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Abstract
AIM: To investigate the effects of mitofusin-2 (MFN2) 
on insulin sensitivity and its potential targets in the 
liver of rats fed with a high-fat diet (HFD).

METHODS: Rats were fed with a control or HFD for 
4 or 8 wk, and were then infected with a control or 
an MFN2 expressing adenovirus once a week for 3 wk 
starting from the 9th wk. Blood glucose (BG), plasma 
insulin and insulin sensitivity of rats were determined 
at end of the 4th and 8th wk, and after treatment with 
different amounts of MFN2 expressing adenovirus 
(108, 109 or 1010 vp/kg body weight). BG levels were 
measured by Accu-chek Active Meter. Plasma insulin 
levels were analyzed by using a Rat insulin enzyme-

linked immunosorbent assay kit. Insulin resistance was 
evaluated by measuring the glucose infusion rate (GIR) 
using a hyperinsulinemic euglycemic clamp technique. 
The expression or phosphorylation levels of MFN2 
and essential molecules in the insulin signaling path-
way, such as insulin receptor (INSR), insulin receptor 
substrate 2 (IRS2), phosphoinositide-3-kinase (PI3K), 
protein kinase beta (AKT2) and glucose transporter 
type 2 (GLUT2) was assayed by quantitative real-time 
polymerase chain reaction and Western-blotting.

RESULTS: After the end of 8 wk, the body weight of 
rats receiving the normal control diet (ND) and the 
HFD was not significantly different (P  > 0.05). Com-
pared with the ND group, GIR in the HFD group was 
significantly decreased (P  < 0.01), while the levels of 
BG, triglycerides (TG), total cholesterol (TC) and insulin 
in the HFD group were significantly higher than those 
in the ND group (P  < 0.05). Expression of MFN2 mRNA 
and protein in liver of rats was significantly down-
regulated in the HFD group (P  < 0.01) after 8 wk of 
HFD feeding. The expression of INSR, IRS2 and GLUT2 
were down-regulated markedly (P  < 0.01). Although 
there were no changes in PI3K-P85 and AKT2 expres-
sion, their phosphorylation levels were decreased sig-
nificantly (P  < 0.01). After intervention with MFN2 ex-
pressing adenovirus for 3 wk, the expression of MFN2 
mRNA and protein levels were up-regulated (P  < 0.01). 
There was no difference in body weight of rats bet
ween the groups. The levels of BG, TG, TC and insulin 
in rats were lower than those in the Ad group (P  < 
0.05), but GIR in rats infected with Ad-MFN2 was sig-
nificantly increased (P  < 0.01), compared with the Ad 
group. The expression of INSR, IRS2 and GLUT2 was 
increased, while phosphorylation levels of PI3K-P85 
and AKT2 were increased (P  < 0.01), compared with 
the Ad group.

CONCLUSION: HFDs induce insulin resistance, and this 
can be reversed by MFN2 over-expression targeting the 
insulin signaling pathway.
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INTRODUCTION
With obesity and diabetes reaching epidemic propor-
tions worldwide, the role of  insulin resistance and its 
consequences are attracting much attention. Insulin resis-
tance is a critical mechanism of  type 2 diabetes mellitus 
(T2DM) and of  predisposing conditions for T2DM such 
as obesity and metabolic syndrome[1]. Chronic excess 
energy consumption has been shown to contribute to 
hyperinsulinemia and insulin resistance. The liver plays a 
critical role in energy metabolism and is a major insulin 
target organ responsible for glucose homeostasis[2]. In the 
liver, insulin acts through a complex signaling network 
and functions as an important regulator of  carbohydrate 
and lipid homeostasis. Deficiency in insulin signaling may 
cause insulin resistance and subsequently lead to systemic 
insulin resistance and T2DM[3,4]. Specific members of  
the suppressor of  cytokine signaling (SOCS) family of  
proteins are now thought to play a role in the develop-
ment of  insulin resistance owing to their ability to inhibit 
insulin signaling pathways. Work with hepatocyte-specific 
suppressor of  cytokine signaling 3 (SOCS3)-deficient 
(L-SOCS3 cKO) mice, reveals that hepatic SOCS3 is a 
mediator of  insulin resistance in the liver[5]. Therefore, it 
is of  significance to identify the mechanism of  insulin re-
sistance and improve the function of  the insulin signaling 
network for the cure of  insulin resistance.

Mitochondria generate energy and play central roles 
in cell energy metabolism[6]. Studies have shown that 
insulin resistance states such as T2DM or obesity were 
correlated with a decrease in mitochondria number and 
function[7,8]. Fusion of  mitochondria constitutes an im-
portant step in the regulation of  mitochondrial morphol-
ogy and function[9,10]. Mitofusin-2 (MFN2) encodes a 
mitochondrial membrane GTPase which participates in 
mitochondrial fusion and contributes to the maintenance 
and operation of  the mitochondrial network[11]. MFN2 
plays a central role in mitochondrial metabolism and may 
be associated with metabolic diseases such as obesity and 
T2DM[12-14].

Previous studies revealed that a high-fat diet (HFD) 
induced insulin resistance[15] and MFN2 could play a im-
portant role in development of  insulin resistance[12,16,17]. 
However, the role of  MFN2, a key factor for mitochon-
drial function and energy metabolism, in liver insulin re-
sistance and the insulin signaling pathway should be fur-
ther elucidated. In this study, we established an HFD-in-

duced insulin resistance model in rats and used an MFN2  
expressing adenovirus to investigate the mechanism by 
which MFN2 ameliorates HFD-induced insulin resis-
tance.

MATERIALS AND METHODS
Animal care and grouping 
Male Wistar rats about 60-80 g (4 wk old) were housed in 
wire bottom cages to prevent coprophagia. The environ-
ment was controlled in terms of  light (12:12-h light-dark 
cycle starting at 6:00 AM), humidity, and room tempera-
ture (20-23 ℃). Except for pretest overnight fasting and 
the immediate postoperative period, animals had free 
access to water and chow. The experimental protocols 
were approved by the Institutional Animal Care and Use 
Committee of  the Centre for Gerontology and Geriat-
rics of  Hebei Province in China.

 Seven days after their arrival, rats were randomly divi
ded into 9 groups (n = 6), as is schematically represented 
in Figure 1. In brief, rats were fed with a normal control 
diet (ND) or an HFD for 4 or 8 wk, and then some 
groups were infected with Ad-MFN2 or empty Ad ade-
novirus or PBS control once a week, for 3 wk. The HFD 
consisted of  59.8% fat, 20.1% protein, and 20.1% carbo-
hydrate (kcal). The normal rodent chow diet contained 
10.3% fat, 24.2% protein, and 65.5% carbohydrate (kcal). 
The MFN2 expressing adenovirus Ad-MFN2 and the 
empty control adenovirus Ad were obtained from Dr. 
Zhang, Hebei Medical University[18].

Blood samples were collected from the abdominal 
aorta. Blood glucose (BG) levels were measured by Accu-
chek Active Meter (ACCU-CHEK® Active; Roche, Ger-
many) and insulin levels were analyzed using a rat insulin 
enzyme-linked immunosorbent assay kit (Crystal Chem. 
Inc, United States). The liver tissue samples of  rats were 
taken immediately and kept at -80 ℃ after being quickly 
frozen in liquid nitrogen.

Euglycemic hyperinsulinemic clamp
Hyperinsulinemic clamp studies were performed as pre-
viously described[19]. Rats were under general anesthesia 
(3% pelltobarbitalum natricum, 60 mg/kg, intraperitone-
ally), and catheters were inserted into the right jugular 
vein and the thoracic aorta of  rats and exteriorized from 
the back of  the neck subcutaneously. At the end, the 
catheters were flushed with isotonic saline containing 
heparin (50 U/mL). Rats were allowed to fully recover 
for a minimum of  3 d and only those that had lost less 
than 5% of  their preoperative weights were used. Eug-
lycemic-hyperinsulinemic clamp tests were performed 
on fasted, awake, and unrestrained animals. Insulin was 
infused at 4 mU/(kg·min) through the jugular vein cath-
eter for 0-90 min. Glucose concentrations were clamped 
at euglycemic levels by a variable rate infusion of  30% 
glucose. BG levels were monitored with a glucometer 
(ACCU-CHEK® Active; Roche), and glucose infusion 
rates (GIR) were adjusted every 5-10 min as needed. A 
stable GIR was obtained within about 60 min after in-
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sulin infusion and maintained thereafter. At steady state, 
mean GIR was normalized to body weight.

Real-time polymerase chain reaction analysis
Total RNA was isolated from liver tissue using TRIzol 
reagent (Invitrogen, United States) according to the man-
ufacturer’s instructions. Equal amounts of  RNA were 
used to synthesize first strand cDNA (Promega, United 
States), and quantitative real-time polymerase chain reac-
tion (RT-PCR) was performed on an ABI PRISM 7300 
PCR System (Applied Biosystems, United States) using 
Syber Green I GoTaq® qPCR Master Mix (Promega, Uni
ted States). PCR was performed as: one cycle at 95 ℃ 
for 5 min, followed by 40 cycles of  95 ℃ for 15 s, 58 ℃ 
for 20 s and 72 ℃ for 30 s. Then PCR products were 
analyzed by melting curve to confirm the specificity of  
amplification. The PCR primer sequences are shown 
in Table 1. mRNA expression of  target genes was nor-
malized to the internal reference gene glyceraldehyde 
3-phosphate dehydrogenase. The relative expression of  
target genes was obtained using SDS v1.3.2 software 
linked with the PCR machine.

Western blotting
Protein samples were prepared with lysis buffer (10 mL/
L Triton X-100, 150 mmol/L NaCl, 10 mmol/L Tris-
HCl, pH 7.4, 1 mmol/L EDTA, 1 mmol/L EGTA, pH 
8.0, 0.2 mmol/L Na3VO4, 0.2 mmol/L phenylmethyl-

sulfonyl fluoride, and 5 mL/L NP-40). Equal amounts 
of  protein were separated by 10% SDS-PAGE (sodium 
dodecyl sulfate polyacrylamide gel electrophoresis), and 
electrotransferred to polyvinylidene difluoride membra
nes, and were then blocked with 5 g/L bovine serum 
albumin for 2 h at room temperature. Membranes were 
incubated with appropriate diluted primary antibodies 
of  MFN2, insulin receptor (INSR), insulin receptor sub-
strate 2 (IRS2), phosphoinositide-3-kinase (PI3K-P85), 
p-PI3K-P85, AKT2, p-AKT2, glucose transporter type 2 
(GLUT2) or β-actin (all from Santa Cruz or Cell Signal-
ing Technology, United states) respectively overnight at 
4 ℃, and then with the respective secondary antibody 
for 2 h. Proteins were detected with the enhanced che-
miluminescence detection system. β-actin served as an 
internal control protein. The experiments were replicated 
three times.

Statistical analysis
Data were shown as mean ± SD. One-way analysis of  
variance was used to determine statistically significant dif-
ferences between groups. P < 0.05 was considered statis-
tically significant.

RESULTS
HFD decreased insulin sensitivity in rats 
As shown in Figure 2, fasting BG and plasma insulin lev-

4 wk               4 wk
Normal diets High-fat diets

8 wk                               8 wk
Normal diets High-fat diets

109 Ad control

PBS control

108 Ad-MFN2

109 Ad-MFN2

1010 Ad-MFN2

3 wk

3 wk

Control groups Model or treatment groups

Figure 1  Schematic presentation of rat groups. Rats were fed with control or high-fat diets for 4 or 8 wk, and then some groups were infected with Ad-mitofusin 2 
(MFN2) or empty Ad adenovirus or phosphate-buffered saline (PBS) control once a week for 3 wk.
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Table 1  Primer sequences for quantitative polymerase chain reaction

Gene bp Forward primer (5'-3') Reverse primer (5'-3') GenBank No.

GAPDH 120 TGAACGGGAAGCTCACTGG GCTTCACCACCTTCTTGATGTC NM_017008
MFN2 160 AGCGTCCTCTCCCTCTGACA TTCCACACCACTCCTCCGAC NM_130894
INSR 135 TTTGCCCAACCATCTGTAAG GACCATCCAGGTAGAAGTTTCG NM_017071.1
IRS2   81 TCTCTGGCAGTTCAGGTCG AGTCCTCTGGGTAAGGGTTG NM_001168633
PI3K 135 GCCTGCTCTGTAGTGGTAGATG GGAGGTGTGTTGGTAATGTAGC NM_013005.1
AKT2   79 CTGAGATGATGGAGGTAGCG CCGAGGAGTTTGAGATAATCG NM_017093.1
GLUT2   80 AGCACATACGACACCAGACG CAGACAGAGACCAGAGCATAGTG NM_012879
SOCS3 148 TCACCCACAGCAAGTTTCC ACGGCACTCCAGTAGAATCC NM_053565.1

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; MFN2: Mitofusin-2; INSR: Insulin receptor; IRS2: Insulin receptor substrate 
2; PI3K: Phosphoinositide-3-kinase; AKT2: Protein kinase beta; GLUT2: Glucose transporter type 2; SOCS3: Suppressor of cytokine 
signaling 3.
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els of  rats increased after 4 or 8 wk HFD feeding, while 
GIR, a more sensitive indicator for insulin sensitivity, de-
creased markedly. The levels of  plasma total cholesterol 
(TC) and triglycerides (TG) were higher than those in the 
ND group at 4 and 8 wk. Greater changes in these val-
ues were seen at 8 wk than 4 wk, while the body weights 
of  rats in each group were not significantly different at 4 
or 8 wk.

HFD inhibited the expression of MFN2 and insulin signaling 
pathway factors and their phosphorylation levels 
MFN2 is a key factor for energy metabolism, while the 
IRS2/PI3K cascade is the main insulin signaling path-
way in hepatocytes, so we detected the expression of  
MFN2 and the IRS2/PI3K cascade pathway. As shown 
in Figure 3, the expression of  MFN2, INSR, IRS2 and 
GLUT2 was down-regulated markedly by HFD both at 
4 and 8 wk. While the mRNA and total protein expres-
sion of  PI3K-P85 and AKT2 were not significantly chan
ged (Figure 3A and B), their protein phosphorylation 
levels decreased markedly (Figure 3B). However, HFD 
seemed to have no effects on the expression of  IRS1, 
PI3K-P110 and AKT1 or their phosphorylation (data 
not shown).

Over-expression of MFN2 ameliorated HFD induced 
insulin resistance in rats
In order to know the effect of  MFN2 on insulin sensitiv-

ity, rats were fed with an HFD for 8 wk, and then were 
infected with different amounts of  Ad-MFN2 (108, 109 

or 1010 vp/kg body weight) or empty Ad adenovirus or 
PBS control for 3 wk. The results showed that MFN2 
expression in the liver of  rats increased dramatically after 
Ad-MFN2 infection (Figure 4A-C). At the same time, 
fasting BG, plasma insulin, TC and TG levels decreased 
(Figure 4D-G), while GIR increased (Figure 4H) mark-
edly after infection with different amounts of  Ad-MFN2. 
The body weight of  rats in the two groups showed no 
significant difference (Figure 4I). The results indicated 
that MFN2 over-expression could neutralize the effects 
of  HFD on insulin sensitivity.

Over-expression of MFN2 neutralized the inhibition of 
the insulin pathway by HFD in rats
Based on MFN2 over-expression in liver of  rats, we de-
tected changes in the insulin pathway by quantitative RT- 
PCR and Western-blot assays. The results showed that 
both mRNA and protein levels of  INSR, IRS2 and 
GLUT2 were up-regulated markedly (Figure 5A and B). 
Though there were no changes in PI3K-P85 and AKT2 
expression, their phosphorylation levels increased signifi-
cantly (Figure 5B). After treated with MFN2 expressing 
adenovirus, the expression of  SOCS3 was decreased (Fig-
ure 5C and D).The results suggested that MFN2-induced 
improvement in insulin sensitivity may be correlated with 
the promotion of  the insulin signaling pathway.
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Figure 2  High-fat diets resulted in insulin resistance in rats (n = 6). Rats were fed with high-fat diets or normal control diets for 4 wk or 8 wk. A: The level of blood 
glucose; B: The level of plasma insulin. C: The values of glucose infusion rate (GIR) were used to assess insulin sensitivity of rats assayed by hyperinsulinemic eugly-
cemic clamping; D: The level of plasma total cholesterol (TC); E: The level of plasma triglyceride (TG); F: The body weight. aP < 0.05, bP < 0.01 vs normal diets; cP < 0.05, 
dP < 0.01 vs 4 wk.
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Over-expression of MFN2 alleviated hepatic steatosis
All of  the tissue sections in the control and Ad groups 
exhibited diffuse hepatic steatosis under a light micro-
scope. Hepatic steatosis was most obvious around the 
portal area and was accompanied by inflammatory cell 
infiltration. The liver HE staining of  rats infected with 
Ad-MFN2 showed a lower cell volume and fat droplet ac-
cumulation (Figure 6).

DISCUSSION
HFDs induce dysfunction of  energy metabolism and im-
paired insulin sensitivity[20]. Insulin resistance is not only 
the most important pathophysiological feature in many 
pre-diabetic states, but is also a key component of  the 
metabolic syndrome, in which target cells fail to respond 
to normal levels of  circulating insulin[21]. The liver is a 
vital organ for lipid metabolism and glycometabolism, 
and therefore one of  the main organs in which insulin re-
sistance occurs. Mitochondria are the power centres, and 
also the energy metabolism centres in cells, so mitochon-
drial dysfunction is the main reason for insulin resistance 
and is involved in the pathogenesis of  T2DM[22]. The 

MFN2 gene plays a central role in mitochondrial metabo-
lism[23]; however, the role of  MFN2 in insulin resistance 
and the insulin signaling pathway remains uncertain. 
Our study suggested that MFN2 expression and insulin 
sensitivity were inhibited by an HFD, while recovery of  
MFN2 expression could recover impaired insulin sensi-
tivity, and may be associated with improvements of  the 
insulin signaling pathway in liver.

An HFD enriched with lard, a significant contributor 
to the development of  obesity and insulin resistance, has 
been widely used to induce an animal model of  obesity 
with insulin resistance[24]. Previous studies have reported 
a long-term HFD could cause a marked increase in body 
weight. In this study, we confirmed that an HFD, for only 
4 wk, could result in insulin resistance, which progressed 
further after 8 wk in the absence of  major changes in to-
tal body weight. It may because an HFD produces altered 
fat distribution, leading to the accumulation of  visceral 
fat[25,26]. At the same time, MFN2 expression was down-
regulated dramatically, and the insulin signaling pathway 
was inhibited markedly in the liver of  rats. 

MFN proteins have been shown to regulate the bi
ogenesis and maintenance of  the mitochondrial netwo

Figure 3  High-fat diets inhibited insulin pathway in liver of rats. Rats were fed with high-fat diets (HF) or normal control diets (Con) for 4 or 8 wk. A: The mRNA 
expression levels of mitofusin 2 (MFN2), insulin receptor (INSR), insulin receptor substrate 2 (IRS2), phosphoinositide-3-kinase (PI3K), AKT2 and glucose transporter 
type 2 (GLUT2) were examined by quantitative real-time-polymerase chain reaction; B and C: The protein levels were detected by Western-blotting. bP < 0.01 vs nor-
mal diets for 4 wk; dP < 0.01 vs normal diets for 8 wk.
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Figure 4  Mitofusin-2 over-expression improved insulin sensitivity of rats (n = 6). Rats were fed with high-fat diets for 8 wk, and then were infected with differ-
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expression in liver of rats was confirmed by quantitative real-time-polymerase chain reaction (A) and Western-blotting (B and C). The levels of blood glucose (D), 
plasma insulin (E), triglycerides (TG) (G) plasma total cholesterol (TC) (F) and insulin sensitivity (H) levels were examined, respectively. The body weight of rats was 
measured (I). aP < 0.05, bP < 0.01 vs  Ad. GIR: Glucose infusion rate.
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rk[27]. MFN protein deficiency could cause a failure in 
the mitochondrial architecture and decreases in oxidative 
capacity and glucose oxidation. MFN2 is a proliferation-
inhibiting gene encoding a mitochondrial fusion protein 
that participates in the maintenance of  the mitochon-
drial morphology and regulates mitochondrial metabo-
lism and intracellular signaling[6]. A recent study found 
that liver MFN2 protein was significantly decreased, and 
fasting BG concentrations were increased in mice after 

interference with MFN2 protein expression[28]. Our data 
demonstrate that over-expression of  MFN2 significantly 
restored insulin sensitivity and reduced the levels of  BG 
and plasma insulin in rats, suggesting MFN2 as a poten-
tial therapeutic target in insulin resistance.

Most metabolic processes are regulated by insulin in 
muscle, adipocytes, and liver. A recent study indicated 
that mitochondrial protein down-regulation contributes 
to defects in insulin signaling in insulin resistance[29]. Insu-
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lin acts through a complex signaling network including 
alternative or complementary pathways, with multiple 
molecular systems involved[30]. Abnormalities in the early 
stages of  insulin signaling have been considered as an im-
portant component of  many insulin-resistant states[31,32]. 
Our results showed that the expression of  INRS, IRS2 
and GLUT2 decreased; the phosphorylation of  PI3K-P85 
and AKT2 was also inhibited by HFD, but was restored 
markedly by recovery of  MFN2 expression.

Hepatic expression of  SOCS3 has been reported to 
be elevated in rodent models of  obesity and insulin resis-
tance[33,34]. SOCS3 was found to bind to phosphotyrosine 
960 of  the insulin receptor and prevent STAT5b activa-
tion by insulin[35]. In COS-7 cells, SOCS3 reduced IRS-2 
phosphorylation and its subsequent association with p85, 
the regulatory subunit of  PI3K[36]. In multiple cell lines, 
SOCS3 has been shown to bind IRS-2 and promote its 
ubiquitination and subsequent degradation[34,37]. The inhi-

bition of  SOCS3 expression restores IRS-1 and IRS-2 ty-
rosine phosphorylation, and IRS-1 and IRS-2 association 
with p85-PI3K and [Ser473] phosphorylation of  Akt[38]. 
In our study, expression of  SOCS3 in the liver of  rats 
treated with MFN2 expressing adenovirus was decreased. 
MFN2 expression may improve insulin resistance by re
gulating the expression of  SOCS3 in the liver of  rats.

In conclusion, MFN2 could ameliorate insulin resis-
tance induced by HFD by improvement of  the insulin 
signaling pathway, and this may be a potential target for 
the treatment of  insulin resistance and metabolic syn-
drome.
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