβ 42 levels[241,242] but 
again it needs to be investigated further. 

Experimental and clinical studies
Rosiglitazone is reported to attenuate neuronal IR 
induced by Aβ oligomers[237]. Pioglitazone is found to 
improve cognitive performance in a rodent dementia 
model induced by intracerebroventricular (ICV) injection 
of streptozotocin[243].

In a randomized trial rosiglitazone (8 mg) is reported 
to improve cognitive function in mild to moderate AD 
patients (non APOE4 carrier[244]). In contrast, a recent 
phase III trial of the same drug has failed to show 
similar effects in AD subjects[245]. Moreover, long term 
use of TZDs, in general has no effect on risk of AD 
development[234].

Glucagon like peptide 1 
Glucagon like peptide 1 (GLP1) analogs are “incretin 
mimetics”, used to treat T2D. Exenatide, a 39 amino 
acid long peptide is analogous to human GLP1 which 
stimulates insulin secretion in a glucose dependent 
fashion. In brain these analogues bind tor GLP receptors 
and mediate various functions like suppression of 
glucagon production, slow down gastric emptying, 
increase satiety and reduce food intake with lower risk 
of hypoglycemia.

Experimental and clinical studies
In an animal study, GLP1 is reported to protect neurons 
from oxidative stress with reduced apoptosis, plaque 
formation and inflammatory response. Moreover, it 
strengthens synaptic plasticity in AD mouse brain l[246]. 
It is shown to improve spatial memory in transgenic 
AD mice model[247]. Liraglutide and lixisenatide are 
GLP1 receptor agonists which are reported to activate 
cAMP in the brain and induce neurogenesis[248]. In 
addition, liraglutide attenuates memory impairments in 
a mouse model of AD[249]. Subcutaneous administration 
of liraglutide is reported to restore both peripheral 
and brain insulin sensitivity and ameliorates tau 
hyperphosphorylation in rat model of T2D[250]. Clinical 
research on the effect of liraglutide on AD patients is 
still going to evaluate the changes in cognition using a 
neuropsychological test battery[251].

DPP IV inhibitors: Oral hypoglyceimic
DPP-IV, pharmacological inhibitors are oral hypog­
lycemic. These compounds reduce blood glucose levels 
by increasing incretin (GLP-1 and GIP levels) and 
attenuating glucagon effects. Sitagliptin, Vildagliptin, 
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Saxagliptin, Linagliptin, Teneligliptin, Gemigliptin and 
Dutogliptin are major members of gliptins, out of which 
Dutogliptin is under Phase III clinical trial[252]. Effect of 
sitagliptin administration is studied double transgenic 
mice model of AD and reported to significantly delay 
AD pathology including amyloid deposition and 
taupathies[253]. 

Insulin and oral anti-diabetics: A combined therapy
Combination of insulin and other oral anti-diabetic 
drugs are reported to lower neuritic plaque density 
by 20% in AD brains[253]. Metformin in combination 
with rosiglitazone or glyburide is reported to improve 
working memory very significantly[253]. In a prospective 
cohort study, metformin and SUs are reported to reduce 
risk of dementia by 35%[228]. Although, a number of 
anti-diabetic drugs are reported to improve cognitive 
effect, it is still not well understood whether these 
effects are due to glucose lowering effects or adopt 
different pathways of neuroprotection. A broad range 
of anti diabetic therapies are undergoing clinical trials 
including those involving stimulation of the pancreatic 
beta-cell with the gut-derived insulinotropic hormones 
(incretins), GIP and GLP-1[254]. Some drugs have 
good glycemic control but have no history to improve 
cognitive functions[255]. In a study diabetes patients 
were maintained at normoglycemia over 3 mo but 
no significant improvement in cognitive performance 
was observed[256]. Other than glycemic control, anti-
diabetic drugs improve cognitive function. Although 
various clinical trials are underway to evaluate the role 
of anti-diabetic drugs in treatment of neurodegenerative 
disorders such as dementia and AD but the search is still 
not over.

CONCLUSION
This review provides a synopsis in which a metabolic 
disturbance becomes indispensible for life. This is 
a talk of a metabolic problem which emerges as a 
molecular signal defect and takes a form of syndrome 
with multiple complications. Spotlighted player, insulin 
draws a trajectory from diabetes to AD with multiple 
divergence and convergence. 

AD and DM are two devastating syndromes with 
complex molecular interplay. Evidences of their shared 
molecular and biochemical footprints shed light on. 
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